Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Appl Radiat Isot ; 204: 111143, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38101006

RESUMEN

High-resolution and real-time imaging of particle ion trajectories is essential in nuclear medicine and nuclear engineering. One potential method to achieve high-resolution real-time trajectory imaging of particle ions involves utilizing an imaging system that integrates a scintillator plate with a magnifying unit and a cooled electron multiplying charge-coupled device (EM-CCD) camera. However, acquiring an EM-CCD camera might prove challenging due to the discontinuation of CCD sensor manufacturing by vendors. As an alternative imaging approach, a low-noise, high-sensitivity camera utilizing a cooled complementary metal-oxide-semiconductor (CMOS) sensor offers a promising solution for imaging particle ion trajectories. Yet, it remains uncertain whether CMOS-based cameras can perform as effectively as CCD-based cameras in capturing particle ion trajectories. To address these concerns, we conducted a comparative analysis of the imaging performance between a CMOS-based system and an EM-CCD-based system for capturing alpha particle trajectories. The results revealed that both systems could image the trajectories of alpha particle, but the spatial resolution with the CMOS-based camera exceeded that of the EM-CCD-based camera, primarily due to the smaller pixel size of the sensor. While the signal-to-noise ratio (SNR) of the trajectory image from the CMOS-based camera initially lagged behind that from the EM-CCD-based camera, this disparity was mitigated by implementing binning techniques on the CMOS-based camera images. In conclusion, our findings suggest that a cooled CMOS camera could serve as a viable alternative for imaging particle ion trajectories.

2.
Radiat Oncol ; 18(1): 180, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919745

RESUMEN

BACKGROUND: Intensity-modulated radiation therapy (IMRT) requires delivery quality assurance (DQA) to ensure treatment accuracy and safety. Irradiation techniques such as helical tomotherapy (HT) have become increasingly complex, rendering conventional verification methods insufficient. This study aims to develop a novel DQA system to simultaneously verify dose distribution and multi-leaf collimator (MLC) opening during HT. METHODS: We developed a prototype detector consisting of a cylindrical plastic scintillator (PS) and a cooled charge-coupled device (CCD) camera. Scintillation light was recorded using a CCD camera. A TomoHDA (Accuray Inc.) was used as the irradiation device. The characteristics of the developed system were evaluated based on the light intensity. The IMRT plan was irradiated onto the PS to record a moving image of the scintillation light. MLC opening and light distribution were obtained from the recorded images. To detect MLC opening, we placed a region of interest (ROI) on the image, corresponding to the leaf position, and analyzed the temporal change in the light intensity within each ROI. Corrections were made for light changes due to differences in the PS shape and irradiation position. The corrected light intensity was converted into the leaf opening time (LOT), and an MLC sinogram was constructed. The reconstructed MLC sinogram was compared with that calculated using the treatment planning system (TPS). Light distribution was obtained by integrating all frames obtained during IMRT irradiation. The light distribution was compared with the dose distribution calculated using the TPS. RESULTS: The LOT and the light intensity followed a linear relationship. Owing to MLC movements, the sensitivity and specificity of the reconstructed sinogram exceeded 97%, with an LOT error of - 3.9 ± 7.8%. The light distribution pattern closely resembled that of the dose distribution. The average dose difference and the pass rate of gamma analysis with 3%/3 mm were 1.4 ± 0.2% and 99%, respectively. CONCLUSION: We developed a DQA system for simultaneous and accurate verification of both dose distribution and MLC opening during HT.


Asunto(s)
Radioterapia de Intensidad Modulada , Humanos , Radioterapia de Intensidad Modulada/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Fantasmas de Imagen
3.
Sensors (Basel) ; 23(10)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37430488

RESUMEN

Wavemeters are very important for precise and accurate measurements of both pulses and continuous-wave optical sources. Conventional wavemeters employ gratings, prisms, and other wavelength-sensitive devices in their design. Here, we report a simple and low-cost wavemeter based on a section of multimode fiber (MMF). The concept is to correlate the multimodal interference pattern (i.e., speckle patterns or specklegrams) at the end face of an MMF with the wavelength of the input light source. Through a series of experiments, specklegrams from the end face of an MMF as captured by a CCD camera (acting as a low-cost interrogation unit) were analyzed using a convolutional neural network (CNN) model. The developed machine learning specklegram wavemeter (MaSWave) can accurately map specklegrams of wavelengths up to 1 pm resolution when employing a 0.1 m long MMF. Moreover, the CNN was trained with several categories of image datasets (from 10 nm to 1 pm wavelength shifts). In addition, analysis for different step-index and graded-index MMF types was carried out. The work shows how further robustness to the effects of environmental changes (mainly vibrations and temperature changes) can be achieved at the expense of decreased wavelength shift resolution, by employing a shorter length MMF section (e.g., 0.02 m long MMF). In summary, this work demonstrates how a machine learning model can be used for the analysis of specklegrams in the design of a wavemeter.

4.
Methods Protoc ; 6(1)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36827507

RESUMEN

The potential of antioxidants in preventing several diseases has attracted great attention in recent years. Indeed, these products are part of a multi-billion industry. However, there is a lack of scientific information about safety, quality, doses, and changes over time. In the present work, a simple multisample methodology based on chemiluminiscent imaging to determine chlorogenic acid (CHLA) in green coffee samples has been proposed. The multi-chemiluminiscent response was obtained after a luminol-persulfate reaction at pH 10.8 in a multiplate followed by image capture with a charge-coupled device (CCD) camera as a readout system. The chemiluminiscent image was used as an analytical response by measuring the luminescent intensity at 0 °C with the CCD camera. Under the optimal conditions, the detection limit was 20 µM and precision was also adequate with RSD < 12%. The accuracy of the proposed system was evaluated by studying the matrix effect, using a standard addition method. Recoveries of chlorogenic acid ranged from 93-94%. The use of the CCD camera demonstrated advantages such as analysis by image inspection, portability, and easy-handling which is of particular relevance in the application for quality control in industries. Furthermore, multisample analysis was allowed by one single image saving time, energy, and cost. The proposed methodology is a promising sustainable analytical tool for quality control to ensure green coffee safety through dosage control and proper labelling preventing potential frauds.

5.
Biosensors (Basel) ; 13(1)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36671941

RESUMEN

In photoacoustic (PA) imaging, tissue absorbs specific wavelengths of light. The absorbed energy results in thermal expansion that generates ultrasound waves that are reconstructed into images. Existing commercial PA imaging systems for preclinical brain imaging are limited by imprecise positioning capabilities and inflexible user interfaces. We introduce a new visible charge-coupled device (CCD) camera-guided photoacoustic imaging (ViCPAI) system that integrates an ultrasound (US) transducer and a data acquisition platform with a CCD camera for positioning. The CCD camera accurately positions the US probe at the measurement location. The programmable MATLAB-based platform has an intuitive user interface. In vitro carbon fiber and in vivo animal experiments were performed to investigate the precise positioning and imaging capabilities of the ViCPAI system. We demonstrated real-time capturing of bilateral cerebral hemodynamic changes during (1) forelimb electrical stimulation under normal conditions, (2) forelimb stimulation after right brain focal photothrombotic ischemia (PTI) stroke, and (3) progression of KCl-induced cortical spreading depression (CSD). The ViCPAI system accurately located target areas and achieved reproducible positioning, which is crucial in animal and clinical experiments. In animal experiments, the ViCPAI system was used to investigate bilateral cerebral cortex responses to left forelimb electrical stimulation before and after stroke, showing that the CBV and SO2 in the right primary somatosensory cortex of the forelimb (S1FL) region were significantly changed by left forelimb electrical stimulation before stroke. No CBV or SO2 changes were observed in the bilateral cortex in the S1FL area in response to left forelimb electrical stimulation after stroke. While monitoring CSD progression, the ViCPAI system accurately locates the S1FL area and returns to the same position after the probe moves, demonstrating reproducible positioning and reducing positioning errors. The ViCPAI system utilizes the real-time precise positioning capability of CCD cameras to overcome various challenges in preclinical and clinical studies.


Asunto(s)
Técnicas Fotoacústicas , Accidente Cerebrovascular , Ratas , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Corteza Cerebral/fisiología , Neuroimagen
6.
Sensors (Basel) ; 22(20)2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36298246

RESUMEN

This paper proposes a new laser parameter measuring method based on cone-arranged fibers to further improve the measurable spot size, allowable incident angle range, and spatial sampling resolution. This method takes a conical array composed of flexible fibers to sample and shrink the cross-section spot of the laser beam, facilitating low-distortion shooting with a charge-coupled diode (CCD) camera, and adopts homogenized processing and algorithm analysis to correct the spot. This method is experimentally proven to achieve high-accuracy measurements with a decimeter-level spot-receiving surface, millimeter-level resolution, and high tolerance in order to incite skew angle. Comparing the measured spot under normal incidence with the real one, the root mean square error (RMSE) of their power in the bucket (PIB) curves is less than 1%. When the incident angle change is between -8° and 8°, the RMSE is less than 2% and the measurement error of total power is less than 5% based on the premise that the fiber's numerical aperture (NA) is 0.22. The possibility of further optimizing the measurement method by changing the fiber parameters and array design is also reported.

7.
Artículo en Inglés | MEDLINE | ID: mdl-35221402

RESUMEN

Research on proton-based imaging systems aims to improve treatment planning, internal anatomy visualization, and patient alignment for proton radiotherapy. The purpose of this study was to demonstrate a new proton radiography system design consisting of a monolithic plastic scintillator volume and two optical cameras for use with scanning proton pencil beams. Unlike the thin scintillating plates currently used for proton radiography, the plastic scintillator volume (20 × 20 × 20 cm3) captures a wider distribution of proton beam energy depositions and avoids proton-beam modulation. The proton imaging system's characteristics were tested using image uniformity (2.6% over a 5 × 5 cm2 area), stability (0.37%), and linearity (R2 = 1) studies. We used the light distribution produced within the plastic scintillator to generate proton radiographs via two different approaches: (a) integrating light by using a camera placed along the beam axis, and (b) capturing changes to the proton Bragg peak positions with a camera placed perpendicularly to the beam axis. The latter method was used to plot and evaluate relative shifts in percentage depth light (PDL) profiles of proton beams with and without a phantom in the beam path. A curvelet minimization algorithm used differences in PDL profiles to reconstruct and refine the phantom water-equivalent thickness (WET) map. Gammex phantoms were used to compare the proton radiographs generated by these two methods. The relative accuracies in calculating WET of the phantoms using the calibration-based beam-integration (and the PDL) methods were -0.18 ± 0.35% (-0.29 ± 3.11%), -0.11 ± 0.51% (-0.15 ± 2.64%), -2.94 ± 1.20% (-0.75 ± 6.11%), and -1.65 ± 0.35% (0.36 ± 3.93%) for solid water, adipose, cortical bone, and PMMA, respectively. Further exploration of this unique multicamera-based imaging system is warranted and could lead to clinical applications that improve treatment planning and patient alignment for proton radiotherapy.

8.
Radiol Phys Technol ; 15(1): 37-44, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34841495

RESUMEN

10B-neutron capture was observed optically using a boron-added liquid scintillator. Trimethyl borate was dissolved in a commercially available liquid scintillator at natural boron concentrations of approximately 1 wt% and 0.25 wt%. The boron-added liquid scintillator was placed in a phantom quartz bottle and irradiated by thermal neutrons (~ 105 n/[cm2 s]) for 150, 300, and 600 s. The luminescence of the liquid scintillator was clearly observed using a cooled charge-coupled device (CCD) camera during irradiation. The luminance value recorded by the CCD camera was proportional to the duration of irradiation by thermal neutrons. The luminescence distribution showed reasonable agreement with that of energy deposition by Li and alpha particles from 10B-neutron capture reactions calculated via Monte Carlo simulations. When trimethyl borate was not dissolved in the liquid scintillator (0 wt% natural boron), no visible luminescence was observed even after 600 s of irradiation. These findings demonstrate that the observed luminance originates from the Li and alpha particles generated by 10B-neutron capture reactions. Consequently, the luminescence distribution is directly related to the boron dose of the liquid scintillator. To the best of our knowledge, direct experimental optical observations of boron dose distribution have not yet been reported. This novel technique will be useful for quality assurance in boron neutron capture therapy (BNCT) because instantaneous neutron irradiation may be sufficient for the observing the intense neutron beam used in clinical BNCT (~ 109 n/[cm2 s]), and quick evaluation of the boron dose distribution is expected to be feasible.


Asunto(s)
Terapia por Captura de Neutrón de Boro , Boro , Método de Montecarlo , Neutrones , Fantasmas de Imagen
9.
Med Phys ; 49(3): 1822-1830, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34958515

RESUMEN

PURPOSE: Optical imaging of ionizing radiation is a possible method for dose distribution measurements. However, it is not clear whether the imaging method is also applicable to neutrons. To clarify this, we performed the imaging of neutrons in water from boron neutron capture therapy (BNCT) systems. Such systems require efficient distribution measurements of neutrons for quality assessment (QA) of the beams. METHOD: A water-filled phantom was irradiated from the side with an epithermal neutron beam, in which a lithium-containing zinc sulfate (Li-ZnS(Ag)) plate was set in the beam direction, and during this irradiation the scintillation of the plate was imaged using a cooled charge-coupled device (CCD) camera. In the imaging, Li-6 in the Li-ZnS(Ag) plate captures neutrons and converts them to alpha particles (He-4) and tritium (H-3), while ZnS(Ag) in the Li-ZnS(Ag) plate produces scintillation light in the plate. We also conducted Monte Carlo simulation and compared its results with the experimental results. RESULTS: The image of the emitted light from the Li-ZnS(Ag) plate was clearly obtained with an imaging time of 0.5 s. The depth and lateral profiles of the measured image using the Li-ZnS(Ag) plate showed the same shapes as the neutron distributions measured with gold foil, within a difference of 8%. The destructive effect of neutrons on the CCD camera increased approximately three times, but the unit was still working after the measurement. CONCLUSION: The optical imaging of neutrons in water is possible, and it has the potential to be a new method for efficient QA as well as for research on neutrons.


Asunto(s)
Terapia por Captura de Neutrón de Boro , Terapia por Captura de Neutrón de Boro/métodos , Litio , Método de Montecarlo , Neutrones , Imagen Óptica , Agua , Zinc , Sulfato de Zinc
10.
Med Phys ; 48(10): 5639-5650, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34389992

RESUMEN

PURPOSE: To test the measurement technique of the three-dimensional (3D) dose distribution measured image by capturing the scintillation light generated using a plastic scintillator and a scintillating screen. METHODS: Our imaging system constituted a column shaped plastic scintillator covered by a Gd2 O2 S:Tb scintillating screen, a conical mirror and a cooled CCD camera. The scintillator was irradiated with 6 MV photon beams. Meanwhile, the irradiated plan was prepared for the static field plans, two-field plan (2F plan) and the conformal arc plan (CA plan). The 2F plan contained 16 mm2 and 10 mm2 fields irradiated from gantry angles of 0° and 25°, respectively. The gantry was rotated counterclockwise from 45° to 315° for the CA plan. The field size was then obtained as 10 mm2 . A Monte Carlo simulation was performed in the experimental geometry to obtain the calculated 3D dose distribution as the reference data. Dose response was acquired by comparing between the reference and the measurement. The dose rate dependence was verified by irradiating the same MU value at different dose rates ranging from 100 to 600 MU/min. Deconvolution processing was applied to the measured images for the correction of light blurring. The measured 3D dose distribution was reconstructed from each measured image. Gamma analysis was performed to these 3D dose distributions. The gamma criteria were 3% for the dose difference, 2 mm for the distance-to-agreement and 10% for the threshold. RESULTS: Dose response for the scintillation light was linear. The variation in the light intensity for the dose rate ranging from 100 to 600 MU/min was less than 0.5%, while our system presents dose rate independence. For the 3D dose measurement, blurring of light through deconvolution processing worked well. The 3D gamma passing rate (3D GPR) for the 10 × 10 mm2 , 16 × 16 mm2 , and 20 × 20 mm2 fields were observed to be 99.3%, 98.8%, and 97.8%, respectively. Reproducibility of measurement was verified. The 3D GPR results for the 2F plan and the CA plan were 99.7% and 100%, respectively. CONCLUSIONS: We developed a plastic scintillation dosimeter and demonstrated that our system concept can act as a suitable technique for measuring the 3D dose distribution from the gamma results. In the future, we will attempt to measure the 4D dose distribution for clinical volumetric modulated arc radiation therapy (VMAT)-SBRTplans.


Asunto(s)
Dosímetros de Radiación , Radioterapia de Intensidad Modulada , Método de Montecarlo , Plásticos , Radiometría , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Reproducibilidad de los Resultados , Conteo por Cintilación
11.
Phys Med Biol ; 66(12)2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34010817

RESUMEN

Proton therapy using mini-beams is a promising method to reduce radiation damage to normal tissue. However, distribution measurements of mini-beams are difficult due to their small structures. Since optical imaging is a possible method to measure high-resolution two-dimensional dose distribution, we conducted optical imaging of an acrylic block during the irradiation of mini-beams of protons. Mini-beams were made from a proton pencil beam irradiated to 1 mm slits made of tungsten plate. During irradiation of the mini-beams to the acrylic block, we measured the luminescence of the acrylic block using a charge-coupled device camera. With the measurements, we could obtain slit beam images that have slit shapes in the shallow area while they were uniform in their Bragg peaks, which was similar to the case of simulated optical images by Monte Carlo simulations. We confirmed that high-resolution optical imaging of mini-beams is possible and provides a promising method for efficient quality assessment of mini-beams as well as research on mini-beam therapy.


Asunto(s)
Terapia de Protones , Protones , Método de Montecarlo , Imagen Óptica , Fantasmas de Imagen
12.
Heliyon ; 7(3): e06388, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33748469

RESUMEN

Hepatocellular carcinoma (HCC) is a major global health problem with about 841,000 new cases and 782,000 deaths annually, due to lacking early biomarker/s, and centralized diagnosis. Transcriptomes research despite its infancy has proved excellence in its implementation in identifying a coherent specific cancer RNAs differential expression. However, results are sometimes overlapped by other cancer types which negatively affecting specificity, plus the high cost of the equipment used. Hyperspectral imaging (HSI) is an advanced tool with unique, spectroscopic features, is an emerging tool that has widely been used in cancer detection. Herein, a pilot study has been performed for HCC diagnosis, by exploiting HIS properties and the analysis of the transcriptome for the development of non-invasive remote HCC sensing. HSI data cube images of the sera extracted total RNA have been analyzed in HCC, normal subject, liver benign tumor, and chronic HCV with cirrhotic/non-cirrhotic liver groups. Data analyses have revealed a specific spectral signature for all groups and can be easily discriminated; at the computed optimum wavelength. Moreover, we have developed a simple setup based on a commercial laser pointer for sample illumination and a Smartphone CCD camera, with HSI consistent data output. We hypothesized that RNA differential expression and its spatial organization/folding are the key players in the obtained spectral signatures. To the best of our knowledge, we are the first to use HSI for sensing cancer based on total RNA in serum, using a Smartphone CCD camera/laser pointer. The proposed biosensor is simple, rapid (2 min), and affordable with specificity and sensitivity of more than 98% and high accuracy.

13.
Talanta ; 224: 121871, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33379081

RESUMEN

Shrimp is one of the most delicious and popular food commodities worldwide due to its exceptional taste and characteristics. Freshness is considered as a key factor for shrimp consumers because freshness has a significant relationship with taste and shelf-life of shrimp. However, post-mortem metabolism of shrimp differs from that of fish as they are highly susceptible to post-harvest quality loss, and it is hard to distinguish the freshness variation of shrimp at frozen state instantly. Thus, instant monitoring of frozen shrimp freshness is challenging for the seafood and aquaculture industries and a reliable, expeditious, and noninvasive technique to estimate shrimp quality is in high demand. Accordingly, this study aimed to visualize changes in post-mortem freshness of frozen shrimp using multidimensional fluorescence imaging. Live coonstripe shrimp (Pandalus hypsinotus) were harvested and instantly killed by beheading, cooled on ice for 0, 6, 24, 48, 72 and 96 h (n = 8), followed by processing into frozen peeled deveined shrimp product and stored at -60 °C. 50% of frozen shrimp were analyzed for excitation-emission matrix (EEM), ATP-related compounds, and pH using a fiber optic supported fluorescence spectrophotometer (F-7100), high performance liquid chromatography (HPLC) and pH meter, respectively at each time point (n = 4). Then, fluorescence images were obtained from the remaining 50% of frozen shrimp (n = 4) by computer vision method equipped with a charge-coupled device (CCD) camera, MAX-303 xenon light source for an excitation light (Ex. 330 nm), and an automatic filter changer for emission band-pass filters (Em. 380-610 nm at 10 nm intervals). Chemical analysis of frozen shrimp revealed that K-value and pH of shrimp increased from 1.61 to 66.56% and 6.49-7.31, respectively, during storage on ice. Repeated partial least squares regression (PLSR) models of EEM for K-value prediction suggested an efficient excitation wavelength (330 nm) and its corresponding emission wavelengths (380-610 nm) to produce fluorescence images. Spatial-temporal changes of K-value and pH were visualized successfully in frozen shrimp by fluorescence imaging. K-value visualization was then validated effectively using another group of frozen shrimp (0-72 h ice stored) with different killing method (super chilling) and the prediction accuracy was R2 = 0.80. This novel approach using a CCD camera coupled with EEM provides a state-of-the-art authentication method for practical assessment of frozen seafood freshness.


Asunto(s)
Peces , Alimentos Marinos , Animales , Congelación , Análisis de los Mínimos Cuadrados , Imagen Óptica , Alimentos Marinos/análisis
14.
Surg Oncol ; 35: 547-555, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33212419

RESUMEN

BACKGROUND AND PURPOSE: Breast cancer is a popular well-known tumor in women globally and the subsequent driving reason for malignancy death. The purpose of the present study is to develop Low cost, commercial, and affordable system that discriminates malignant from normal breast tissues by exploiting the unique properties of Hyperspectral (HS) Imaging. MATERIALS AND METHODS: The difference in the optical properties of the investigated breast tissues gives various reactions to light transmission, absorption, and especially the reflection over the spectral range. A custom optical imaging system (COIS) was designed to assess variable responses to monochromatic LEDs (415, 565, 660 nm) to highlight the differences in the reflectance properties of malignant/normal tissue. Statistical analysis was computed for determining the ideal wavelength to differentiate between normal and malignant regions. The experiment was repeated using the same LEDs, and low-cost CCD camera to examine the capability of such a system to discriminate between normal and malignant tissue. RESULTS: Spectral images obtained by Hyperspectral camera, have been analyzed to reveal the difference of reflectance malignant and normal breast tissue. Superficial spectral reflection image with blue LED (415 nm) showed high variance (10.11). However, a more-depth reflection image with red LED (660 nm) showed low variance (4.44). So the optimum contrast image was produced by combining the three spectral information images from blue, green, and red LED. The COIS using a commercial CCD camera was in agreement with the HS camera. CONCLUSIONS: The novel COIS of the commercial Low-cost CCD Camera is reliable and can be used with endoscopy technique as an assistant tool for surgical doctor to make decision and assess the resection edges in real time during surgery.


Asunto(s)
Neoplasias de la Mama/patología , Mama/patología , Procesamiento de Imagen Asistido por Computador/métodos , Imagen Óptica/métodos , Femenino , Humanos , Pronóstico
15.
Foods ; 9(11)2020 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-33233338

RESUMEN

Color is one of the key sensory characteristics in the evaluation of the quality of mangos (Mangifera indica) especially with regard to determining the optimal level of ripeness. However, an objective color determination of entire fruits can be a challenging task. Conventional evaluation methods such as colorimetric or spectrophotometric procedures are primarily limited to a homogenous distribution of the color. Accordingly, a direct assessment of the mango quality with regard to color requires more pronounced color determination procedures. In this study, the color of the peel and the pulp of the mango cultivars "Nam Dokmai", "Mahachanok", and "Kent" was evaluated and categorized into various levels of ripeness using a charge-coupled device (CCD) camera in combination with a computer vision system and color standards. The color evaluation process is based on a transformation of the RGB (red, green, and blue) color space values into the HSI (hue, saturation, and intensity) color system and the Natural Color Standard (NCS). The results showed that for pulp color codes, 0560-Y20R and 0560-Y40R can be used as appropriate indicators for the ripeness of the cultivars "Nam Dokmai" and "Mahachanok". The peels of these two mango cultivars present two distinct colors (1050-Y40R and 1060-Y40R), which can be used to determine the fruit maturity during the post-ripening process. However, in the case of the cultivar "Kent", peel color detection was not an applicable approach for determining ripeness; thus, the determination of the pulp color with the color code 0550-Y20R gave promising results.

16.
Heliyon ; 6(6): e04180, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32613103

RESUMEN

BACKGROUND: Ca2+ plays an important role in many physiological processes and an accurate study of these signals is important. In modern fluorescence microscopy, a charge-coupled device (CCD) camera is widely deployed for calcium imaging. The ratiometric method is used for the fluorescence dye Fura-2 and Grynkiewitz's formula (Grynkiewicz et al., 1985) is commonly used to convert fluorescence to free Ca2+ concentration ([Ca2+]). But the need to subtract the background signal can lead to a big error in ratiometric calcium measurements. When the error due to background subtraction occurs, the fluorescence ratio of 340 nm divided by 380 nm lights may be twice as large as the actual value. Under conditions when the excitation intensity is not adjusted to ensure the same throughput of the objective lens for ultraviolet dye illumination, the indicator does not gradually bleach out for channels with a wavelength of 340 nm and 380 nm light, which lead to an additional error in determining the concentration of Ca2+. NEW METHOD: Here we present a new approach for calculating [Ca2+] from the ratiometric fluorescence of Fura-2 dye imaged by a CCD camera. It is designed to optimize [Ca2+] measurements with photobleaching correction without background subtraction error. A mathematical method is also provided for removing the existing underestimated value of fluorescence at an excitation wavelength of 340 nm and compensating for the bleaching rate for both channels with wavelengths of 340 nm and 380 nm using a power function. RESULTS: In cultured neurons, the calculations of the free Ca2+ concentration during Ca2+ transients estimated by the old and new methods, determine it to the same extent. This comparison was made under conditions without errors through background subtraction. If there is this error, the old method calculates [Ca2+] with a much higher, rather than the actual value. CONCLUSIONS: We present a modified Grynkiewitz's formula for calculation [Ca2+] for ratiometric dye, such as Fura-2 imaged by a CCD camera, with photobleaching correction without background subtraction error.

17.
ACS Appl Mater Interfaces ; 12(26): 29383-29392, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32498504

RESUMEN

In air filtration, for creating healthy indoor air, there is an intrinsic conflict between high filtration efficiency and low wind pressure drop. In this study, we overcame this conflict by developing new dielectric heterocaking (HC) filters, in which high relative dielectric constant (εr) materials were heterogeneously loaded on traditional polymer fibers. The dielectric HC filters in an electrostatic polarizing field generate a great amount of charges on their surface, leading to a strong attraction to precharged aerosol particles, and result in high filtration efficiency. Observing via a charged coupled device camera, the migration speed of aerosol smoke particles toward the polarized HC fiber exceeded those toward the unpolarized HC fiber by a factor of 6. We loaded high-εr HCs including manganese dioxide (MnO2), activated carbon, zinc oxide (ZnO), copper oxide (CuO), and barium titanate (BaTiO3) on polyurethane foams using a fast and large-scale roll-to-roll gel squeezing method. Based on the experimental results, when HCs had a εr larger than 5.1, an increased εr did not benefit electrostatic filtration efficiency for aerosol particles much, but resulted in a larger net ozone production. We suggested a MnO2-HC filter for efficient and multifunctional filtration of indoor particles, ambient ozone, and formaldehyde with only 3.8 Pa pressure drop at 1.1 m/s filtration velocity. This efficient and cost-effective dielectric HC filter opens a new avenue for the design of multifunctional filters, which will facilitate its large-scale production and commercial application in the ventilation system for healthy buildings.

18.
Artículo en Inglés | MEDLINE | ID: mdl-32194988

RESUMEN

With the expansion of proton radiotherapy for cancer treatments, it has become important to explore proton-based imaging technologies to increase the accuracy of proton treatment planning, alignment, and verification. The purpose of this study is to demonstrate the feasibility of using a volumetric liquid scintillator to generate proton radiographs at a clinically relevant energy (180 MeV) using an integrating detector approach. The volumetric scintillator detector is capable of capturing a wide distribution of residual proton beam energies from a single beam irradiation. It has the potential to reduce acquisition time and imaging dose compared to other proton radiography methods. The imaging system design is comprised of a volumetric (20 × 20 × 20 cm3) organic liquid scintillator working as a residual-range detector and a charge-coupled device (CCD) placed along the beams'-eye-view for capturing radiographic projections. The scintillation light produced within the scintillator volume in response to a 3-dimensional distribution of residual proton beam energies is captured by the CCD as a 2-dimensional grayscale image. A light intensity-to-water equivalent thickness (WET) curve provided WET values based on measured light intensities. The imaging properties of the system, including its contrast, signal-to-noise ratio, and spatial resolution (0.19 line-pairs/mm) were determined. WET values for selected Gammex phantom inserts including solid water, acrylic, and cortical bone were calculated from the radiographs with a relative accuracy of -0.82%, 0.91%, and -2.43%, respectively. Image blurring introduced by system optics was accounted for, resulting in sharper image features. Finally, the system's ability to reconstruct proton CT images from radiographic projections was demonstrated using a filtered back-projection algorithm. The WET retrieved from the reconstructed CT slice was within 0.3% of the WET obtained from MC. In this work, the viability of a cumulative approach to proton imaging using a volumetric liquid scintillator detector and at a clinically-relevant energy was demonstrated.

19.
Crit Rev Anal Chem ; 49(4): 368-381, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30582823

RESUMEN

Living systems emit what is called ultraweak photon emission (UPE). This visually undetectable phenomenon has only been studied in humans for the last 30 years, finding that UPE is a complex process depending on multitude factors. Considering previous literature, this review discusses the current trends in the analysis of in vivo UPE from human beings. To this aim, Analytical Approaches Employed for UPE Measurement section focuses on the analytical techniques employed (photomultipliers and charged coupled device cameras), summarizing analytical conditions and reporting figures of merit reached to date. Then, Human UPE Depending on External Factors and Human UPE Depending on Internal Factors sections address external and internal factors, which have proved to affect UPE, pointing out the important influence on oxidative processes outside and inside the body, and also highlighting some personal states of the individuals affecting UPE. Last section is devoted to give a general view on the goals and achieved up to date regarding UPE measurement, emphasizing some potential applications as well as recommendations which include: use of UPE spectra information together with UPE intensity, larger populations (≈50-100 subjects), further studies on internal states of individuals, and use of statistical tools.


Asunto(s)
Fotones , Cuerpo Humano , Humanos
20.
Neurosci Res ; 144: 21-29, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30217698

RESUMEN

This study was conducted to evaluate the linear vestibulo-ocular reflex (lVOR) mediated by the saccule, and to investigate the relationship between the lVOR and the ability to distinguish the direction of centripetal acceleration during centric and eccentric rotation. Participants sat on a chair in darkness, with the right ear facing downwards, either directly above the center of rotation, or with their nose out, nose in, right shoulder out, or left shoulder out against the center of rotation (eccentric rotation). Participants were given no information about the chair position, and were rotated sinusoidally at 0.1-0.7 Hz. Three-dimensional eye movements during rotation were analyzed. Participants were asked to describe the position of the chair after rotation. Correctly reporting the five possible chair positions requires recognition of the direction of centripetal acceleration. We analyzed the rate of correct answers to assess participants' ability to identify the direction of centripetal acceleration. lVOR mediated by the saccule was observed only at high rotational frequencies. The rate of correct answers was higher at high rotational frequencies than that at low rotational frequencies. These results indicate that high rotational frequency is important for both lVOR mediated by the saccule and distinguishing the direction of centripetal acceleration.


Asunto(s)
Movimientos Oculares/fisiología , Reflejo Vestibuloocular/fisiología , Aceleración , Adulto , Femenino , Movimientos de la Cabeza/fisiología , Humanos , Masculino , Postura/fisiología , Rotación , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA