Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.612
Filtrar
1.
J Environ Sci (China) ; 148: 399-408, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095175

RESUMEN

A mixed oxidant of chlorine dioxide (ClO2) and NaClO was often used in water treatment. A novel UVA-LED (365 nm)-activated mixed ClO2/NaClO process was proposed for the degradation of micropollutants in this study. Carbamazepine (CBZ) was selected as the target pollutant. Compared with the UVA365/ClO2 process, the UVA365/ClO2/NaClO process can improve the degradation of CBZ, with the rate constant increasing from 2.11×10-4 sec-1 to 2.74×10-4 sec-1. In addition, the consumption of oxidants in the UVA365/ClO2/NaClO process (73.67%) can also be lower than that of UVA365/NaClO (86.42%). When the NaClO ratio increased, both the degradation efficiency of CBZ and the consumption of oxidants can increase in the UVA365/ClO2/NaClO process. The solution pH can affect the contribution of NaClO in the total oxidant ratio. When the pH range of 6.0-8.0, the combination process can generate more active species to promote the degradation of CBZ. The change of active species with oxidant molar ratio was investigated in the UVA365/ClO2/NaClO process. When ClO2 acted as the main oxidant, HO• and Cl• were the main active species, while when NaClO was the main oxidant, ClO• played a role in the system. Both chloride ion (Cl-), bicarbonate ion (HCO3-), and nitrate ion (NO3-) can promote the reaction system. As the concentration of NaClO in the reaction solution increased, the generation of chlorates will decrease. The UVA365/ClO2/NaClO process can effectively control the formation of volatile disinfection by-products (DBPs), and with the increase of ClO2 dosage, the formation of DBPs can also decrease.


Asunto(s)
Carbamazepina , Compuestos de Cloro , Óxidos , Rayos Ultravioleta , Contaminantes Químicos del Agua , Purificación del Agua , Carbamazepina/química , Contaminantes Químicos del Agua/química , Compuestos de Cloro/química , Purificación del Agua/métodos , Óxidos/química , Cinética , Hipoclorito de Sodio/química , Modelos Químicos
2.
Heliyon ; 10(16): e35537, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39220910

RESUMEN

Cocoa is considered to be one of the most significant agricultural commodities globally, alongside Palm Oil and Rubber. Cocoa is the primary ingredient in the manufacturing of chocolate, a globally popular food product. Approximately 30 % of cocoa, specifically cocoa nibs, are used as the primary constituent in chocolate production., while the other portion is either discarded in landfills as compost or repurposed as animal feed. Cocoa by-products consist of cocoa pod husk (CPH), cocoa shell, and pulp, of which about 70 % of the fruit is composed of CPH. CPH is a renewable resource rich in dietary fiber, lignin, and bioactive antioxidants like polyphenols that are being underutilized. CPH has the potential to be used as a source of pectin, dietary fibre, antibacterial properties, encapsulation material, xylitol as a sugar substitute, a fragrance compound, and in skin care applications. Several methods can be used to manage CPH waste using green technology and then transformed into valuable commodities, including pectin sources. Innovations in extraction procedures for the production of functional compounds can be utilized to increase yields and enhance existing uses. This review focuses on the physicochemical of CPH, its potential use, waste management, and green technology of cocoa by-products, particularly CPH pectin, in order to provide information for its development.

3.
Nat Prod Res ; : 1-4, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39222476

RESUMEN

This study tested the antioxidant activities of exopolysaccharides (EPSs) produced by eight Bacillus spp. from Thai milk kefir utilising four agricultural by-products in Thailand; copra meal, mangosteen peel, sorghum, and para rubber sawdust as carbon sources. Sorghum showed the highest starch and sugar content of 73.33% while copra meal showed the lowest (13.08%). B. tequilensis PS21 produced the highest dry weight EPS, followed by B. amyloliquefaciens KW1 and B. tequilensis PS22 from four substrates. B. tequilensis PS21 generated the most EPS with sorghum (0.75 ± 0.09 g DW/100 mL culture), followed by mangosteen peel (0.61 ± 0.07 g). EPS from B. amyloliquefaciens KW1 using copra meal displayed the highest DPPH radical scavenging activity of 33.39 ± 1.34% and EPS from the same bacteria using sorghum displayed the highest hydroxyl radical scavenging activity of 49.78 ± 0.86%. This approach demonstrated a bio-circular green economy paradigm in converting agricultural biowastes into valuable EPS biomaterials with potential applications.

4.
Turk J Pharm Sci ; 21(4): 367-375, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39224934

RESUMEN

Objectives: This study aimed to investigate the anticancer taxane profiles of edible and non-edible parts of seven Turkish hazelnut (Corylus avellana L.) genotypes. Hazelnut is one of the healthy foods rich in nutrients and antioxidants. Its regular consumption is associated with a reduced risk of coronary heart disease and cancer. Hazelnut has been described as a plant source that produces taxanes which are widely used in many cancers. Türkiye is a homeland of hazelnut culture and has its own cultivars. Investigation of anticancer taxane profiles in different parts of Turkish hazelnut genotypes is important to show the potential and value of this plant from the perspective of the pharmaceutical and food industries. Materials and Methods: In this study, green leafy covers (GLCs) and hard shells (HSs) (non-edible parts), skinless kernels (SKs), brown-skins (BSs), and brown-skinned kernels (BSKs) (edible parts) of Çakildak, Sivri, Tombul, Palaz, and Kalinkara as standard and Ham and Sivri Yagli as local genotypes were used. The five parts of each genotype were ground to powder and eliminated to a size of less than 80 mesh. Each part was extracted using hexane and methanol for 10-deacetylbaccatin III (10-DAB III), baccatin III (BAC III), cephalomannine, and paclitaxel analyses in three replicates. Samples and standards were analyzed by acetonitrile: water gradient method on NOVA Spher 100 Phenyl-Hexyl C18 column inhigh-performance liquid chromatography reverse phase system with 228 nm ultraviolet detector and 1.0 mL/min flow rate. Microsoft Office Excel, 2016, and analysis of variance Jamovi Version 2.3 were used for statistical and data analysis, consecutively. Results: Hazelnut parts differed to a very high degree from each other in terms of the highest amount of 10- DAB III (Ham HSs, 9,15 µg/g), BAC III (Kalinkara BSs, 7.24 µg/g), cephalomannine (Sivri Yagli BSs, 6.37 µg/g), and paclitaxel (Ham BSKs, 4.36 µg/g) they contained. While HSs, BSKs, and BSs were rich in taxanes in all of the analyzed genotypes, SKs, and GLCs remain limited for anticancer taxanes. Conclusion: This is the first report that revealed the differences in taxane contents of Turkish hazelnuts including previously untested standard and local genotypes and their parts. Significant differences between genotype and hazelnut parts are expected to highlight the health benefits of consuming raw Turkish hazelnut with BSs and their possible use as a functional food. These results add more information to elucidate the bioactive potential of Turkish hazelnuts and their by-products and provide a promising resource for the food and pharmaceutical industry with an anticancer perspective.

5.
J Environ Manage ; 370: 122402, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39243651

RESUMEN

This review examines various modification techniques, including metal doping, non-metal doping, multi doping, mixed doping, and the construction of heterojunction photocatalysts, for enhancing the performance of pure TiO2 and ZnO in the photodegradation of antibiotics. The study finds that mixed and multi doping approaches are more effective in improving photodegradation performance compared to single doping. Furthermore, the selection of suitable semiconductors for constructing heterojunction photocatalysts is crucial for achieving an efficient charge carrier separation. The environmental impacts, recent research, and real application of photocatalysis process have been discussed. The review also investigates the impact of operating parameters on the degradation pathways and the generation of by-products for different antibiotics. Additionally, the toxicity of the by-products resulting from the photodegradation of antibiotics using modified ZnO and TiO2 photocatalysts is explored, revealing that these by-products may exhibit higher toxicity than the original antibiotics. Consequently, to enable the widespread implementation of photodegradation systems, researchers should focus on optimizing degradation systems to control the conversion pathways of by-products, developing innovative photoreactors, and evaluating toxicity in real wastewater matrices.

6.
Phytomedicine ; 134: 156020, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39243749

RESUMEN

BACKGROUND: The intestinal and skin epithelium play a strong role against bacterial stimuli which leads to inflammation and oxidative stress when overwhelmed. Polyphenols from fruit-rich diets and by-products show promise against bacterial deleterious effects; however, their antibacterial and health-promoting effects remain understudied. PURPOSE: This study aimed to assess the impact of polyphenolic extracts of grape (GrPE), persimmon (PePE) and pomegranate (PoPE) by-products on bacterial pathogen-host interactions, focusing beyond growth inhibition to explore their effects on bacterial adhesion, invasion, and modulation of host responses. METHODS: The microdilution method, as well as the tetrazolium based MTT cell proliferation and cytotoxicity assay with crystal violet staining were used to identify extracts sub-inhibitory concentrations that interfere with bacterial adhesion, invasion or lipopolysaccharides (LPS) effect on cell hosts without compromising host viability. The cytoprotective effects of extracts were assessed in a knock-down model of nuclear factor erythroid 2-related factor 2 (Nrf2). RESULTS: All extracts demonstrated significant reductions in pathogen adhesion to Caco-2 and HaCaT cells while preserving cellular integrity. Notably, PePE exhibited specific efficacy against Salmonella enterica adhesion, attributed mostly to its gallic acid content, whereas PoPE reduced S. enterica invasion in Caco-2 cells. The extracts supported the prevalence of non-pathogenic and commensal strains of intestinal and skin surfaces, selectively reducing pathogenic adhesion. The extracts mitigated the oxidative stress, enhanced the barrier function, and modulated the pro-inflammatory cytokines in LPS-challenged cells. GrPE, rich in anthocyanins, and PePE were found to mediate their protective effects through Nrf2 activation, while PoPE exerted multifaceted actions independent of Nrf2. CONCLUSION: Our results highlight the therapeutic potential of GrPE, PePE, and PoPE in shaping bacterial-host interactions, endorsing their utility as novel nutraceuticals for both oral and topical applications to prevent potential bacterial infections through innovative mechanisms.

7.
Foods ; 13(17)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39272456

RESUMEN

This study investigates the production of protein hydrolysates with dipeptidyl peptidase-IV (DPP-IV) inhibitory activity from agro-industrial by-products, namely olive seed, sunflower seed, rapeseed, and lupin meals, as well as from two plant protein isolates such as pea and potato. Furthermore, the effect of simulated gastrointestinal digestion on the DPP-IV inhibitory activity of all the hydrolysates was evaluated. Overall, the lowest values of IC50 (1.02 ± 0.09 - 1.24 ± 0.19 mg protein/mL) were observed for the hydrolysates with a high proportion of short-chain [< 1 kDa] peptides (i.e., olive seed, sunflower seed, and lupin) or high content of proline (i.e., rapeseed). Contrarily, the IC50 of the pea and potato hydrolysates was significantly higher (1.50 ± 0.13 - 1.93 ± 0.13 mg protein/mL). In vitro digestion led to an increase in peptides <1 kDa for almost all hydrolysates (except olive and sunflower seed meals), which was noticeable for rapeseed, pea, and potato hydrolysates. Digestion did not significantly modify the DPP-IV inhibitory activity of olive, sunflower, rapeseed, and potato hydrolysates, whereas a significant decrease in IC50 value was obtained for pea hydrolysate and a significant increase in IC50 was obtained for lupin hydrolysate. Thus, this work shows the potential of agro-industrial by-products for the production of protein hydrolysates exhibiting DPP-IV inhibition.

8.
Foods ; 13(17)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39272458

RESUMEN

A versatile and popular Cucurbitaceous vegetable, pumpkin has recently gained much attention because of its variety of phytochemicals and health advantages. Pumpkins are a type of winter squash, traditionally with large, spherical, orange fruits and a highly nutrient food. Pumpkin by-products comprise various parts, such as seeds, peels, and pulp residues, with their bioactive composition and many potential benefits poorly explored by the food industry. Pumpkin and their by-products contain a wide range of phytochemicals, including carotenoids, polyphenols, tocopherols, vitamins, minerals, and dietary fibers. These compounds in pumpkin by-products exhibit antioxidant, anticancer, anti-inflammatory, anti-diabetic, and antimicrobial properties and could reduce the risk of chronic diseases. This comprehensive review aims to provide a detailed overview of the phytochemicals found in pumpkin and its by-products, along with their extraction methods, health benefits, and diverse food and industrial applications. This information can offer valuable insights for food scientists seeking to reevaluate pumpkin's potential as a functional ingredient. Reusing these by-products would support integrating a circular economy approach by boosting the market presence of valuable and sustainable products that improve health while lowering food waste.

9.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39273312

RESUMEN

The dispersion of antibiotics in livestock farming represents a health concern worldwide, contributing to the spread of antimicrobial-resistant bacteria through animals, the environment, and humans. Phenolic compounds could be alternatives to antibiotics, once drawbacks such as their low water solubility, bioavailability, and reduced stability are overcome. Although nano- or micro-sized formulations could counter these shortcomings, they do not represent cost-effective options. In this study, three phenolic compounds, obtained from wood-processing manufacturers, were characterized, revealing suitable features such as their antioxidant activity, size, and chemical and colloidal stability for in-field applications. The minimum inhibitory concentration (MIC) of these colloidal suspensions was measured against six bacterial strains isolated from livestock. These particles showed different inhibition behaviors: Colloidal chestnut was effective against one of the most threatening antibiotic-resistant pathogens, i.e., S. aureus, but ineffective toward E. coli. Instead, colloidal pine showed a weak effect on S. aureus but specificity toward E. coli. The present proof-of-concept points at colloidal polyphenols as valuable alternatives for antimicrobial substitutes in the livestock context.


Asunto(s)
Coloides , Ganado , Pruebas de Sensibilidad Microbiana , Polifenoles , Animales , Polifenoles/química , Polifenoles/farmacología , Coloides/química , Escherichia coli/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Staphylococcus aureus/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/química , Antiinfecciosos/farmacología , Antiinfecciosos/química
10.
Food Chem ; 463(Pt 2): 141173, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39276550

RESUMEN

Asparagus by-products are the promising resource that urgently need to be re-valorized. This study investigated the dynamic changes in physicochemical properties, organic acids, free amino acids, volatile flavor compounds, microbial succession, and their correlations during 7-day spontaneous fermentation of asparagus by-products. Dominant organic acids (lactic acid and acetic acid) and free amino acids (Ser, Glu, and Ala) increased with fermentation time, with lactic acid reaching 7.73 ± 0.05 mg/mL and Ser increasing 56-fold after 7 days. A total of 58 volatile flavor compounds were identified using headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPEM/GC-MS), with esters, alcohols and acids as the main volatile flavor compounds. Fourteen volatile flavor compounds had odor activity value >1. High-throughput sequencing showed Firmicutes and Proteobacteria as the main bacterial phyla, dominated by lactic acid bacteria (Levilactobacillus, Lactiplantibacillus, Weissella). Correlation analysis revealed that five bacterial genera (Levilactobacillus, Lactiplantibacillus, Enterobacter, Pediococcus and Acetobacter) were highly correlated with organic acids, free amino acids, and volatile flavor compounds, indicating their pivotal role in forming the characteristic flavor of fermented asparagus by-products (FAPS). This study provides new insights into the flavor and microbial profile of FAPS, offering a strategy for value-added processing and industrial production.

11.
Artículo en Inglés | MEDLINE | ID: mdl-39268891

RESUMEN

The performance capability of granular activated carbon (GAC) adsorption in terms of disinfection by-product (DBPs) removal was investigated with synthetic water containing 1) trihalomethanes (THMs), 2) haloacetronitriles (HANs), and 3) Mix-THMs & HANs. The initial 20 min of adsorption resulted in the maximum adsorption rate, with the total THMs, total HANs, and total Mix-THMs & HANs being 4.972, 2.071, and 6.460 µg/gGAC-min, respectively. GAC dosage affects the adsorption selectivity of THMs and HANs. Under a low GAC dosage, the selectivity of GAC adsorbs more bromo-THMs than chloro-THMs. The adsorption selectivity of THMs on GAC following bromoform > dibromochloromethane > bromodichloromethane > chloroform was investigated. As the GAC concentration increased, the selectivity of THM adsorption by GAC became comparable. Chloro-HAN, in contrast to THMs, has a higher adsorption selectivity than bromo-HAN. Trichloroacetonitrile was removed by GAC more rapidly than the other HAN species when the GAC dose was increased. The toxin of bromoform was primarily eliminated through GAC adsorption, caused by a greater removal rate than that of the other THMs. As an implemented measure, GAC is introduced to reduce THMs and HANs and the toxic contents associated with THMs and HANs.


Asunto(s)
Acetonitrilos , Carbón Orgánico , Trihalometanos , Contaminantes Químicos del Agua , Purificación del Agua , Trihalometanos/química , Adsorción , Carbón Orgánico/química , Cinética , Purificación del Agua/métodos , Contaminantes Químicos del Agua/química , Acetonitrilos/química
12.
Sci Rep ; 14(1): 21418, 2024 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271737

RESUMEN

The global shift towards using biomass for biofuels and chemicals is accelerating due to increasing environmental concerns and geopolitical strategies. This study investigates a biorefinery model using citrus-processing-waste, specifically citrus pulp, to produce high-value products for various industries, including cosmetics, pharmaceuticals, flavours, fragrances, and food packaging. In Italy, particularly Sicily region, citrus processing generates significant amounts of waste, often improperly disposed of, contributing to environmental problems. Researchers have demonstrated that citrus waste can yield commercially valuable compounds. This study specifically focuses on orange peel waste (OPW), which constitutes about half of the fruit's weight, aiming to extract pectin and limonene through a combined process. The extraction process was carried out on a laboratory scale, and its sustainability was evaluated using a life cycle assessment (LCA) with SimaPro 8.1 software and the Impact 2002 + method. The functional unit adopted for this study is 300 g of OPW, obtained after the pre-treatment phase, from which 0.14 g of limonene and 8.22 g of pectin were extracted. The LCA results revealed that pectin extraction has a significantly higher environmental impact compared to limonene extraction, primarily due to the use of ethanol as a solvent, followed by electricity consumption. To mitigate this impact, the LCA assessed alternative, more sustainable solvents, resulting in a 73.4% reduction in the environmental footprint of the pectin extraction process. These findings underscore the critical role of LCA, even at the laboratory scale, in identifying environmental hotspots and providing insights for improving and optimizing processes for potential industrial-scale applications.


Asunto(s)
Citrus , Limoneno , Citrus/química , Pectinas , Biocombustibles/análisis , Residuos Industriales/análisis , Biomasa
13.
Biomed Res Int ; 2024: 4264229, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39286282

RESUMEN

This study investigated the ability of lactic acid bacteria (LAB) isolated from oranges to use fish by-products (FB) and chicken by-products (CB) as nitrogen sources alternative to yeast extract for lactic acid (LA) production in a papaya by-product medium as a carbon source. Once the fermentation agents had been isolated, they were subjected to biochemical and molecular characterization. Inexpensive nitrogen sources, precisely CB and FB, were prepared, freeze-dried, and yield evaluated. Also, before to the fermentation experiments, the Total Kjehdahl Nitrogen (TKN) of these by-products and that of the yeast extract were determined. Then, three production media differing in terms of nitrogen source were formulated from these nitrogen sources. From the 22 LAB isolated from orange, two isolates of interest (NGO25 and NGO23) were obtained; all belonging to the Lactiplantibacillus plantarum species based on 16S rRNA gene sequencing. Furthermore, the production yield powder obtained after lyophilization of 1 L of CB and FB surpernatant were, respectively, 16.6 g and 12.933 g. The TKN of different nitrogen sources powder were 71.4 ± 0.000% DM (FB), 86.145 ± 0.001% DM (CB), and 87.5 ± 0.99% DM (yeast extract). The best kinetic parameters of LA production (LA (g/L): 31.945 ± 0.078; volumetric productivity (g/L.h): 1.331 ± 0.003; LA yield (mg/g) 63.89 ± 0.156; biomass (g/L) 7.925 ± 0.035; cell growth rate (g/L.h): 0.330 ± 0.001) were recorded by Lactiplantibacillus plantarum NGO25 after 24 h of fermentation. The latter data were obtained in the production medium containing CB as nitrogen sources. In addition, this production medium cost only $0.152 to formulate, compared to yeast extract which required $1.692 to formulate. Thus, freeze-dried CB can be used as an alternative to yeast extract in large-scale production of LA.


Asunto(s)
Carbono , Fermentación , Ácido Láctico , Nitrógeno , Nitrógeno/metabolismo , Ácido Láctico/metabolismo , Carbono/metabolismo , Lactobacillales/metabolismo , Animales , ARN Ribosómico 16S/genética , Citrus/microbiología , Pollos/microbiología , Medios de Cultivo
14.
Artículo en Inglés | MEDLINE | ID: mdl-39271537

RESUMEN

The production of keratinases was evaluated in submerged fermentation with Aspergillus niger and by pigs' swine hair in a batch bioreactor. Experimental planning was performed to assess the interaction between different variables. The enzyme extract produced was characterized at various pH and temperatures and subjected to enzyme concentration using a biphasic aqueous system and salt/solvent precipitation techniques. In addition, the substrate's potential in reducing hexavalent chromium from synthetic potassium dichromate effluent with an initial concentration of 20 mg L-1 of chromium was evaluated. The resulting enzyme extract showed 89 ± 2 U mL-1 of keratinase. The enzyme concentration resulted in a purification factor of 1.3, while sodium chloride/acetone and ammonium sulfate/acetone resulted in a purification factor of 1.9 and 1.4, respectively. Still using the residual substrate of swine hair from the fermentation, a 94% reduction of hexavalent chromium concentration occurred after 9 h of reaction. Thus, the study proved relevant for producing keratinases, with further environmental applicability and the possibility of concentrating the extract via low-cost processes.

15.
Int J Food Microbiol ; 425: 110895, 2024 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-39222566

RESUMEN

Global concerns over folate deficiency, the risks of excessive synthetic folic acid consumption, and food loss implications for environmental sustainability and food security drive needs of innovative approaches that align food by-product valorisation with folate bio-enrichment. This study explored the use of three fruit by-products extracts (grape, passion fruit, and pitaya) and whey to develop a folate bio-enriched fermented whey-based beverage. Three strains (Lacticaseibacillus rhamnosus LGG, Bifidobacterium infantis BB-02, and Streptococcus thermophilus TH-4) were tested for folate production in different fermentation conditions in modified MRS medium and in a whey-based matrix prepared with water extracts of these fruit by-products. B. infantis BB-02 and S. thermophilus TH-4, alone and in co-culture, were the best folate producers. The selection of cultivation conditions, including the presence of different substrates and pH, with grape by-product water extract demonstrating the most substantial effect on folate production among the tested extracts, was crucial for successfully producing a biofortified fermented whey-based beverage (FWBB). The resulting FWBB provided 40.7 µg of folate per 100 mL after 24 h of fermentation at 37 °C, effectively leveraging food by-products. Moreover, the beverage showed no cytotoxicity in mouse fibroblast cells tests. This study highlights the potential for valorising fruit by-products and whey for the design of novel bioenriched foods, promoting health benefits and contributing to reduced environmental impact from improper disposal.


Asunto(s)
Fermentación , Ácido Fólico , Frutas , Suero Lácteo , Animales , Frutas/química , Ratones , Humanos , Suero Lácteo/química , Bebidas/microbiología , Streptococcus thermophilus/metabolismo , Streptococcus thermophilus/crecimiento & desarrollo , Lacticaseibacillus rhamnosus/metabolismo , Lacticaseibacillus rhamnosus/crecimiento & desarrollo , Bifidobacterium/metabolismo , Bifidobacterium/crecimiento & desarrollo , Vitis/química
16.
Food Chem X ; 24: 101791, 2024 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-39290750

RESUMEN

Peanuts are highly valued for their abundance of essential nutrients and health-promoting phenolic compounds. Peanut press cake, an inexpensive and underutilized agro-industrial by-product of oil production, is typically discarded or used as animal feed. This study investigated the influence of thermal processing and varietal disparities on the nutritional composition, phenolic content, and biological properties of peanut flour and oilcake flour, aiming to enhance their value as food ingredients. The findings showed that roasting significantly increased the oil (9.98 ± 0.11-44.13 ± 0.10 %), ash (1.28 ± 0.01-5.45 ± 0.05 %), carbohydrate contents (0.90 ± 0.01-28.09 ± 0.28 %), and energy value (406.69 ± 0.09-609.13 ± 1.08 kcal/100 g), along with the total polyphenol content (28.64 ± 0.19-62.79 ± 1.18 mg GAE/g), total flavonoid content (4.20 ± 0.07-18.35 ± 0.06 mg QE/g) and antioxidant activity in both peanut flour and its oilcake. Conversely, it led to a reduction in the moisture (1.48 ± 0.09-6.25 ± 0.15 %) and protein content (49.50 ± 0.05-54.24 ± 0.01 %). Notable variations were found between the two peanut varieties in terms of these nutritional parameters. Elemental analysis unveiled significant discrepancies among peanut varieties and with roasting, with potassium (12,237.56 ± 101.36-14,513.34 ± 168.62 mg/kg) emerging as the predominant macro-element followed by phosphorus (6156.86 ± 36.19-8815.22 ± 130.70 mg/kg) and magnesium (3037.92 ± 13.87-4096.44 ± 8.54 mg/kg), while zinc (53.98 ± 0.61-81.77 ± 0.44 mg/kg) predominated among the microelements. Moreover, peanut and oilcake flours demonstrated antibacterial activity against several bacteria. It can be inferred that roasted peanut and oilcake flours offer substantial nutritional value, making them promising candidates for addressing protein-energy malnutrition and serving as valuable ingredients in developing new food products.

17.
Heliyon ; 10(15): e35186, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39165951

RESUMEN

Background: The recent interest among consumers in industrial hemp due to health and wellness benefits has led to several products from industrial hemp, including cannabidiol (CBD) oil. CBD oil extraction from hemp buds and flowers generates by-product biomass (hemp flakes), often posing disposal challenges and with little or no applications. We hypothesized that hemp flakes possess residual compounds with nutritional and health value that could be used to improve utilization. Methods: Locally sourced hemp flakes were compared to three commercial hemp protein products. The nutritional composition (proximate analysis), heavy metals (Al, Cu, As, Pb, Co, Cd), and functional composition (phenolic and antioxidant properties-total phenolic compounds (TPC), total flavonoid compounds (TFC), ferric reducing antioxidant potential (FRAP), 1,1-diphenyl-1-picrylhydrazyl (DPPH), Trolox equivalent antioxidant capacity (TEAC)), (CBD, cannabiodiolic acid-CBDA, cannabichromene-CBC, cannabigerol-CBG, and cannabinol-CBN) contents were determined and compared. Findings: Hemp flakes had a similar nutritional composition to commercial hemp protein products, with heavy metal levels within FDA allowed limits. The by-product had significantly higher CBDA levels than commercial products. Overall, hemp flakes had comparable nutrient composition and antioxidant capabilities. Based on the protein composition of hemp flakes (31.62 %) versus the highest commercial product (43 %), hemp flakes are an acceptable functional food ingredient.

18.
Wei Sheng Yan Jiu ; 53(4): 553-560, 2024 Jul.
Artículo en Chino | MEDLINE | ID: mdl-39155222

RESUMEN

OBJECTIVE: To clarify the effect of iodoacetic acid(IAA) on the blood system and electrolyte balance, hence further study the intrinsic relation of blood routine parameters and electrolyte levels, major hematological toxicity effects and their pattern after IAA treatment. METHODS: Forty-eight 21-day-old male SPF grade Sprague-Dawley(SD) rats were gavaged with 0, 6.25, 12.5 and 25 mg/kg IAA for 31 days. After detections of blood routine and plasma inorganic ion levels, Spearman correlation coefficients were performed to evaluate their relationship. Changes in ferritin, transferrin, hepcidin, C-reactive protein and glyceraldehyde-3-phosphate dehydrogenase(GAPDH) were assessed by enzyme-linked immunosorbent assays. The EDock bioinformatics tool was applied to docking model of IAA and GAPDH. RESULTS: Compared to the control, high-dose IAA exposure had obvious inhibition effect on rat leukocytes with the total number declined by 51.12%, and neutrophils were particularly sensitive to IAA with the number reduced by 73.66%(P<0.01), and rat erythrocytes exhibited a small cell low pigment effect with hemoglobin and hematocrit decreased by 8.60% and 8.70%, respectively(P<0.05). But IAA had little effects on the platelet. Plasma iron, phosphorus, zinc and potassium levels were repressed significantly, while chlorine, sodium and magnesium levels were elevated obviously through IAA exposure. However, plasma calcium levels were hardly affected by IAA. In comparison with the control, iron levels declined by 67.09%, whereas magnesium levels increased by 131.82% in the high-dose group(P<0.01). Overall, correlation analyses uncovered that plasma iron metabolism was most strongly and positively correlated with levels of leukocyte, erythrocyte and platelet system parameters after IAA exposure, and the correlation coefficients of leukocyte number, mean hemoglobin content and mean erythrocyte volume were 0.637, 0.410 and 0.365, respectively(P<0.05). Compared to the control, in the high-dose IAA group, the plasma content of C-reactive protein was significantly upregulated by 13.30%(P<0.05), and plasma levels of transferrin and ferromodulin were also respectively elevated by 12.73% and 11.02%(P<0.05). But plasma levels of ferritin and GAPDH did not differ between groups. The docking model exhibited that IAA could bind to the 150 Cys active site of rat GAPDH did. CONCLUSION: IAA not only had toxic effects on rat leukocytes and the plasma electrolyte balance, but also generated inflammation and iron deficiency, leading to smaller erythrocytes and lower pigment.


Asunto(s)
Ácido Yodoacético , Ratas Sprague-Dawley , Animales , Ratas , Masculino , Ácido Yodoacético/toxicidad , Desinfectantes/toxicidad , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Proteína C-Reactiva/metabolismo , Leucocitos/efectos de los fármacos , Ferritinas/sangre , Desinfección/métodos , Transferrina , Hepcidinas/sangre
19.
Pest Manag Sci ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39172057

RESUMEN

BACKGROUND: Stilbenoid extracts, such as those originating from grapevine by-products (e.g. canes), are of interest for use as biopesticides in vineyard owing to their antimicrobial activities. However, stilbenoids are unstable in the environment, especially under light. This study aimed to chemically characterize the effect of UV light on stilbenoids present in a grapevine cane extract (CE), and to evaluate the antimicrobial activities against two major grapevine pathogens (Plasmopara viticola and Botrytis cinerea) of grapevine extracts exposed to UV. RESULTS: Treatment with UV (365 nm) on a grapevine CE led to degradation of stilbenoids (up to 71% after 1 h). The stilbenoid stability depended on their chemical structure: only those possessing CC, as trans-resveratrol and trans-ε-viniferin, were affected with first their isomerization and secondly their oxidation/cyclization. As a consequence, UV-exposed extracts (UV-CEs) showed reduced antimicrobial activities against the two pathogens (mycelium and spores). For instance, regarding P. viticola, an UV-CE exposed during 4 h showed an almost total loss of its activity on oomycete development and a 2.4-fold inhibition of zoospore mobility in comparison to CE. For B. cinerea, the inhibition capacity of the same UV-CE was reduced by only 1.1-fold on mycelial development and by 3.2-fold on conidial germination compared to CE. CONCLUSION: UV light triggered modifications on the structure of bioactive stilbenoids, resulting in losses of their antimicrobial activities. Photoprotection of stilbenoids has to be considered in the perspective of using them in vineyards as biopesticides. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

20.
Chempluschem ; : e202400263, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39172058

RESUMEN

Ruthenium is relevant for a broad range of applications, including catalysis and electronics. Like other metals of the platinum group, ruthenium stands out as one of the rarest elements in the Earth's crust. The demand for Ru from the industry is putting pressure on its availability. Hence, its recovery from secondary sources is imperative. Fashion solid residues of the plating industry are an important waste stream for Ru. Within this context, we propose a novel approach to Ru recovery for its safe, sustainable, and economically affordable upcycling. The approach is based on peeling from waste metal wires by a green oxidizing agent, H2O2, in an environment acidic by lactic acid, a by-product of the food industry. Peeled flakes were characterized by scanning electron microscopy, energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy for their structure and (surface) chemical composition and bonding. Inductively Coupled Plasma Optical Emission Spectroscopy shows the ultra-low concentration of noble metals in the leachate, thereby suggesting their quantitative recovery in their metallic state. Further, we observed the colloidal nature of the washing water of the peeled flakes. Therefore, we hypothesized the presence of nanoparticles in the washing water and went for their characterization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA