Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neuromuscul Dis ; 11(3): 625-645, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38578900

RESUMEN

Background: NEFL encodes for the neurofilament light chain protein. Pathogenic variants in NEFL cause demyelinating, axonal and intermediate forms of Charcot-Marie-Tooth disease (CMT) which present with a varying degree of severity and somatic mutations have not been described yet. Currently, 34 different CMT-causing pathogenic variants in NEFL in 174 patients have been reported. Muscular involvement was also described in CMT2E patients mostly as a secondary effect. Also, there are a few descriptions of a primary muscle vulnerability upon pathogenic NEFL variants. Objectives: To expand the current knowledge on the genetic landscape, clinical presentation and muscle involvement in NEFL-related neurological diseases by retrospective case study and literature review. Methods: We applied in-depth phenotyping of new and already reported cases, molecular genetic testing, light-, electron- and Coherent Anti-Stokes Raman Scattering-microscopic studies and proteomic profiling in addition to in silico modelling of NEFL-variants. Results: We report on a boy with a muscular phenotype (weakness, myalgia and cramps, Z-band alterations and mini-cores in some myofibers) associated with the heterozygous p.(Phe104Val) NEFL-variant, which was previously described in a neuropathy case. Skeletal muscle proteomics findings indicated affection of cytoskeletal proteins. Moreover, we report on two further neuropathic patients (16 years old girl and her father) both carrying the heterozygous p.(Pro8Ser) variant, which has been identified as 15% somatic mosaic in the father. While the daughter presented with altered neurophysiology,neurogenic clump feet and gait disturbances, the father showed clinically only feet deformities. As missense variants affecting proline at amino acid position 8 are leading to neuropathic manifestations of different severities, in silico modelling of these different amino acid substitutions indicated variable pathogenic impact correlating with disease onset. Conclusions: Our findings provide new morphological and biochemical insights into the vulnerability of denervated muscle (upon NEFL-associated neuropathy) as well as novel genetic findings expanding the current knowledge on NEFL-related neuromuscular phenotypes and their clinical manifestations. Along this line, our data show that even subtle expression of somatic NEFL variants can lead to neuromuscular symptoms.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Proteínas de Neurofilamentos , Fenotipo , Humanos , Masculino , Proteínas de Neurofilamentos/genética , Enfermedad de Charcot-Marie-Tooth/genética , Músculo Esquelético/patología , Músculo Esquelético/metabolismo , Estudios Retrospectivos , Niño , Adolescente , Femenino , Mutación
2.
Toxicol Lett ; 394: 92-101, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428546

RESUMEN

Functionalized nanoparticles have been developed for use in nanomedicines for treating life threatening diseases including various cancers. To ensure safe use of these new nanoscale reagents, various assays for biocompatibility or cytotoxicity in vitro using cell lines often serve as preliminary assessments prior to in vivo animal testing. However, many of these assays were designed for soluble, colourless materials and may not be suitable for coloured, non-transparent nanoparticles. Moreover, cell lines are not always representative of mammalian organs in vivo. In this work, we use non-invasive impedance sensing methods with organotypic human liver HepaRG cells as a model to test the toxicity of PEG-Fe3O4 magnetic nanoparticles. We also use Coherent anti-Stokes Raman Spectroscopic (CARS) microscopy to monitor the formation of lipid droplets as a parameter to the adverse effect on the HepaRG cell model. The results were also compared with two commercial testing kits (PrestoBlue and ATP) for cytotoxicity. The results suggested that the HepaRG cell model can be a more realistic model than commercial cell lines while use of impedance monitoring of Fe3O4 nanoparticles circumventing the uncertainties due to colour assays. These methods can play important roles for scientists driving towards the 3Rs principle - Replacement, Reduction and Refinement.


Asunto(s)
Nanopartículas de Magnetita , Microscopía , Animales , Humanos , Microscopía/métodos , Nanopartículas de Magnetita/toxicidad , Impedancia Eléctrica , Espectrometría Raman/métodos , Hígado , Mamíferos
3.
Plants (Basel) ; 12(12)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37375873

RESUMEN

Cryopreservation has emerged as a low-maintenance, cost-effective solution for the long-term preservation of vegetatively propagated crops. Shoot tip cryopreservation often makes use of vitrification methods that employ highly concentrated mixtures of cryoprotecting agents; however, little is understood as to how these cryoprotecting agents protect cells and tissues from freezing. In this study, we use coherent anti-Stokes Raman scattering microscopy to directly visualize where dimethyl sulfoxide (DMSO) localizes within Mentha × piperita shoot tips. We find that DMSO fully penetrates the shoot tip tissue within 10 min of exposure. Variations in signal intensities across images suggest that DMSO may interact with cellular components, leading to its accumulation in specific regions.

4.
Front Bioeng Biotechnol ; 11: 1106566, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36926686

RESUMEN

Introduction: Bioproduction of plant-derived triterpenoids in recombinant microbes is receiving great attention to make these biologically active compounds industrially accessible as nutraceuticals, pharmaceutics, and cosmetic ingredients. So far, there is no direct method for detecting triterpenoids under physiological conditions on a cellular level, information yet highly relevant to rationalizing microbial engineering. Methods: Here, we show in a proof-of-concept study, that triterpenoids can be detected and monitored in living yeast cells by combining coherent anti-Stokes Raman scattering (CARS) and second-harmonic-generation (SHG) microscopy techniques. We applied CARS and SHG microscopy measurements, and for comparison classical Nile Red staining, on immobilized and growing triterpenoid-producing, and non-producing reference Saccharomyces cerevisiae strains. Results and Discussion: We found that the SHG signal in triterpenoid-producing strains is significantly higher than in a non-producing reference strain, correlating with lipophile content as determined by Nile red staining. In growing cultures, both CARS and SHG signals showed changes over time, enabling new insights into the dynamics of triterpenoid production and storage inside cells.

5.
Adv Healthc Mater ; 12(13): e2203018, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36732890

RESUMEN

Bacterial biofilms are linked to several diseases and cause resistant and chronic infections in immune-compromised patients. Nanomotors comprise a new field of research showing a great promise within biomedicine but pose challenges in terms of biocompatibility. Nanomotors propelled by thermophoresis could overcome this challenge, as they leave no waste product during propulsion. In this study, mesoporous-silica nanoparticles are coated with a thin layer of gold to make nanomotors, which can be driven by near-infrared (NIR) light irradiation. The prepared mesoporous SiO2 -Au nanomotors exhibit efficient self-propulsion when exposed to NIR irradiation, they penetrate deep through a biofilm matrix, and disperse the biofilm in situ due to the photothermal effect on the Au part of the nanomotors. The velocities of such nanomotors are investigated at different wavelengths and laser powers. Furthermore, the study examines the ability of these nanomotors to eradicate Pseudomonas aeruginosa (P. aeruginosa) biofilm under NIR light irradiation. The conducted study shows that the nanomotor's velocity increases with increasing laser power. The mesoporous SiO2 /Au nanomotors show excellent capabilities to eradicate P. aeruginosa biofilms even under short (30 s-3 min) irradiation time. This study shows great promise for overcoming the challenges related to bacterial biofilm eradication.


Asunto(s)
Nanopartículas , Pseudomonas aeruginosa , Humanos , Dióxido de Silicio , Rayos Infrarrojos , Biopelículas
6.
Neuropathol Appl Neurobiol ; 49(1): e12877, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36633103

RESUMEN

OBJECTIVES: Chloroquine (CQ) is an antimalarial drug with a growing number of applications as recently demonstrated in attempts to treat Covid-19. For decades, it has been well known that skeletal and cardiac muscle cells might display vulnerability against CQ exposure resulting in the clinical manifestation of a CQ-induced myopathy. In line with the known effect of CQ on inhibition of the lysosomal function and thus cellular protein clearance, the build-up of autophagic vacuoles along with protein aggregates is a histological hallmark of the disease. Given that protein targets of the perturbed proteostasis are still not fully discovered, we applied different proteomic and immunological-based studies to improve the current understanding of the biochemical nature of CQ-myopathy. METHODS: To gain a comprehensive understanding of the molecular pathogenesis of this acquired myopathy and to define proteins targets as well as pathophysiological processes beyond impaired proteolysis, utilising CQ-treated C2C12 cells and muscle biopsies derived from CQ-myopathy patients, we performed different proteomic approaches and Coherent Anti-Stokes Raman Scattering (CARS) microscopy, in addition to immunohistochemical studies. RESULTS: Our combined studies confirmed an impact of CQ-exposure on proper protein processing/folding and clearance, highlighted changes in the interactome of p62, a known aggregation marker and hereby identified the Rett syndrome protein MeCP2 as being affected. Moreover, our approach revealed-among others-a vulnerability of the extracellular matrix, cytoskeleton and lipid homeostasis. CONCLUSION: We demonstrated that CQ exposure (secondarily) impacts biological processes beyond lysosomal function and linked a variety of proteins with known roles in the manifestation of other neuromuscular diseases.


Asunto(s)
COVID-19 , Enfermedades Musculares , Humanos , Cloroquina/farmacología , Proteómica , Tratamiento Farmacológico de COVID-19 , Proteínas , Células Musculares
7.
Int J Mol Sci ; 23(10)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35628155

RESUMEN

Vibrational spectroscopy can detect characteristic biomolecular signatures and thus has the potential to support diagnostics. Fabry disease (FD) is a lipid disorder disease that leads to accumulations of globotriaosylceramide in different organs, including the heart, which is particularly critical for the patient's prognosis. Effective treatment options are available if initiated at early disease stages, but many patients are late- or under-diagnosed. Since Coherent anti-Stokes Raman (CARS) imaging has a high sensitivity for lipid/protein shifts, we applied CARS as a diagnostic tool to assess cardiac FD manifestation in an FD mouse model. CARS measurements combined with multivariate data analysis, including image preprocessing followed by image clustering and data-driven modeling, allowed for differentiation between FD and control groups. Indeed, CARS identified shifts of lipid/protein content between the two groups in cardiac tissue visually and by subsequent automated bioinformatic discrimination with a mean sensitivity of 90-96%. Of note, this genotype differentiation was successful at a very early time point during disease development when only kidneys are visibly affected by globotriaosylceramide depositions. Altogether, the sensitivity of CARS combined with multivariate analysis allows reliable diagnostic support of early FD organ manifestation and may thus improve diagnosis, prognosis, and possibly therapeutic monitoring of FD.


Asunto(s)
Enfermedad de Fabry , Animales , Diagnóstico Precoz , Enfermedad de Fabry/diagnóstico por imagen , Humanos , Lípidos , Ratones , Microscopía/métodos , Espectrometría Raman/métodos
8.
Environ Sci Technol ; 56(5): 3045-3055, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35133146

RESUMEN

As the bioaccumulation of microplastics (MPs) is considered as a potential health risk, many efforts have been made to understand the cellular dynamics and cytotoxicity of MPs. Here, we demonstrate that label-free multicolor coherent anti-Stokes Raman scattering (CARS) microscopy enables separate vibrational imaging of internalized MPs and lipid droplets (LDs) with indistinguishable shapes and sizes in live cells. By simultaneously obtaining polystyrene (PS)- and lipid-specific CARS images at two very different frequencies, 1000 and 2850 cm-1, respectively, we successfully identify the local distribution of ingested PS beads and native LDs in Caenorhabditis elegans. We further show that the movements of PS beads and LDs in live cells can be separately tracked in real time, which allows us to characterize their individual intracellular dynamics. We thus anticipate that our multicolor CARS imaging method could be of great use to investigate the cellular transport and cytotoxicity of MPs without additional efforts for pre-labeling to MPs.


Asunto(s)
Microplásticos , Microscopía , Animales , Caenorhabditis elegans , Lípidos , Microscopía/métodos , Orgánulos , Plásticos , Poliestirenos , Espectrometría Raman/métodos
9.
Cells ; 10(12)2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34943989

RESUMEN

BACKGROUND: Presynaptic forms of congenital myasthenic syndromes (CMS) due to pathogenic variants in SLC18A3 impairing the synthesis and recycling of acetylcholine (ACh) have recently been described. SLC18A3 encodes the vesicular ACh transporter (VAChT), modulating the active transport of ACh at the neuromuscular junction, and homozygous loss of VAChT leads to lethality. METHODS: Exome sequencing (ES) was carried out to identify the molecular genetic cause of the disease in a 5-year-old male patient and histological, immunofluorescence as well as electron- and CARS-microscopic studies were performed to delineate the muscle pathology, which has so far only been studied in VAChT-deficient animal models. RESULTS: ES unraveled compound heterozygous missense and nonsense variants (c.315G>A, p.Trp105* and c.1192G>C, p.Asp398His) in SLC18A3. Comparison with already-published cases suggests a more severe phenotype including impaired motor and cognitive development, possibly related to a more severe effect of the nonsense variant. Therapy with pyridostigmine was only partially effective while 3,4 diaminopyridine showed no effect. Microscopic investigation of the muscle biopsy revealed reduced fibre size and a significant accumulation of lipid droplets. CONCLUSIONS: We suggest that nonsense variants have a more detrimental impact on the clinical manifestation of SLC18A3-associated CMS. The impact of pathogenic SLC18A3 variants on muscle fibre integrity beyond the effect of denervation is suggested by the build-up of lipid aggregates. This in turn implicates the importance of proper VAChT-mediated synthesis and recycling of ACh for lipid homeostasis in muscle cells. This hypothesis is further supported by the pathological observations obtained in previously published VAChT-animal models.


Asunto(s)
Síndromes Miasténicos Congénitos/genética , Unión Neuromuscular/genética , Proteínas de Transporte Vesicular de Acetilcolina/genética , Acetilcolina/biosíntesis , Acetilcolina/genética , Animales , Preescolar , Codón sin Sentido/genética , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Mutación Missense/genética , Síndromes Miasténicos Congénitos/patología , Unión Neuromuscular/patología , Secuenciación del Exoma
10.
J Colloid Interface Sci ; 588: 680-691, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33309144

RESUMEN

HYPOTHESIS: The digestion of different milks and milk substitutes leads to the formation of a variety of self-assembled lipid structures, with the structuring of human milk being paramount for infant nutrition. It was hypothesised that mixing cow milk fat rich in medium/long-chain lipids with canola oil rich in long-chain unsaturated lipids would replicate the structuring of human milk by balancing lipid chain lengths and saturation levels. EXPERIMENTS: Emulsions of cow milk fat/canola oil mixtures were prepared in two ways - by pre-mixing ghee and canola oil before dispersing them and by dispersing canola oil directly into commercial cow milk. Small angle X-ray scattering combined with titration of the fatty acids produced during digestion allowed for the correlation of dynamic lipid self-assembly with the extent of lipid digestion. Laser light scattering was used to show that the particle sizes in the digesting mixtures were similar and coherent anti-Stokes Raman spectroscopy (CARS) microscopy was used to confirm the mixing of canola oil into cow milk fat globules. FINDINGS: As the amount of long-chain unsaturated canola oil lipids in the mixtures increased, the lipid self-assembly tended towards colloidal structures of greater interfacial curvature. When the ratio of cow milk fat to canola oil lipids was 1:1 (w/w), the digesting lipids assembled themselves into the same liquid crystalline structures as human breast milk. This observation was independent of the method used to mix the lipids, with CARS microscopy indicating uniform mixing of the canola oil into cow milk upon ultrasonication.


Asunto(s)
Lípidos , Leche Humana , Aceite de Brassica napus , Animales , Bovinos , Digestión , Emulsiones , Femenino , Humanos , Lactante , Leche Humana/metabolismo
11.
Diabetologia ; 63(12): 2654-2664, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32880685

RESUMEN

AIMS/HYPOTHESIS: Intramyocellular lipid (IMCL) content associates with development of insulin resistance, albeit not in insulin-sensitive endurance-trained athletes (trained). Qualitative and spatial differences in muscle lipid composition may underlie this so-called athlete's paradox. Here we studied triacylglycerol (TAG) composition of individual myocellular lipid droplets (LDs) in trained individuals and individuals with type 2 diabetes mellitus. METHODS: Trained ([Formula: see text] 71.0 ± 1.6 ml O2 [kg lean body mass (LBM)]-1 min-1), normoglycaemic (fasting glucose 5.1 ± 0.1 mmol/l) individuals and untrained ([Formula: see text] 36.8 ± 1.5 ml O2 [kg LBM]-1 min-1) individuals with type 2 diabetes (fasting glucose 7.4 ± 0.5 mmol/l), with similar IMCL content (3.5 ± 0.7% vs 2.5 ± 0.3%, p = 0.241), but at opposite ends of the insulin sensitivity spectrum (glucose infusion rate 93.8 ± 6.6 vs 25.7 ± 5.3 µmol [kg LBM]-1 min-1 for trained individuals and those with type 2 diabetes, respectively) were included from our database in the present study. We applied in situ label-free broadband coherent anti-Stokes Raman scattering (CARS) microscopy to sections from skeletal muscle biopsies to measure TAG acyl chain length and saturation of myocellular LDs. This approach uniquely permits examination of individual LDs in their native environment, in a fibre-type-specific manner, taking into account LD size and subcellular location. RESULTS: Despite a significant difference in insulin sensitivity, we observed remarkably similar acyl chain length and saturation in trained and type 2 diabetic individuals (chain length: 18.12 ± 0.61 vs 18.36 ± 0.43 number of carbons; saturation: 0.37 ± 0.05 vs 0.38 ± 0.06 number of C=C bonds). Longer acyl chains or higher saturation (lower C=C number) could be detected in subpopulations of LDs, i.e. large LDs (chain length: 18.11 ± 0.48 vs 18.63 ± 0.57 carbon number) and subsarcolemmal LDs (saturation: 0.34 ± 0.02 vs 0.36 ± 0.04 C=C number), which are more abundant in individuals with type 2 diabetes. CONCLUSIONS/INTERPRETATION: In contrast to reports of profound differences in the lipid composition of lipids extracted from skeletal muscle from trained and type 2 diabetic individuals, our in situ, LD-specific approach detected only modest differences in TAG composition in LD subpopulations, which were dependent on LD size and subcellular location. If, and to what extent, these modest differences can impact insulin sensitivity remains to be elucidated. Graphical abstract.


Asunto(s)
Diabetes Mellitus Tipo 2/sangre , Triglicéridos/sangre , Adulto , Humanos , Insulina/sangre , Resistencia a la Insulina/fisiología , Gotas Lipídicas , Metabolismo de los Lípidos/fisiología , Adulto Joven
12.
Biochim Biophys Acta Mol Basis Dis ; 1866(6): 165763, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32169502

RESUMEN

Excess circulating fatty acids contribute to endothelial dysfunction that subsequently aggravates the metabolic conditions such as fatty liver diseases. However, the exact mechanism of this event is not fully understood, and the investigation on the effect of a direct exposure to fatty acids together with their subsequent fate is of interest. In this work we employed a chemically specific and label-free techniques such as Raman and CARS microscopies, to investigate the process of lipid droplets (LDs) formation in endothelial cells and hepatocytes after exposure to oleic and palmitic acid. We aimed to observe the changes in the composition of LDs associated with metabolism and degradation of lipids. We were able to characterize the diversity in the formation of LDs in endothelium as compared to hepatocytes, as well as the differences in the formation of LDs and degradation manner with respect to the used fatty acid. Thus, for the first time the spectral characteristics of LDs formed in endothelial cells after incubation with oleic and palmitic acid is presented, including the time-dependent changes in their chemical composition.


Asunto(s)
Hepatocitos/metabolismo , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Línea Celular , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Endotelio/efectos de los fármacos , Endotelio/metabolismo , Endotelio/patología , Ácidos Grasos/metabolismo , Ácidos Grasos/farmacología , Hepatocitos/efectos de los fármacos , Humanos , Gotas Lipídicas/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/patología , Ácido Oléico/farmacología , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacología , Espectrometría Raman
13.
Appl Spectrosc ; 74(7): 751-757, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32031016

RESUMEN

In the following work, the vibrational spectroscopic characteristics of artepillin C are reported by means of Fourier transform infrared (FT-IR) and Raman spectroscopies, surface-enhanced Raman scattering (SERS), and coherent anti-Stokes Raman scattering (CARS) microscopy. Artepillin C is an interesting compound due to its pharmacological properties, including antitumor activity. It is found as the major component of Brazilian green propolis, a resinous mixture produced by bees to protect their hives against intruders. Vibrational spectroscopic techniques have shown a strong peak at 1599 cm-1, assigned to C=C stretching vibrations from the aromatic ring of artepillin C. From these data, direct visualization of artepillin C could be assessed by means of CARS microscopy, showing differences in the film hydration obtained for its neutral and deprotonated states. Raman-based methods show potential to visualize the uptake and action of artepillin C in biological systems, triggering its interaction with biological systems that are needed to understand its mechanism of action.


Asunto(s)
Fenilpropionatos/química , Conformación Molecular , Própolis/química , Espectrometría Raman
14.
Biotechnol J ; 14(4): e1800413, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30350922

RESUMEN

A wide variety of nanoparticles are playing an increasingly important role in drug delivery. Label-free imaging techniques are especially desirable to follow the cellular uptake and intracellular fate of nanoparticles. The combined correlative use of different techniques, each with unique advantages, facilitates more detailed investigation about such interactions. The synergistic use of correlative coherent anti-Stokes Raman scattering and electron microscopy (C-CARS-EM) imaging offers label-free, chemically-specific, and (sub)-nanometer spatial resolution for studying nanoparticle uptake into cells as demonstrated in the current study. Coherent anti-Stokes Raman scattering (CARS) microscopy offers chemically-specific (sub)micron spatial resolution imaging without fluorescent labels while transmission electron microscopy (TEM) offers (sub)-nanometer scale spatial resolution and thus visualization of precise nanoparticle localization at the sub-cellular level. This proof-of-concept imaging platform with unlabeled drug nanocrystals and macrophage cells revealed good colocalization between the CARS signal and electron dense nanocrystals in TEM images. The correlative TEM images revealed subcellular localization of nanocrystals inside membrane bound vesicles, showing multivesicular body (MVB)-like morphology typical for late endosomes (LEs), endolysosomes, and phagolysosomes. C-CARS-EM imaging has much potential to study the interactions between a wide range of nanoparticles and cells with high precision and confidence.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas/química , Nanopartículas/ultraestructura , Humanos , Microscopía Electrónica de Transmisión , Nanopartículas/uso terapéutico , Preparaciones Farmacéuticas , Espectrometría Raman
15.
Int J Biol Macromol ; 107(Pt B): 1428-1437, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28988840

RESUMEN

Co-aggregation plays an important role in processing protein-rich food materials under heterogeneous conditions. The main cause of co-aggregation is an electrostatic attraction between oppositely charged molecules. This study investigated thermal aggregation of ß-lactoglobulin (BLG) (pI=5.1) and lysozyme (LYZ) (pI=10.7) as a model for the heterogeneous conditions of a protein solution. BLG and LYZ were more aggregated in the mixture than in the single solutions. Co-aggregation of the BLG-LYZ mixture was not observed below 60°C at which temperature BLG and LYZ retained their native structures. Adding sugars, salts, or amino acids to the BLG-LYZ mixture during the heat treatment revealed the co-aggregation process as follows. (i) All additives tested suppressed both the nucleation and growth of aggregates. (ii) Salts affected nucleation stage to the same degree, except arginine hydrochloride (Arg). (iii) Arg specifically suppressed both nucleation and growth of aggregates. These results indicate that co-aggregation in a protein mixture is more sensitive to the partial unfolding of proteins than that in a single protein solution, due to the presence of electrostatic attraction between different molecules. These results provide new insight into protein aggregation as well as the molecular mechanism of additives under heterogeneous conditions.


Asunto(s)
Lactoglobulinas/química , Muramidasa/química , Agregado de Proteínas , Animales , Pollos , Dicroismo Circular , Calor , Lactoglobulinas/ultraestructura , Muramidasa/ultraestructura , Espectrometría Raman , Factores de Tiempo
16.
Postepy Biochem ; 63(1): 44-52, 2017.
Artículo en Polaco | MEDLINE | ID: mdl-28409574

RESUMEN

CARS (Coherent Anti-Stokes Raman Scattering) microscopy is an imaging method for living cells visualization as well as for food or cosmetics material analysis without the need for staining. The near infrared laser source generates the CARS signal - the characteristic intrinsic vibrational contrast of the molecules in a sample which is no longer caused by staining, but by the molecules themselves. It provides the benefit of a non-toxic, non-destructive and almost noninvasive method for sample imaging. CARS can easily be combined with fluorescence confocal microscopy so it is an excellent complementary imaging method. In this article we showed some of the applications for this technology: imaging of lipid droplets inside human HaCaT cells and analysis of the composition of cosmetic products. Moreover we believe, that soon new fields of application become accessible for this rapidly developing branch of microscopy.


Asunto(s)
Microscopía , Espectrometría Raman , Línea Celular , Humanos , Rayos Infrarrojos , Rayos Láser , Luz
17.
Int J Pharm ; 523(1): 270-280, 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28300629

RESUMEN

We have used coherent anti-Stokes Raman scattering (CARS) microscopy as a novel and rapid, label-free and non-destructive imaging method to gain structural insights into live intestinal epithelial cell cultures used for drug permeability testing. Specifically we have imaged live Caco-2 cells in (bio)pharmaceutically relevant conditions grown on membrane inserts. Imaging conditions were optimized, including evaluation of suitable membrane materials and media solutions, as well as tolerable laser powers for non-destructive imaging of the live cells. Lipid structures, in particular lipid droplets, were imaged within the cells on the insert membranes. The size of the individual lipid droplets increased substantially over the 21-day culturing period up to approximately 10% of the volume of the cross section of individual cells. Variation in lipid content has important implications for intestinal drug permeation testing during drug development but has received limited attention to date due to a lack of suitable analytical techniques. CARS microscopy was shown to be well suited for such analysis with the potential for in situ imaging of the same individual cell-cultures that are used for permeation studies. Overall, the method may be used to provide important information about cell monolayer structure to better understand drug permeation results.


Asunto(s)
Células CACO-2/citología , Técnicas de Cultivo de Célula , Supervivencia Celular , Humanos , Lípidos , Espectrometría Raman/métodos
18.
J Biophotonics ; 10(3): 385-393, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26990139

RESUMEN

Krabbe disease (KD) is a rare demyelinating sphingolipidosis, often fatal in the first years of life. It is caused by the inactivation of the galactocerebrosidase (GALC) enzyme that causes an increase in the cellular levels of psychosine considered to be at the origin of the tissue-level effects. GALC is inactivated also in the Twitcher (TWI) mouse: a genetic model of KD that is providing important insights into the understating of the pathogenetic process and the development of possible treatments. In this article an innovative optical technique, RP-CARS, is proposed as a tool to study the degree of order of the CH2 bonds inside the myelin sheaths of TWI-mice sciatic-nerve fibres. RP-CARS, a recently developed variation of CARS microscopy, is able to combine the intrinsic chemical selectivity of CARS microscopy with molecular-bond-spatial-orientation sensibility. This is the first time RP-CARS is applied to the study of a genetic model of a pathology, leading to the demonstration of a post-onset progressive spatial disorganization of the myelin CH2 bonds. The presented result could be of great interest for a deeper understanding of the pathogenic mechanisms underlying the human KD and, moreover, it is an additional proof of the experimental validity of this microscopy technique. RP-CARS image (2850 cm-1 , CH2 bonds) of a sciatic-nerve optical longitudinal section from a Twitcher P23 (symptomatic) mouse. Scale bar: 10 microns. The image was constructed by colour-mapping the degree of molecular order of the CH2 bonds inside the myelin walls, as displayed in the colour bar on the right.


Asunto(s)
Leucodistrofia de Células Globoides/metabolismo , Leucodistrofia de Células Globoides/patología , Microscopía , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Imagen Óptica , Animales , Modelos Animales de Enfermedad , Diseño de Equipo , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía/instrumentación , Microscopía/métodos , Vaina de Mielina/ultraestructura , Imagen Óptica/instrumentación , Imagen Óptica/métodos , Nervio Ciático/metabolismo , Nervio Ciático/patología , Nervio Ciático/ultraestructura
19.
Front Microbiol ; 8: 2448, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29321766

RESUMEN

The aim of the study was to explore the halophile metabolome in building materials using untargeted metabolomics which allows for broad metabolome coverage. For this reason, we used high-performance liquid chromatography interfaced to high-resolution mass spectrometry (HPLC/HRMS). As an alternative to standard microscopy techniques, we introduced pioneering Coherent Anti-stokes Raman Scattering Microscopy (CARS) to non-invasively visualize microbial cells. Brick samples saturated with salt solution (KCl, NaCl (two salinity levels), MgSO4, Mg(NO3)2), were inoculated with the mixture of preselected halophilic microorganisms, i.e., bacteria: Halobacillus styriensis, Halobacillus naozhouensis, Halobacillus hunanensis, Staphylococcus succinus, Marinococcus halophilus, Virgibacillus halodenitryficans, and yeast: Sterigmatomyces halophilus and stored at 28°C and 80% relative humidity for a year. Metabolites were extracted directly from the brick samples and measured via HPLC/HRMS in both positive and negative ion modes. Overall, untargeted metabolomics allowed for discovering the interactions of halophilic microorganisms with buildings materials which together with CARS microscopy enabled us to elucidate the biodeterioration process caused by halophiles. We observed that halophile metabolome was differently affected by different salt solutions. Furthermore, we found indications for haloadaptive strategies and degradation of brick samples due to microbial pigment production as a salt stress response. Finally, we detected changes in lipid content related to changes in the structure of phospholipid bilayers and membrane fluidity.

20.
J Raman Spectrosc ; 47(9): 1167-1173, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27708499

RESUMEN

In this work, we demonstrate quantitative volume determination of chemical components in three dimensions using hyperspectral coherent anti-Stokes Raman scattering microscopy, phase-corrected Kramers-Kronig retrieval of the coherent anti-Stokes Raman scattering susceptibility and factorization into concentration of chemical components. We investigate the influence of the refractive index contrast between water and polymer beads (polystyrene and polymethylmethacrylate), showing that it leads mainly to concentration errors, while the spectral error is less affected. The volume of polystyrene beads of sizes from 200 nm to 3 µm is determined with 10% relative error and 1% absolute error in the region of interest. We furthermore establish the use of sodium chloride as non-resonant reference material free of Raman-active vibrational resonances.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA