Your browser doesn't support javascript.
loading
Crystal phase and nanoscale size regulation utilizing the in-situ catalytic pyrolysis of bamboo sawdust in the recycling of spent lithium batteries.
Chen, Quan; Zhang, Xuejiao; Cheng, Rui; Shi, Huawei; Pei, Yanbo; Yang, Jingjing; Zhao, Qing; Zhao, Xiaoli; Wu, Fengchang.
Afiliación
  • Chen Q; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-en
  • Zhang X; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650
  • Cheng R; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650
  • Shi H; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650
  • Pei Y; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650
  • Yang J; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650
  • Zhao Q; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650
  • Zhao X; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-en
  • Wu F; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-en
Waste Manag ; 182: 186-196, 2024 Jun 15.
Article en En | MEDLINE | ID: mdl-38670002
ABSTRACT
Current Li-ion battery (LIB) recycling methods exhibit the disadvantages of low metal recovery efficiencies and high levels of pollution and energy consumption. Here, products generated via the in-situ catalytic pyrolysis of bamboo sawdust (BS) were utilized to regulate the crystal phase and nanoscale size of the NCM cathode to enhance the selective Li extraction and leaching efficiencies of other valuable metals from spent LIBs. The catalytic effect of the NCM cathode significantly promoted the release of gases from BS pyrolysis. These gases (H2, CO, and CH4) finally transformed the crystal phase of the NCM cathode from LiNixCoyMnzO2 into (Ni-Co/MnO/Li2CO3)/C. The size of the spent NCM cathode material was reduced approximately 31.7-fold (from 4.1 µm to 129.2 nm) after roasting. This could be ascribed to the in-situ catalytic decomposition of aromatic compounds generated via the primary pyrolysis of BS into C and H2 on the surface of the cathode material, resulting in the formation of the nanoscale composite (Ni-Co/MnO/Li2CO3)/C. This process enabled the targeted control of the crystal phase and nanoscale size of the material. Water leaching studies revealed a remarkable selective Li extraction efficiency of 99.27 %, and sulfuric acid leaching experiments with a concentration of 2 M revealed high extraction efficiencies of 99.15 % (Ni), 93.87 % (Co), and 99.46 % (Mn). Finally, a novel mechanism involving synergistic thermo-reduction and carbon modification for crystal phase regulation and nanoscale control was proposed. This study provides a novel concept for use in enhancing the recycling of valuable metals from spent LIBs utilizing biomass waste and practices the concept of "treating waste with waste".
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Suministros de Energía Eléctrica / Pirólisis / Reciclaje / Litio Idioma: En Revista: Waste Manag Asunto de la revista: SAUDE AMBIENTAL / TOXICOLOGIA Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Suministros de Energía Eléctrica / Pirólisis / Reciclaje / Litio Idioma: En Revista: Waste Manag Asunto de la revista: SAUDE AMBIENTAL / TOXICOLOGIA Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos