Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(24): 15779-15789, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38833666

RESUMEN

The property of being stubborn and degradation resistant makes nanoplastic (NP) pollution a long-standing remaining challenge. Here, we apply a designed top-down strategy to leverage the natural hierarchical structure of waste crayfish shells with exposed functional groups for efficient NP capture. The crayfish shell-based organic skeleton with improved flexibility, strength (14.37 to 60.13 MPa), and toughness (24.61 to 278.98 MJ m-3) was prepared by purposefully removing the inorganic components of crayfish shells through a simple two-step acid-alkali treatment. Due to the activated functional groups (e.g., -NH2, -CONH-, and -OH) and ordered architectures with macropores and nanofibers, this porous crayfish shell exhibited effective removal capability of NPs (72.92 mg g-1) by physical interception and hydrogen bond/electrostatic interactions. Moreover, the sustainability and stability of this porous crayfish shell were demonstrated by the maintained high-capture performance after five cycles. Finally, we provided a postprocessing approach that could convert both porous crayfish shell and NPs into a tough flat sheet. Thus, our feasible top-down engineering strategy combined with promising posttreatment is a powerful contender for a recycling approach with broad application scenarios and clear economic advantages for simultaneously addressing both waste biomass and NP pollutants.


Asunto(s)
Exoesqueleto , Astacoidea , Animales , Adsorción , Porosidad , Exoesqueleto/química , Microplásticos/química , Tamaño de la Partícula , Propiedades de Superficie
2.
Chemosphere ; 361: 142533, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38849099

RESUMEN

Development of effective adsorbents for the removal of contaminants from wastewater is indispensable due to increasing water scarcity and a lack of pure drinking water, which are prevailing as a result of rapid industrialization and population growth. Recently, the development of new adsorbents and their effective use without generating secondary waste is receiving huge consideration. In order to protect the environment from primary and secondary pollution, the development of adsorbents from wastes and their recycling have become conventional practices aimed at waste management. As a result, significant progress has been made in the synthesis of new porous carbon and metal-organic frameworks as adsorbents, with the objective of using them for the removal of pollutants. While many different kinds of pollutants are produced in the environment, drug pollutants are the most vicious because of their tendency to undergo significant structural changes, producing metabolites and residues with entirely different properties compared to their parent compounds. Chemical reactions involving oxidation, hydrolysis, and photolysis transform drugs. The resulting compounds can have detrimental effects on living beings that are present in soil and water. This review stresses the development of adsorbents with adjustable porosities for the broad removal of primary drug pollutants and their metabolites, which are formed as a result of drug transformations in environmental matrices. This keeps adsorbents from building up in the environment and prevents them from becoming significant pollutants in the future. Additionally, it stops secondary pollution caused by the deterioration of the used adsorbents. Focus on the development of effective adsorbents with flexible porosities allows for the complete removal of coexisting contaminants and makes a substantial contribution to wastewater management. In order to concentrate more on the development of flexible pore adsorbents, it is crucial to comprehend the milestones reached in the research and applications of porous magnetic adsorbents based on metal and carbon, which are discussed here.


Asunto(s)
Carbono , Estructuras Metalorgánicas , Aguas Residuales , Contaminantes Químicos del Agua , Porosidad , Adsorción , Contaminantes Químicos del Agua/química , Estructuras Metalorgánicas/química , Carbono/química , Aguas Residuales/química , Purificación del Agua/métodos , Metales/química , Preparaciones Farmacéuticas/química
3.
Molecules ; 29(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38893317

RESUMEN

Carbon dots (CDs) are luminescent carbon nanoparticles with significant potential in analytical sensing, biomedicine, and energy regeneration due to their remarkable optical, physical, biological, and catalytic properties. In light of the enduring ecological impact of non-biomass waste that persists in the environment, efforts have been made toward converting non-biomass waste, such as ash, waste plastics, textiles, and papers into CDs. This review introduces non-biomass waste carbon sources and classifies them in accordance with the 2022 Australian National Waste Report. The synthesis approaches, including pre-treatment methods, and the properties of the CDs derived from non-biomass waste are comprehensively discussed. Subsequently, we summarize the diverse applications of CDs from non-biomass waste in sensing, information encryption, LEDs, solar cells, and plant growth promotion. In the final section, we delve into the future challenges and perspectives of CDs derived from non-biomass waste, shedding light on the exciting possibilities in this emerging area of research.

4.
Environ Sci Technol ; 58(21): 9158-9174, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38753974

RESUMEN

The aviation industry is responsible for over 2% of global CO2 emissions. Synthetic jet fuels generated from biogenic feedstocks could help reduce life cycle greenhouse gas (GHG) emissions compared to petroleum-based fuels. This study assesses three processes for producing synthetic jet fuel via the synthesis of methanol using water and atmospheric CO2 or biomass. A life cycle assessment and cost analysis are conducted to determine GHG emissions, energy demand, land occupation, water depletion, and the cost of producing synthetic jet fuel in Switzerland. The results reveal that the pathway that directly hydrogenates CO2 to methanol exhibits the largest reductions in terms of GHG emission (almost 50%) compared to conventional jet fuel and the lowest production cost (7.86 EUR kgJF-1); however, its production cost is currently around 7 times higher than the petroleum-based counterpart. Electrical energy was found to be crucial in capturing CO2 and converting water into hydrogen, with the sourcing and processing of the feedstocks contributing to 79% of the electric energy demand. Furthermore, significant variations in synthetic jet fuel cost and GHG emissions were shown when the electricity source varies, such as utilizing grid electricity pertaining to different countries with distinct electricity mixes. Thus, upscaling synthetic jet fuels requires energy-efficient supply chains, sufficient feedstock, large amounts of additional (very) low-carbon energy capacity, suitable climate policy, and comprehensive environmental analyses.


Asunto(s)
Biomasa , Dióxido de Carbono , Gases de Efecto Invernadero , Suiza
5.
Chemosphere ; 361: 142419, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38789051

RESUMEN

In light of the substantial global production of biomass waste, effective waste management and energy recovery solutions are of paramount importance. Hydrothermal liquefaction (HTL) and anaerobic digestion (AD) have emerged as innovative techniques for converting biomass waste into valuable resources. Their integration creates a synergistic framework that mitigates inherent limitations, leading to improved efficiency, enhanced product quality, and the comprehensive utilization of biomass. This review paper investigates the integration of HTL and AD, highlighting its significance and potential benefits as well as the optimal sequencing (HTL followed by AD and AD followed by HTL). The review encompasses experimental procedures, factors influencing both sequencing options, energy recovery characterizations, final product outcomes, as well as toxicological assessments and discussions on reduction. Additionally, it delves into the transition towards a circular bioeconomy and discusses the challenges and opportunities intrinsic to these processes. The findings presented in this review offer valuable insights to shape future research in this evolving field.


Asunto(s)
Biomasa , Administración de Residuos , Anaerobiosis , Administración de Residuos/métodos , Biocombustibles
6.
Artículo en Inglés | MEDLINE | ID: mdl-38607487

RESUMEN

In building cooling, the demand for cooling surges during specific times, stressing air-conditioner operation, and additional cooling is often wasted during low-demand periods. Water-phase change material (W-PCM)-based thermal energy storage (TES) allows for load shifting and effective management of peak demand by storing cooling energy when the demand is low. This stored energy can be deployed during peak hours, decreasing energy usage and associated CO2 emissions. However, the use of W-PCMs was hindered by phase separation, slow energy transfer, and high supercooling degree (SCD). We synthesized coconut shell (CNS)-produced activated carbon (ACC) to use as a thermal enhancer in W-PCMs for the first time. First, ACC was synthesized from CNS via steam activation. Then, transmission electron microscopy was used to confirm the pore morphology of the CNS-ACC. The synthesis of the W-PCM with various weight percentages (0.1, 0.6, and 1.2) of CNS-ACC was accomplished in two steps. Zeta potential distribution analysis revealed that the W-PCM with CNS-ACC exhibited colloidal stability. Thermal conductivity (TC) and thermogram analyses revealed that a dose of 1.2 wt% CNS-ACC enhanced liquid and solid TC by 9% and 22%, respectively, despite a 6% and 8% decrease in specific heat and latent heat. More specifically, solidification assessment in a spherical enclosure revealed 100% suppression of SCD with 1.2 wt% CNS-ACC. As a result of this and the enhanced TC, the overall solidification process was accelerated, reducing the overall duration by 18.5%. Thus, the combination of CNS-derived ACC and W-PCM for TES in building cooling could reduce energy consumption and associated CO2 emissions.

7.
Waste Manag ; 182: 186-196, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38670002

RESUMEN

Current Li-ion battery (LIB) recycling methods exhibit the disadvantages of low metal recovery efficiencies and high levels of pollution and energy consumption. Here, products generated via the in-situ catalytic pyrolysis of bamboo sawdust (BS) were utilized to regulate the crystal phase and nanoscale size of the NCM cathode to enhance the selective Li extraction and leaching efficiencies of other valuable metals from spent LIBs. The catalytic effect of the NCM cathode significantly promoted the release of gases from BS pyrolysis. These gases (H2, CO, and CH4) finally transformed the crystal phase of the NCM cathode from LiNixCoyMnzO2 into (Ni-Co/MnO/Li2CO3)/C. The size of the spent NCM cathode material was reduced approximately 31.7-fold (from 4.1 µm to 129.2 nm) after roasting. This could be ascribed to the in-situ catalytic decomposition of aromatic compounds generated via the primary pyrolysis of BS into C and H2 on the surface of the cathode material, resulting in the formation of the nanoscale composite (Ni-Co/MnO/Li2CO3)/C. This process enabled the targeted control of the crystal phase and nanoscale size of the material. Water leaching studies revealed a remarkable selective Li extraction efficiency of 99.27 %, and sulfuric acid leaching experiments with a concentration of 2 M revealed high extraction efficiencies of 99.15 % (Ni), 93.87 % (Co), and 99.46 % (Mn). Finally, a novel mechanism involving synergistic thermo-reduction and carbon modification for crystal phase regulation and nanoscale control was proposed. This study provides a novel concept for use in enhancing the recycling of valuable metals from spent LIBs utilizing biomass waste and practices the concept of "treating waste with waste".


Asunto(s)
Suministros de Energía Eléctrica , Litio , Pirólisis , Reciclaje , Reciclaje/métodos , Litio/química , Catálisis , Electrodos
8.
Molecules ; 29(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38675644

RESUMEN

At present, the main raw material for producing graphene is graphite ore. However, researchers actively seek alternative resources due to their high cost and environmental problems. Biomass waste has attracted much attention due to its carbon-rich structure and renewability, emerging as a potential raw material for graphene production to be used in sports equipment. However, further progress is required on the quality of graphene produced from waste biomass. This paper, therefore, summarizes the properties, structures, and production processes of graphene and its derivatives, as well as the inherent advantages of biomass waste-derived graphene. Finally, this paper reviews graphene's importance and application prospects in sports since this wonder material has made sports equipment available with high-strength and lightweight quality. Moreover, its outstanding thermal and electrical conductivity is exploited to prepare wearable sensors to collect more accurate sports data, thus helping to improve athletes' training levels and competitive performance. Although the large-scale production of biomass waste-derived graphene has yet to be realized, it is expected that its application will expand to various other fields due to the associated low cost and environmental friendliness of the preparation technique.


Asunto(s)
Biomasa , Grafito , Equipo Deportivo , Humanos , Conductividad Eléctrica , Grafito/química , Deportes , Equipo Deportivo/economía , Administración de Residuos/economía
9.
Environ Res ; 246: 118096, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38171470

RESUMEN

With the growing population, the accumulation of waste materials (WMs) (industrial/household waste) in the environment incessantly increases, affecting human health. Additionally, it affects the climate and ecosystem of terrestrial and water habitats, thereby needing effective management technology to control environmental pollution. In this aspect, managing these WMs to develop products that mitigate the associated issues is necessary. Researchers continue to focus on WMs management by adopting a circular economy. These WMs convert into useful/value-added products such as polymers and nanomaterials (NMs), especially carbon nanomaterials (CNs). The conversion/transformation of waste material into useful products is one of the best solutions for managing waste. Waste-derived CNs (WD-CNs) have established boundless promises for numerous applications like environmental remediation, energy, catalysts, sensors, and biomedical applications. This review paper discusses the several sources of waste material (agricultural, plastic, industrial, biomass, and other) transforming into WD-CNs, such as carbon nanotubes (CNTs), biochar, graphene, carbon nanofibers (CNFs), carbon dots, etc., are extensively elaborated and their application. The impact of metal doping within the WD-CNs is briefly discussed, along with their applicability to end applications.


Asunto(s)
Nanofibras , Nanoestructuras , Nanotubos de Carbono , Humanos , Ecosistema , Residuos Industriales
10.
Nanomaterials (Basel) ; 14(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276742

RESUMEN

Inexpensive and efficient desalination is becoming increasingly important due to dwindling freshwater resources in view of climate change and population increase. Improving desalination techniques of brackish water using graphene-based materials has the possibility to revolutionize freshwater production and treatment. At the same time, graphene matter can be cheaply mass-produced from biowaste materials. In view of this, graphene material was obtained from a four-step production approach starting from rice husk (RH), including pre-carbonation, desilication, chemical activation, and exfoliation. The results showed that the produced samples contained a mixture of graphene layers and amorphous carbon. The activation ratio of 1:5 for carbonized RH and potassium hydroxide (KOH), respectively, provided higher graphene content than the 1:4 ratio of the same components, while the number of active layers remained unaffected. Further treatment with H2O2 did not affect the graphene content and exfoliation of the amorphous carbon. Preparation of the graphene material by the NIPS technique and vacuum filtration displayed different physicochemical characteristics of the obtained membranes. However, the membranes' main desalination function might be related more to adsorption rather than size exclusion. In any case, the desalination properties of the different graphene material types were tested on 35 g/L saltwater samples containing NaCl, KCl, MgCl2, CaSO4, and MgSO4. The produced graphene materials efficiently reduced the salt content by up to 95%. Especially for the major constituent NaCl, the removal efficiency was high.

11.
Bioresour Technol ; 394: 130290, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38218409

RESUMEN

The presented research results the gasification process of biomass waste (brewery spend grain, wheat straw, hay, pine sawdust). Experimental investigations focused on determining the influence of gasification agent (CO2, steam, and steam and CO2 mixture) and the presence of a solid catalyst (MgO∙CaO, TiO2, CuO and SrO). Investigations were performed towards syngas production. A wide range of analyses and instrumental methods were used to determine the properties of gasification process products, including: GC, TGA, FTIR, SEM, BET. The main component of syngas obtained produced in atmosphere CO2 and steam mixture was hydrogen. The H2 concentration increased from 20% up to 44% in case of brewery spend grain. The presence of the catalyst in the gasification process favoured the tar cracking reaction. The amount of tar was reduced by more than 17% in case of brewery spend grain. As well as syngas composition was enriched with CH4, H2 and CO concentration.


Asunto(s)
Gases , Vapor , Biomasa , Dióxido de Carbono , Hidrógeno
12.
Sci Total Environ ; 914: 169898, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38184266

RESUMEN

Agro-industrial byproducts and food waste necessitate an environmentally friendly way of reducing issues related to their disposal; it is also necessary to recover as much new raw material from these resources as possible, especially when we consider their potential usage as a precursor for preparing depolluting materials, such as activated carbon. In this work, coffee grounds and olive stones were chosen as precursors and the adsorption capacity of the obtained porous carbons for volatile organic compounds (VOCs) was studied. Microporous activated carbons (ACs) were prepared using chemical (K2CO3) and physical (CO2) activation. The influence of the activation process, type, and time of activation was also investigated. Measurements of VOCs adsorption were performed, and methyl-ethyl-ketone (MEK) and toluene were chosen as the model pollutants. The surface areas and total pore volumes of 1487 m2/g and 0.53 cm3/g and 870 m2/g and 0.22 cm3/g for coffee ground carbons and olive stone carbons, respectively, were obtained via chemical activation, whereas physical activation yielded values of 716 m2/g and 0.184 cm3/g and 778 cm2 g-1 and 0.205 cm3/g, respectively. As expected, carbons without activation (biochars) showed the smallest surface area, equal to 331 m2/g and 251 m2/g, and, hence, the lowest adsorption capacity. The highest adsorption capacity of MEK (3210 mg/g) and toluene (2618 mg/g) was recorded for chemically activated coffee grounds. Additionally, from the CO2 isotherms recorded at a low pressure (0.03 bar) and 0 °C, the maximum CO2 adsorption capacity was equal to 253 mg/g.

13.
Bioresour Technol ; 393: 130103, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38008222

RESUMEN

Magnetic magnesium (Mg)-loaded Chinese herbal medicine residues (MM-TCMRs) were fabricated to simultaneously remove and recover phosphate and ammonium from wastewater. The MM-TCMRs exhibited larger specific surfaces and rougher structures with massive spherical particles than those of original residues. They could be separated by adjusting the magnetic field. The phosphate and ammonium adsorption by MM-TCMRs were matched with the pseudo-second-order model, while the Langmuir model yielded the maximum adsorption capacities of 635.35 and 615.57 mg g-1, respectively. Struvite precipitation on the MM-TCMRs surface was the primary removal mechanism with electrostatic attraction, ligand exchange, intra-particle diffusion, and ion exchange also involved. The recyclability of MM-TCMRs confirmed their good structural stability. More importantly, the nutrient-loaded MM-TCMRs enhanced alfalfa growth and improved soil fertility in planting experiments. Collectively, the MM-TCMRs are promising candidates for nutrient removal and recovery from wastewater.


Asunto(s)
Compuestos de Amonio , Medicamentos Herbarios Chinos , Animales , Porcinos , Fosfatos/química , Aguas Residuales , Magnesio/química , Estruvita , Adsorción , Fenómenos Magnéticos
14.
Environ Res ; 246: 118027, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38159670

RESUMEN

The study explores co-gasification of palm oil decanter cake and alum sludge, investigating the correlation between input variables and syngas production. Operating variables, including temperature (700-900 °C), air flow rate (10-30 mL/min), and particle size (0.25-2 mm), were optimized to maximize syngas production using air as the gasification agent in a fixed bed horizontal tube furnace reactor. Response Surface Methodology with the Box-Behnken design was used employed for optimization. Fourier Transformed Infra-Red (FTIR) and Field Emission Scanning Electron Microscopic (FESEM) analyses were used to analyze the char residue. The results showed that temperature and particle size have positive effects, while air flow rate has a negative effect on the syngas yield. The optimal CO + H2 composition of 39.48 vol% was achieved at 900 °C, 10 mL/min air flow rate, and 2 mm particle size. FTIR analysis confirmed the absence of C─Cl bonds and the emergence of Si─O bonds in the optimized char residue, distinguishing it from the raw sample. FESEM analysis revealed a rich porous structure in the optimized char residue, with the presence of calcium carbonate (CaCO3) and aluminosilicates. These findings provide valuable insights for sustainable energy production from biomass wastes.


Asunto(s)
Compuestos de Alumbre , Gases , Aguas del Alcantarillado , Gases/química , Aceite de Palma , Temperatura , Biomasa
15.
J Environ Sci (China) ; 139: 483-495, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38105071

RESUMEN

The significant increase in the demand for biomass waste treatment after garbage classification has led to housefly larvae treatment becoming an attractive treatment option. It can provide a source of protein while treating biomass waste, which means that nutrients can be returned to the natural food chain. However, the performance of this technology in terms of its environmental impacts is still unclear, particularly with regards to global warming potential (GWP).This study used a life cycle assessment (LCA) approach to assess a housefly larvae treatment plant with a treatment capacity of 50 tons of biomass waste per day. The LCA results showed that the 95% confidence intervals for the GWP in summer and winter were determined to be 24.46-32.81 kg CO2 equivalent (CO2-eq)/ton biomass waste and 5.37-10.08 kg CO2-eq/ton biomass waste, respectively. The greater GWP value in summer is due to the longer ventilation time and higher ventilation intensity in summer, which consumes more power. The main GWP contributions are from (1) electricity needs (accounting for 78.6% of emissions in summer and 70.2% in winter) and (2) product substitution by mature housefly larvae and compost (both summer and winter accounting for 96.8% of carbon reduction).


Asunto(s)
Compostaje , Moscas Domésticas , Animales , Calentamiento Global , Larva , Dióxido de Carbono
16.
Chemosphere ; 345: 140419, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37848104

RESUMEN

In response to the growing global concern over environmental pollution, the exploration of sustainable and eco-friendly materials derived from biomass waste has gained significant traction. This comprehensive review seeks to provide a holistic perspective on the utilization of biomass waste as a renewable carbon source, offering insights into the production of environmentally benign and cost-effective carbon-based materials. These materials, including biochar, carbon nanotubes, and graphene, have shown immense promise in the remediation of polluted soils, industrial wastewater, and contaminated groundwater. The review commences by elucidating the intricate processes involved in the synthesis and functionalization of biomass-derived carbon materials, emphasizing their scalability and economic viability. With their distinctive structural attributes, such as high surface areas, porous architectures, and tunable surface functionalities, these materials emerge as versatile tools in addressing environmental challenges. One of the central themes explored in this review is the pivotal role that carbon materials play in adsorption processes, which represent a green and sustainable technology for the removal of a diverse array of pollutants. These encompass noxious organic compounds, heavy metals, and organic matter, encompassing pollutants found in soils, groundwater, and industrial wastewater. The discussion extends to the underlying mechanisms governing adsorption, shedding light on the efficacy and selectivity of carbon-based materials in different environmental contexts. Furthermore, this review delves into multifaceted considerations, spanning the spectrum from biomass and biowaste resources to the properties and applications of carbon materials. This holistic approach aims to equip researchers and practitioners with a comprehensive understanding of the synergistic utilization of these materials, ultimately facilitating effective and affordable strategies for combatting industrial wastewater pollution, soil contamination, and groundwater impurities.


Asunto(s)
Contaminantes Ambientales , Nanotubos de Carbono , Aguas Residuales , Biomasa , Contaminantes Ambientales/química , Suelo
17.
Artículo en Inglés | MEDLINE | ID: mdl-37667122

RESUMEN

The abundant availability of various kinds of biomass and their use as feedstock for the production of gaseous and liquid biofuels has been considered a viable, eco-friendly, and sustainable mode of energy generation. Gaseous fuels like biogas and liquid fuels, e.g., bioethanol, biodiesel, and biomethanol derived from biological sources, have been theorized to produce numerous industrially relevant organic compounds replacing the traditional practice of employing fossil fuels as a raw material. Among the biofuels explored, biomethanol has shown promising potential to be a future product addressing multifactorial issues concerning sustainable energy and associated process developments. The presented mini-review has explored the importance and application of biomethanol as a value-added product. The biomethanol production process was well reviewed by focusing on different thermochemical and biochemical conversion processes. Syngas and biogas have been acknowledged as potential resources for biomethanol synthesis. The emphasis on biochemical processes is laid on the principal metabolic pathways and enzymatic machinery involved or used by microbial physiology to convert feedstock into biomethanol under normal temperature and pressure conditions. The advantage of minimizing the cost of production by utilizing suggested modifications to the overall process of biomethanol production that involves metabolic and genetic engineering in microbial strains used in the production process has been delineated. The challenges that exist in our current knowledge domain, impeding large-scale commercial production potential of biomethanol at a cost-effective rate, and strategies to overcome them along with its future scenarios have also been pointed out.

18.
Micromachines (Basel) ; 14(9)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37763851

RESUMEN

The diverse composition of biomass waste, with its varied chemical compounds of origin, holds substantial potential in developing low-cost carbon-based materials for electrochemical sensing applications across a wide range of compounds, including pharmaceuticals, dyes, and heavy metals. This review highlights the latest developments and explores the potential of these sustainable electrodes in electrochemical sensing. Using biomass sources, these electrodes offer a renewable and cost-effective route to fabricate carbon-based sensors. The carbonization process yields highly porous materials with large surface areas, providing a wide variety of functional groups and abundant active sites for analyte adsorption, thereby enhancing sensor sensitivity. The review classifies, summarizes, and analyses different treatments and synthesis of biomass-derived carbon materials from different sources, such as herbaceous, wood, animal and human wastes, and aquatic and industrial waste, used for the construction of electrochemical sensors over the last five years. Moreover, this review highlights various aspects including the source, synthesis parameters, strategies for improving their sensing activity, morphology, structure, and functional group contributions. Overall, this comprehensive review sheds light on the immense potential of biomass-derived carbon-based electrodes, encouraging further research to optimize their properties and advance their integration into practical electrochemical sensing devices.

19.
Materials (Basel) ; 16(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37570075

RESUMEN

Rapid urbanization has negative effects on ecology, economics, and public health, primarily due to unchecked population growth. Sustainable building materials and methods are needed to mitigate these issues and reduce energy use, waste production, and environmental damage. This study highlights the potential of agricultural waste as a sustainable source of construction materials and provides valuable insights into the performance and benefits of using fired clay bricks made from pomegranate peel waste. In this study, fired clay bricks were produced using pomegranate peel waste as a sustainable building material. To optimize the firing temperature and percentage of pomegranate peel waste, a series of experiments was conducted to determine fundamental properties such as mechanical, physical, and thermal properties. Subsequently, the obtained thermal properties were utilized as input data in Design Builder software version (V.5.0.0.105) to assess the thermal and energy performance of the produced bricks. The results showed that the optimum firing temperature for the bricks was 900 °C with 10% pomegranate peel waste. The fabricated bricks reduced energy consumption by 6.97%, 8.54%, and 13.89% at firing temperatures of 700 °C, 800 °C, and 900 °C, respectively, due to their decreased thermal conductivity. CO2 emissions also decreased by 4.85%, 6.07%, and 12% at the same firing temperatures. The payback time for the bricks was found to be 0.65 years at a firing temperature of 900 °C. These findings demonstrate the potential of fired clay bricks made from pomegranate peel waste as a promising construction material that limits heat gain, preserves energy, reduces CO2 emissions, and provides a fast return on investment.

20.
Polymers (Basel) ; 15(12)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37376318

RESUMEN

The aim of the study was to assess the usefulness of agricultural biomass residues as reinforcement in recycled polymer matrices. In this study, recycled polypropylene and high-density polyethylene composites (rPPPE) filled with three types of biomass residues, sweet clover straws (SCS), buckwheat straws (BS) and rapeseed straws (RS), are presented. The effects of the fiber type and the fibers content on the rheological behavior, mechanical properties (including tensile, flexural and impact strength), thermal stability and moisture absorbance were determined, in addition to morphological analysis. It was revealed that the addition of SCS, BS or RS increased the materials' stiffness and strength. The reinforcement effect increased as the loading of the fibers was increased, especially for BS composites in the flexural test. After the moisture absorbance test, it was found that the reinforcement effect slightly increased for the composites with 10% fibers but decreases with 40% fibers. The results highlight that the selected fibers are a feasible reinforcement for recycled polyolefin blend matrices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA