Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 465, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283347

RESUMEN

The demand for sustainably produced bulk chemicals is constantly rising. Succinate serves as a fundamental component in various food, chemical, and pharmaceutical products. Succinate can be produced from sustainable raw materials using microbial fermentation and enzyme-based technologies. Bacteroides and Phocaeicola species, widely distributed and prevalent gut commensals, possess enzyme sets for the metabolization of complex plant polysaccharides and synthesize succinate as a fermentative end product. This study employed novel molecular techniques to enhance succinate yields in the natural succinate producer Phocaeicola vulgatus by directing the metabolic carbon flow toward succinate formation. The deletion of the gene encoding the methylmalonyl-CoA mutase (Δmcm, bvu_0309-0310) resulted in a 95% increase in succinate production, as metabolization to propionate was effectively blocked. Furthermore, deletion of genes encoding the lactate dehydrogenase (Δldh, bvu_2499) and the pyruvate:formate lyase (Δpfl, bvu_2880) eliminated the formation of fermentative end products lactate and formate. By overproducing the transketolase (TKT, BVU_2318) in the triple deletion mutant, succinate production increased from 3.9 mmol/g dry weight in the wild type to 10.9 mmol/g dry weight. Overall, succinate yield increased by 180% in the new mutant strain P. vulgatus Δmcm Δldh Δpfl pG106_tkt relative to the parent strain. This approach is a proof of concept, verifying the genetic accessibility of P. vulgatus, and forms the basis for targeted genetic optimization. The increase of efficiency highlights the huge potential of P. vulgatus as a succinate producer with applications in sustainable bioproduction processes. KEY POINTS: • Deleting methylmalonyl-CoA mutase gene in P. vulgatus doubled succinate production • Triple deletion mutant with transketolase overexpression increased succinate yield by 180% • P. vulgatus shows high potential for sustainable bulk chemical production via genetic optimization.


Asunto(s)
Fermentación , Ácido Succínico , Ácido Succínico/metabolismo , Humanos , Ingeniería Metabólica/métodos , Eliminación de Gen , Metilmalonil-CoA Mutasa/genética , Metilmalonil-CoA Mutasa/metabolismo , Microbioma Gastrointestinal , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
2.
BMC Bioinformatics ; 25(1): 297, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256657

RESUMEN

BACKGROUND: Chemical bioproduction has attracted attention as a key technology in a decarbonized society. In computational design for chemical bioproduction, it is necessary to predict changes in metabolic fluxes when up-/down-regulating enzymatic reactions, that is, responses of the system to enzyme perturbations. Structural sensitivity analysis (SSA) was previously developed as a method to predict qualitative responses to enzyme perturbations on the basis of the structural information of the reaction network. However, the network structural information can sometimes be insufficient to predict qualitative responses unambiguously, which is a practical issue in bioproduction applications. To address this, in this study, we propose BayesianSSA, a Bayesian statistical model based on SSA. BayesianSSA extracts environmental information from perturbation datasets collected in environments of interest and integrates it into SSA predictions. RESULTS: We applied BayesianSSA to synthetic and real datasets of the central metabolic pathway of Escherichia coli. Our result demonstrates that BayesianSSA can successfully integrate environmental information extracted from perturbation data into SSA predictions. In addition, the posterior distribution estimated by BayesianSSA can be associated with the known pathway reported to enhance succinate export flux in previous studies. CONCLUSIONS: We believe that BayesianSSA will accelerate the chemical bioproduction process and contribute to advancements in the field.


Asunto(s)
Teorema de Bayes , Escherichia coli , Redes y Vías Metabólicas , Escherichia coli/metabolismo , Escherichia coli/genética , Modelos Estadísticos , Biología Computacional/métodos , Enzimas/metabolismo
3.
Microb Cell Fact ; 23(1): 246, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261865

RESUMEN

BACKGROUND: Pseudomonas putida KT2440 has emerged as a promising host for industrial bioproduction. However, its strictly aerobic nature limits the scope of applications. Remarkably, this microbe exhibits high bioconversion efficiency when cultured in an anoxic bio-electrochemical system (BES), where the anode serves as the terminal electron acceptor instead of oxygen. This environment facilitates the synthesis of commercially attractive chemicals, including 2-ketogluconate (2KG). To better understand this interesting electrogenic phenotype, we studied the BES-cultured strain on a systems level through multi-omics analysis. Inspired by our findings, we constructed novel mutants aimed at improving 2KG production. RESULTS: When incubated on glucose, P. putida KT2440 did not grow but produced significant amounts of 2KG, along with minor amounts of gluconate, acetate, pyruvate, succinate, and lactate. 13C tracer studies demonstrated that these products are partially derived from biomass carbon, involving proteins and lipids. Over time, the cells exhibited global changes on both the transcriptomic and proteomic levels, including the shutdown of translation and cell motility, likely to conserve energy. These adaptations enabled the cells to maintain significant metabolic activity for several weeks. Acetate formation was shown to contribute to energy supply. Mutants deficient in acetate production demonstrated superior 2KG production in terms of titer, yield, and productivity. The ∆aldBI ∆aldBII double deletion mutant performed best, accumulating 2KG at twice the rate of the wild type and with an increased yield (0.96 mol/mol). CONCLUSIONS: By integrating transcriptomic, proteomic, and metabolomic analyses, this work provides the first systems biology insight into the electrogenic phenotype of P. putida KT2440. Adaptation to anoxic-electrogenic conditions involved coordinated changes in energy metabolism, enabling cells to sustain metabolic activity for extended periods. The metabolically engineered mutants are promising for enhanced 2KG production under these conditions. The attenuation of acetate synthesis represents the first systems biology-informed metabolic engineering strategy for enhanced 2KG production in P. putida. This non-growth anoxic-electrogenic mode expands our understanding of the interplay between growth, glucose phosphorylation, and glucose oxidation into gluconate and 2KG in P. putida.


Asunto(s)
Gluconatos , Ingeniería Metabólica , Pseudomonas putida , Biología de Sistemas , Pseudomonas putida/metabolismo , Pseudomonas putida/genética , Gluconatos/metabolismo , Ingeniería Metabólica/métodos , Biología de Sistemas/métodos , Glucosa/metabolismo , Proteómica , Multiómica
4.
Mol Ther Methods Clin Dev ; 32(3): 101305, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39220637

RESUMEN

With more than 130 clinical trials and 8 approved gene therapy products, adeno-associated virus (AAV) stands as one of the most popular vehicles to deliver therapeutic DNA in vivo. One critical quality attribute analyzed in AAV batches is the presence of residual DNA, as it could pose genotoxic risks or induce immune responses. Surprisingly, the presence of small cell-derived RNAs, such as microRNAs (miRNAs), has not been investigated previously. In this study, we examined the presence of miRNAs in purified AAV batches produced in mammalian or in insect cells. Our findings revealed that miRNAs were present in all batches, regardless of the production cell line or capsid serotype (2 and 8). Quantitative assays indicated that miRNAs were co-purified with the recombinant AAV particles in a proportion correlated with their abundance in the production cells. The level of residual miRNAs was reduced via an immunoaffinity chromatography purification process including a tangential flow filtration step or by RNase treatment, suggesting that most miRNA contaminants are likely non-encapsidated. In summary, we demonstrate, for the first time, that miRNAs are co-purified with AAV particles. Further investigations are required to determine whether these miRNAs could interfere with the safety or efficacy of AAV-mediated gene therapy.

5.
Artículo en Inglés | MEDLINE | ID: mdl-39090985

RESUMEN

Chain elongating bacteria are a unique guild of strictly anaerobic bacteria that have garnered interest for sustainable chemical manufacturing from carbon-rich wet and gaseous waste streams. They produce C6-C8 medium-chain fatty acids, which are valuable platform chemicals that can be used directly, or derivatized to service a wide range of chemical industries. However, the application of chain elongating bacteria for synthesizing products beyond C6-C8 medium-chain fatty acids has not been evaluated. In this study, we assess the feasibility of expanding the product spectrum of chain elongating bacteria to C9-C12 fatty acids, along with the synthesis of C6 fatty alcohols, dicarboxylic acids, diols, and methyl ketones. We propose several metabolic engineering strategies to accomplish these conversions in chain elongating bacteria and utilize constraint-based metabolic modelling to predict pathway stoichiometries, assess thermodynamic feasibility, and estimate ATP and product yields. We also evaluate how producing alternative products impacts the growth rate of chain elongating bacteria via resource allocation modelling, revealing a trade-off between product chain length and class versus cell growth rate. Together, these results highlight the potential for using chain elongating bacteria as a platform for diverse oleochemical biomanufacturing and offer a starting point for guiding future metabolic engineering efforts aimed at expanding their product range. ONE-SENTENCE SUMMARY: In this work, the authors use constraint-based metabolic modelling and enzyme cost minimization to assess the feasibility of using metabolic engineering to expand the product spectrum of anaerobic chain elongating bacteria.


Asunto(s)
Ácidos Grasos , Ingeniería Metabólica , Ingeniería Metabólica/métodos , Ácidos Grasos/metabolismo , Ácidos Grasos/biosíntesis , Alcoholes Grasos/metabolismo , Bacterias/metabolismo , Bacterias/genética , Estudios de Factibilidad , Redes y Vías Metabólicas
6.
ACS Biomater Sci Eng ; 10(9): 5412-5438, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39136701

RESUMEN

The remarkable material properties of spider silk, such as its high toughness and tensile strength combined with its low density, make it a highly sought-after material with myriad applications. In addition, the biological nature of spider silk makes it a promising, potentially sustainable alternative to many toxic or petrochemical-derived materials. Therefore, interest in the heterologous production of spider silk proteins has greatly increased over the past few decades, making recombinant spider silk an important frontier in biomanufacturing. This has resulted in a diversity of potential host organisms, a large space for sequence design, and a variety of downstream processing techniques and product applications for spider silk production. Here, we highlight advances in each of these technical aspects as well as white spaces therein, still ripe for further investigation and discovery. Additionally, industry landscaping, patent analyses, and interviews with Key Opinion Leaders help define both the research and industry landscapes. In particular, we found that though textiles dominated the early products proposed by companies, the versatile nature of spider silk has opened up possibilities in other industries, such as high-performance materials in automotive applications or biomedical therapies. While continuing enthusiasm has imbued scientists and investors alike, many technical and business considerations still remain unsolved before spider silk can be democratized as a high-performance product. We provide insights and strategies for overcoming these initial hurdles, and we highlight the importance of collaboration between academia, industry, and policy makers. Linking technical considerations to business and market entry strategies highlights the importance of a holistic approach for the effective scale-up and commercial viability of spider silk bioproduction.


Asunto(s)
Seda , Arañas , Arañas/metabolismo , Animales , Seda/química , Seda/metabolismo , Seda/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/metabolismo , Humanos
7.
Bioresour Technol ; 410: 131232, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39117247

RESUMEN

Applying low-cost substrate is critical for sustainable bioproduction. Co-culture of phototrophic and heterotrophic microorganisms can be a promising solution as they can use CO2 and light as feedstock. This study aimed to create a light-driven consortium using a marine cyanobacterium Synechococcus sp. PCC 7002 and an industrial yeast Yarrowia lipolytica. First, the cyanobacterium was engineered to accumulate and secrete sucrose by regulating the expression of genes involved in sucrose biosynthesis and transport, resulting in 4.0 g/L of sucrose secretion. Then, Yarrowia lipolytica was engineered to efficiently use sucrose and produce ß-caryophyllene that has various industrial applications. Then, co- and sequential-culture were optimized with different induction conditions and media compositions. A maximum ß-caryophyllene yield of 14.1 mg/L was obtained from the co-culture. This study successfully established an artificial light-driven consortium based on a marine cyanobacterium and Y. lipolytica, and provides a foundation for sustainable bioproduction from CO2 and light through co-culture systems.


Asunto(s)
Técnicas de Cocultivo , Luz , Sesquiterpenos Policíclicos , Synechococcus , Yarrowia , Técnicas de Cocultivo/métodos , Sesquiterpenos Policíclicos/metabolismo , Synechococcus/metabolismo , Synechococcus/crecimiento & desarrollo , Yarrowia/metabolismo , Sacarosa/metabolismo , Sesquiterpenos/metabolismo , Procesos Heterotróficos , Procesos Autotróficos
8.
Mar Drugs ; 22(8)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39195469

RESUMEN

The production of biologics in mammalian cells is hindered by some limitations including high production costs, prompting the exploration of other alternative expression systems that are cheaper and sustainable like microalgae. Successful productions of biologics such as monoclonal antibodies have already been demonstrated in the diatom Phaeodactylum tricornutum; however, limited production yields still remain compared to mammalian cells. Therefore, efforts are needed to make this microalga more competitive as a cell biofactory. Among the seventeen reported accessions of P. tricornutum, ten have been mainly studied so far. Among them, some have already been used to produce high-value-added molecules such as biologics. The use of "omics" is increasingly being described as useful for the improvement of both upstream and downstream steps in bioprocesses using mammalian cells. Therefore, in this context, we performed an RNA-Seq analysis of the ten most used P. tricornutum accessions (Pt1 to Pt10) and deciphered the differential gene expression in pathways that could affect bioproduction of biologics in P. tricornutum. Our results highlighted the benefits of certain accessions such as Pt9 or Pt4 for the production of biologics. Indeed, these accessions seem to be more advantageous. Moreover, these results contribute to a better understanding of the molecular and cellular biology of P. tricornutum.


Asunto(s)
Diatomeas , RNA-Seq , Diatomeas/genética , Diatomeas/metabolismo , RNA-Seq/métodos , Microalgas/genética , Microalgas/metabolismo , Productos Biológicos/metabolismo
9.
Appl Microbiol Biotechnol ; 108(1): 450, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39207499

RESUMEN

Synthetic biology encompasses many kinds of ideas and techniques with the common theme of creating something novel. The industrially relevant microorganism, Ralstonia eutropha (also known as Cupriavidus necator), has long been a subject of metabolic engineering efforts to either enhance a product it naturally makes (polyhydroxyalkanoate) or produce novel bioproducts (e.g., biofuels and other small molecule compounds). Given the metabolic versatility of R. eutropha and the existence of multiple molecular genetic tools and techniques for the organism, development of a synthetic biology toolkit is underway. This toolkit will allow for novel, user-friendly design that can impart new capabilities to R. eutropha strains to be used for novel application. This article reviews the different synthetic biology techniques currently available for modifying and enhancing bioproduction in R. eutropha. KEY POINTS: • R. eutropha (C. necator) is a versatile organism that has been examined for many applications. • Synthetic biology is being used to design more powerful strains for bioproduction. • A diverse synthetic biology toolkit is being developed to enhance R. eutropha's capabilities.


Asunto(s)
Cupriavidus necator , Ingeniería Metabólica , Biología Sintética , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Biología Sintética/métodos , Ingeniería Metabólica/métodos , Polihidroxialcanoatos/metabolismo , Polihidroxialcanoatos/biosíntesis , Biocombustibles
10.
Metab Eng ; 85: 94-104, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39047894

RESUMEN

Characterizing the phenotypic diversity and metabolic capabilities of industrially relevant manufacturing cell lines is critical to bioprocess optimization and cell line development. Metabolic capabilities of production hosts limit nutrient and resource channeling into desired cellular processes and can have a profound impact on productivity. These limitations cannot be directly inferred from measured data such as spent media concentrations or transcriptomics. Here, we present an integrated multi-omic analysis pipeline combining exo-metabolomics, transcriptomics, and genome-scale metabolic network analysis and apply it to three antibody-producing Chinese Hamster Ovary cell lines to identify reprogramming features associated with high-producing clones and metabolic bottlenecks limiting product formation in an industrial bioprocess. Analysis of individual datatypes revealed a decreased nitrogenous byproduct secretion in high-producing clones and the topological changes in peripheral metabolic pathway expression associated with phase shifts. An integrated omics analysis in the context of the genome-scale metabolic model elucidated the differences in central metabolism and identified amino acid utilization bottlenecks limiting cell growth and antibody production that were not evident from exo-metabolomics or transcriptomics alone. Thus, we demonstrate the utility of a multi-omics characterization in providing an in-depth understanding of cellular metabolism, which is critical to efforts in cell engineering and bioprocess optimization.


Asunto(s)
Cricetulus , Animales , Células CHO , Cricetinae , Reprogramación Metabólica , Multiómica
11.
Trends Biotechnol ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39019677

RESUMEN

Pigments are widely used in the food, cosmetic, textile, pharmaceutical, and materials industries. Demand for natural pigments has been increasing due to concerns regarding potential health problems and environmental pollution from synthetic pigments. Microbial production of natural pigments is a promising alternative to chemical synthesis or extraction from natural sources. Here, we discuss yeasts as promising chassis for producing natural pigments with their advantageous traits such as genetic amenability, safety, rapid growth, metabolic diversity, and tolerance. Metabolic engineering strategies and optimizing strategies in downstream process to enhance production of natural pigments are thoroughly reviewed. We discuss the challenges, including expanding the range of natural pigments and improving their feasibility of industrial scale-up, as well as the potential strategies for future development.

12.
Biotechnol Biofuels Bioprod ; 17(1): 94, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961416

RESUMEN

BACKGROUND: Limonene has a variety of applications in the foods, cosmetics, pharmaceuticals, biomaterials, and biofuels industries. In order to meet the growing demand for sustainable production of limonene at industry scale, it is essential to find an alternative production system to traditional plant extraction. A promising and eco-friendly alternative is the use of microbes as cell factories for the synthesis of limonene. RESULTS: In this study, the oleaginous yeast Yarrowia lipolytica has been engineered to produce D- and L-limonene. Four target genes, l- or d-LS (limonene synthase), HMG (HMG-CoA reductase), ERG20 (geranyl diphosphate synthase), and NDPS1 (neryl diphosphate) were expressed individually or fused together to find the optimal combination for higher limonene production. The strain expressing HMGR and the fusion protein ERG20-LS was the best limonene producer and, therefore, selected for further improvement. By increasing the expression of target genes and optimizing initial OD, 29.4 mg/L of L-limonene and 24.8 mg/L of D-limonene were obtained. We also studied whether peroxisomal compartmentalization of the synthesis pathway was beneficial for limonene production. The introduction of D-LS and ERG20 within the peroxisome improved limonene titers over cytosolic expression. Then, the entire MVA pathway was targeted to the peroxisome to improve precursor supply, which increased D-limonene production to 47.8 mg/L. Finally, through the optimization of fermentation conditions, D-limonene production titer reached 69.3 mg/L. CONCLUSIONS: In this work, Y. lipolytica was successfully engineered to produce limonene. Our results showed that higher production of limonene was achieved when the synthesis pathway was targeted to the peroxisome, which indicates that this organelle can favor the bioproduction of terpenes in yeasts. This study opens new avenues for the efficient synthesis of valuable monoterpenes in Y. lipolytica.

13.
Biotechnol Bioeng ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031482

RESUMEN

Xylose is an abundant, inexpensive and readily available carbohydrate common in minimally processed feedstocks such as seaweed and algae. While a wide variety of marine microbes have evolved to utilize seaweed and algae, only a few currently have the requisite characteristics and genetic engineering tools necessary to entertain the use of these underutilized feedstocks. The rapidly growing Gram-negative halophilic bacterium Vibrio natriegens is one such chassis. In this study, we engineered and tested xylose induction in V. natriegens as a tool for scalable bioproduction applications. First, we created a sensing construct based on the xylose operon from Escherichia coli MG1665 and measured its activity using a fluorescent reporter and identified that cellular import plays a key role in induction strength and that expression required the XylR transcription factor. Next, we identified that select deletions of the promoter region enhance gene expression, limiting the effect of carbohydrate repression when xylose is used as an inducer in the presence of industrially relevant carbon sources. Lastly, we used the optimized constructs to produce the biopolymer melanin using seawater mimetic media. One of these formulations utilized a nori-based seaweed extract as an inducer and demonstrated melanin yields comparable to previously optimized methods using a more traditional and costly inducer. Together, the results demonstrate that engineering xylose induction in V. natriegens can provide an effective and lower cost option for timed biosynthesis in scalable biomanufacturing applications using renewable feedstocks.

14.
Biotechnol Biofuels Bioprod ; 17(1): 83, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898475

RESUMEN

Lignocellulosic biomass is currently underutilized, but it offers promise as a resource for the generation of commercial end-products, such as biofuels, detergents, and other oleochemicals. Rhodococcus opacus PD630 is an oleaginous, Gram-positive bacterium with an exceptional ability to utilize recalcitrant aromatic lignin breakdown products to produce lipid molecules such as triacylglycerols (TAGs), which are an important biofuel precursor. Lipid carbon storage molecules accumulate only under growth-limiting low nitrogen conditions, representing a significant challenge toward using bacterial biorefineries for fuel precursor production. In this work, we screened overexpression of 27 native transcriptional regulators for their abilities to improve lipid accumulation under nitrogen-rich conditions, resulting in three strains that accumulate increased lipids, unconstrained by nitrogen availability when grown in phenol or glucose. Transcriptomic analyses revealed that the best strain (#13) enhanced FA production via activation of the ß-ketoadipate pathway. Gene deletion experiments confirm that lipid accumulation in nitrogen-replete conditions requires reprogramming of phenylalanine metabolism. By generating mutants decoupling carbon storage from low nitrogen environments, we move closer toward optimizing R. opacus for efficient bioproduction on lignocellulosic biomass.

15.
Synth Syst Biotechnol ; 9(4): 713-722, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38868610

RESUMEN

Amino oligosaccharides (AOs) possess various biological activities and are valuable in the pharmaceutical, food industries, and agriculture. However, the industrial manufacturing of AOs has not been realized yet, despite reports on physical, chemical, and biological approaches. In this study, the de novo production of chitin oligosaccharides (CHOS), a type of structurally defined AOs, was achieved in Escherichia coli through combinatorial pathway engineering. The most suitable glycosyltransferase for CHOS production was found to be NodCL from Mesorhizobium Loti. Then, by knocking out the nagB gene to block the flow of N-acetyl-d-glucosamine (NAG) to the glycolytic pathway in E. coli and adjusting the copy number of NodCL-coding gene, the CHOS yield was increased by 6.56 times. Subsequently, by introducing of UDP-N-acetylglucosamine (UDP-GlcNAc) salvage pathway for and optimizing fermentation conditions, the yield of CHOS reached 207.1 and 468.6 mg/L in shake-flask cultivation and a 5-L fed-batch bioreactor, respectively. Meanwhile, the concentration of UDP-GlcNAc was 91.0 mg/L, the highest level reported in E. coli so far. This study demonstrated, for the first time, the production of CHOS with distinct structures in plasmid-free E. coli, laying the groundwork for the biosynthesis of CHOS and providing a starting point for further engineering and commercial production.

16.
Int J Biol Macromol ; 269(Pt 1): 132109, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38714281

RESUMEN

This study presents a novel and efficient approach for pullulan production using artificial neural networks (ANNs) to optimize semi-solid-state fermentation (S-SSF) on faba bean biomass (FBB). This method achieved a record-breaking pullulan yield of 36.81 mg/g within 10.82 days, significantly exceeding previous results. Furthermore, the study goes beyond yield optimization by characterizing the purified pullulan, revealing its unique properties including thermal stability, amorphous structure, and antioxidant activity. Energy-dispersive X-ray spectroscopy and scanning electron microscopy confirmed its chemical composition and distinct morphology. This research introduces a groundbreaking combination of ANNs and comprehensive characterization, paving the way for sustainable and cost-effective pullulan production on FBB under S-SSF conditions. Additionally, the study demonstrates the successful integration of pullulan with Ag@TiO2 nanoparticles during synthesis using Fusarium oxysporum. This novel approach significantly enhances the stability and efficacy of the nanoparticles by modifying their surface properties, leading to remarkably improved antibacterial activity against various human pathogens. These findings showcase the low-cost production medium, and extensive potential of pullulan not only for its intrinsic properties but also for its ability to significantly improve the performance of nanomaterials. This breakthrough opens doors to diverse applications in various fields.


Asunto(s)
Antibacterianos , Aureobasidium , Fermentación , Glucanos , Nanocompuestos , Redes Neurales de la Computación , Plata , Titanio , Glucanos/química , Glucanos/biosíntesis , Glucanos/farmacología , Nanocompuestos/química , Titanio/química , Titanio/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Aureobasidium/metabolismo , Plata/química , Plata/farmacología , Antioxidantes/farmacología , Antioxidantes/química , Fusarium
17.
Food Chem ; 453: 139675, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-38781901

RESUMEN

Bioproduction of diverse N-acetyl chitooligosaccharides from chitin is of great value. In the study, a novel GH family 18 bifunctional chitinase gene (PsChi82) from Paenibacillus shirakamiensis was identified, expressed and biochemically characterized. PsChi82 was most active at pH 5.0, and 55 °C, and displayed remarkable pH stability with the broad pH range of 3.0-12.0. It showed high chitosanase activity of 10.6 U mg-1 and diverse hydrolysis products of GlcNAc, (GlcNAc)2, GlcN-GlcNAc and (GlcN)2-GlcNAc, which may facilitate comprehensively understanding of structure-function relationships of N-acetyl COSs. Three engineered variants were then expressed and characterized. Among them, PsChi82-CBM26 possessed specific activity of 25.1 U mg-1 against colloidal chitin, which was 2.1 folds higher than that of PsChi82. The diverse N-acetyl COSs were subsequently produced by PsChi82-CBM26 with a sugar content of 23.2 g L-1. These excellent properties may make PsChi82-CBM26 potentially useful for N-acetyl COSs production in the food and chemical industries.


Asunto(s)
Proteínas Bacterianas , Quitina , Quitinasas , Quitosano , Oligosacáridos , Paenibacillus , Quitinasas/química , Quitinasas/genética , Quitinasas/metabolismo , Oligosacáridos/química , Oligosacáridos/metabolismo , Quitina/química , Quitina/análogos & derivados , Quitina/metabolismo , Quitosano/química , Quitosano/metabolismo , Paenibacillus/enzimología , Paenibacillus/genética , Paenibacillus/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Concentración de Iones de Hidrógeno , Estabilidad de Enzimas , Hidrólisis , Ingeniería de Proteínas
18.
Biotechnol Rep (Amst) ; 42: e00839, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38633817

RESUMEN

A bacterium, Acinetobacter soli ANG344B, isolated from river water, exhibited an exceptional capacity to produce 2-phenylethanol (2-PE) using L-phenylalanine (L-Phe) as a precursor-a capability typically observed in yeasts rather than bacteria. Bioreactor experiments were conducted to evaluate the production performance, using glucose as the carbon source for cellular growth and L-Phe as the precursor for 2-PE production. Remarkably, A. soli ANG344B achieved a 2-PE concentration of 2.35 ± 0.26 g/L in just 24.5 h of cultivation, exhibiting a global volumetric productivity of 0.10 ± 0.01 g/L.h and a production yield of 0.51 ± 0.01 g2-PE/gL-Phe, a result hitherto reported only for yeasts. These findings position A. soli ANG344B as a highly promising microorganism for 2-PE production. Whole-genome sequencing of A. soli strain ANG344 revealed a genome size of 3.52 Mb with a GC content of 42.7 %. Utilizing the Rapid Annotation using Subsystem Technology (RAST) server, 3418 coding genes were predicted, including genes coding for enzymes previously associated with the metabolic pathway of 2-PE production in other microorganisms, yet unreported in Acinetobacter species. Through gene mapping, 299 subsystems were identified, exhibiting 30 % subsystem coverage. The whole genome sequence data was submitted to NCBI GeneBank with the BioProject ID PRJNA982713. These draft genome data offer significant potential for exploiting the biotechnological capabilities of A. soli strain ANG344 and for conducting further comparative genomic studies.

19.
Front Plant Sci ; 15: 1378573, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650707

RESUMEN

Cyanobacteria have been proposed as a potential alternative carbohydrate feedstock and multiple species have been successfully engineered to secrete fermentable sugars. To date, the most productive cyanobacterial strains are those designed to secrete sucrose, yet there exist considerable differences in reported productivities across different model species and laboratories. In this study, we investigate how cultivation conditions (specifically, irradiance, CO2, and cultivator type) affect the productivity of sucrose-secreting Synechococcus elongatus PCC 7942. We find that S. elongatus produces the highest sucrose yield in irradiances far greater than what is often experimentally utilized, and that high light intensities are tolerated by S. elongatus, especially under higher density cultivation where turbidity may attenuate the effective light experienced in the culture. By increasing light and inorganic carbon availability, S. elongatus cscB/sps produced a total of 3.8 g L-1 of sucrose and the highest productivity within that period being 47.8 mg L-1 h-1. This study provides quantitative description of the impact of culture conditions on cyanobacteria-derived sucrose that may assist to standardize cross-laboratory comparisons and demonstrates a significant capacity to improve productivity via optimizing cultivation conditions.

20.
Annu Rev Chem Biomol Eng ; 15(1): 389-430, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38598861

RESUMEN

In the past decades, the broad selection of CRISPR-Cas systems has revolutionized biotechnology by enabling multimodal genetic manipulation in diverse organisms. Rooted in a molecular engineering perspective, we recapitulate the different CRISPR components and how they can be designed for specific genetic engineering applications. We first introduce the repertoire of Cas proteins and tethered effectors used to program new biological functions through gene editing and gene regulation. We review current guide RNA (gRNA) design strategies and computational tools and how CRISPR-based genetic circuits can be constructed through regulated gRNA expression. Then, we present recent advances in CRISPR-based biosensing, bioproduction, and biotherapeutics across in vitro and in vivo prokaryotic systems. Finally, we discuss forthcoming applications in prokaryotic CRISPR technology that will transform synthetic biology principles in the near future.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , ARN Guía de Sistemas CRISPR-Cas , Edición Génica/métodos , ARN Guía de Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas/metabolismo , Bacterias/genética , Bacterias/metabolismo , Ingeniería Genética/métodos , Técnicas Biosensibles/métodos , Células Procariotas/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Biología Sintética/métodos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA