Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 395
Filtrar
1.
ACS Appl Bio Mater ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251357

RESUMEN

Plant microbial fuel cell (PMFC) is an emerging technology, showing promise for environmental biosensors and sustainable energy production. Despite its potential, PMFCs struggle with issues like low power output and limited drought resistance. Recent studies proposed that integrating biochar may enhance PMFC performance due to its physicochemical properties. The influence of different biochar types on PMFC efficiency has been minimally explored. This study aims to fill this gap by evaluating the performance of PMFCs integrated with various biochar types under unsaturated soil conditions. The study found that the addition of biochar types─specifically reed straw biochar (RSB), apple wood biochar (AWB), and corn straw biochar (CSB)─significantly influenced the performance of PMFCs. RSB, with its large surface area and porous structure, notably increased the current output by reducing soil resistance and enhancing electron transfer efficiency in microbial reduction reactions, achieving a peak power density of approximately 1608 mW/m2. AWB, despite its less porous structure, leveraged its high cation exchange capacity and hydrophilic functional groups to foster microbial community growth and diversity, thereby also increasing bioelectricity output. Conversely, CSB, with its large surface area, showed the least improvement in PMFC performance due to its layered structure and lower water retention capacity. Additionally, under drought conditions, PMFCs with added RSB and AWB exhibited better drought resistance due to their ability to improve soil moisture characteristics and enhance soil conductivity. The addition of biochar reduced soil resistance, increasing the bioelectric output of PMFCs and maintaining good performance even under low moisture conditions. This study highlights the critical role of biochar's surface area and functional groups in optimizing PMFC performance. It enhances our understanding of PMFC optimization and might offer a novel power generation method for the future, while also presenting a fresh strategy for soil monitoring.

2.
Bioresour Technol ; 412: 131419, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39233180

RESUMEN

Baffled flow constructed wetland-microbial fuel cell (BFCW-MFC) coupling systems were constructed with baffles embedded in cathode chamber. The performance of BFCW-MFCs operated at different hydraulic retention times (HRTs) was evaluated. At the representative HRT of 48 h, embedding 1 or 2 baffles (i.e., BFCW-MFC1 and BFCW-MFC2) produced 32.9 % (29.5 mW/m3) and 53.2 % (34.0 mW/m3) more power density than control system (22.2 mW/m3), respectively. Comparable organics biodegradation efficiencies were observed in BFCW-MFCs at the same HRTs. BFCW-MFC1 and BFCW-MFC2 had higher ammonium and total nitrogen removal efficiency. All systems had decreased nitrogen removal performance as shortening HRT from 72 to 12 h. Multiple nitrogen removal processes were involved, including ammonium oxidation, anammox, and heterotrophic and autotrophic denitrification. The predominant bacteria on electrodes were identified for analyzing bioelectricity generation and wastewater treatment processes. Generally, simultaneous wastewater treatment and bioelectricity generation were obtained in BFCW-MFCs, and embedding 1 or 2 baffles was preferable.


Asunto(s)
Fuentes de Energía Bioeléctrica , Nitrógeno , Aguas Residuales , Purificación del Agua , Humedales , Aguas Residuales/química , Purificación del Agua/métodos , Biodegradación Ambiental , Electrodos , Electricidad , Compuestos de Amonio/metabolismo , Bacterias/metabolismo , Eliminación de Residuos Líquidos/métodos , Desnitrificación
3.
Artículo en Inglés | MEDLINE | ID: mdl-39294536

RESUMEN

The role of redox mediators in improving electron transport from electrochemically active bacteria to the anode is crucial for enhanced bioelectricity output from microbial fuel cells (MFCs), which makes the selection of an ideal mediator very important. This study aims at exploring a new redox mediator niacin (vit B3) for enhanced bioelectricity generation in MFC while treating distillery wastewater through facile modification of anode electrode by niacin doping (MFC-NME) and simple application of niacin to the anolyte (MFC-NAA). Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) of NME confirmed the effective adsorption of niacin onto the carbon felt surface. Notably, MFC-NME exhibited a significantly higher power density (PD) of 6.36 W/m3 compared to MFC-NAA (4.59 W/m3) and control MFC (3.49W/m3). The charge transfer resistance (RCT) in MFC-NME (1.73 Ω) and MFC-NAA (2.06 Ω) were lowered by more than half than that in control MFC (4.33 Ω), which underscores the efficacy of niacin as a redox mediator. SEM analysis revealed improved bacterial attachment over the bioanode in the MFC-NME as compared to that of MFC-NAA and control MFC. Removal of chemical oxygen demand (COD) was higher in MFC-NAA (85%) and MFC-NME (80%) than in control MFC (73%) suggesting that niacin in the anolyte supported greater organic matter removal due to enriched microbial activity. Niacin used in anode modification shows great potential for improved electron transfer and enhanced bioelectricity production and supports greater wastewater treatment performance. The modified bioanode NME exhibits excellent stability.

4.
J Membr Biol ; 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39183198

RESUMEN

Electrophysiology typically deals with the electrical properties of excitable cells like neurons and muscles. However, all other cells (non-excitable) also possess bioelectric membrane potentials for intracellular and extracellular communications. These membrane potentials are generated by different ions present in fluids available in and outside the cell, playing a vital role in communication and coordination between the cell and its organelles. Bioelectric membrane potential variations disturb cellular ionic homeostasis and are characteristic of many diseases, including cancers. A rapidly increasing interest has emerged in sorting out the electrophysiology of cancer cells. Compared to healthy cells, the distinct electrical properties exhibited by cancer cells offer a unique way of understanding cancer development, migration, and progression. Decoding the altered bioelectric signals influenced by fluctuating electric fields benefits understanding cancer more closely. While cancer research has predominantly focussed on genetic and molecular traits, the delicate area of electrophysiological characteristics has increasingly gained prominence. This review explores the historical exploration of electrophysiology in the context of cancer cells, shedding light on how alterations in bioelectric membrane potentials, mediated by ion channels and gap junctions, contribute to the pathophysiology of cancer.

5.
Comput Biol Med ; 180: 108964, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39106669

RESUMEN

Morphogenetic regulation during embryogenesis and regeneration rely on information transfer and coordination between different regions. Here, we explore theoretically the coupling between bioelectrical and transcriptional oscillations at the individual cell and multicellular levels. The simulations, based on a set of ion channels and intercellular gap junctions, show that bioelectrical and transcriptional waves can electrophysiologically couple distant regions of a model network in phase and antiphase oscillatory states that include synchronization phenomena. In this way, different multicellular regionalizations can be encoded by cell potentials that oscillate between depolarized and polarized states, thus allowing a spatio-temporal coding. Because the electric potential patterns characteristic of development and regeneration are correlated with the spatial distributions of signaling ions and molecules, bioelectricity can act as a template for slow biochemical signals following a hierarchy of experimental times. In particular, bioelectrical gradients that couple cell potentials to transcription rates give to each single cell a rough idea of its location in the multicellular ensemble, thus controlling local differentiation processes that switch on and off crucial parts of the genome.


Asunto(s)
Modelos Biológicos , Transcripción Genética , Fenómenos Electrofisiológicos/fisiología , Canales Iónicos/fisiología , Canales Iónicos/metabolismo , Canales Iónicos/genética , Uniones Comunicantes/fisiología , Animales , Humanos , Simulación por Computador
6.
Adv Sci (Weinh) ; : e2407599, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39159306

RESUMEN

Interfacial electron transfer between electroactive microorganisms (EAMs) and electrodes underlies a wide range of bio-electrochemical systems with diverse applications. However, the electron transfer rate at the biotic-electrode interface remains low due to high transmembrane and cell-electrode interfacial electron transfer resistance. Herein, a modular engineering strategy is adopted to construct a Shewanella oneidensis-carbon felt biohybrid electrode decorated with bacterial cellulose aerogel-electropolymerized anthraquinone to boost cell-electrode interfacial electron transfer. First, a heterologous riboflavin synthesis and secretion pathway is constructed to increase flavin-mediated transmembrane electron transfer. Second, outer membrane c-Cyts OmcF is screened and optimized via protein engineering strategy to accelerate contacted-based transmembrane electron transfer. Third, a S. oneidensis-carbon felt biohybrid electrode decorated with bacterial cellulose aerogel and electropolymerized anthraquinone is constructed to boost the interfacial electron transfer. As a result, the internal resistance decreased to 42 Ω, 480.8-fold lower than that of the wild-type (WT) S. oneidensis MR-1. The maximum power density reached 4286.6 ± 202.1 mW m-2, 72.8-fold higher than that of WT. Lastly, the engineered biohybrid electrode exhibited superior abilities for bioelectricity harvest, Cr6+ reduction, and CO2 reduction. This study showed that enhancing transmembrane and cell-electrode interfacial electron transfer is a promising way to increase the extracellular electron transfer of EAMs.

7.
Environ Sci Pollut Res Int ; 31(38): 50056-50075, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39102132

RESUMEN

The constructed wetland coupled with a microbial fuel cell (CW-MFC) is a wastewater treatment process that combines contaminant removal with electricity production, making it an environmentally friendly option. This hybrid system primarily relies on anaerobic bioprocesses for wastewater treatment, although other processes such as aerobic bioprocesses, plant uptake, and chemical oxidation also contribute to the removal of organic matter and nutrients. CW-MFCs have been successfully used to treat various types of wastewater, including urban, pharmaceutical, paper and pulp industry, metal-contaminated, and swine wastewater. In CW-MFC, macrophytes such as rice plants, Spartina angalica, Canna indica, and Phragmites australis are used. The treatment process can achieve a chemical oxygen demand removal rate of between 80 and 100%. Initially, research focused on enhancing power generation from CW-MFC, but recent studies have shifted towards resource recovery from wastewater. This review paper provides an overview of the development of constructed wetland microbial fuel cell technology, from its early stages to its current applications. The paper also highlights research gaps and potential directions for future research.


Asunto(s)
Fuentes de Energía Bioeléctrica , Eliminación de Residuos Líquidos , Aguas Residuales , Humedales , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Electricidad , Purificación del Agua/métodos
8.
Water Res ; 265: 122244, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39146657

RESUMEN

Bioelectricity generation by electrochemically active bacteria has become particularly appealing due to its vast potential in energy production, pollution treatment, and biosynthesis. However, developing high-performance anodes for bioelectricity generation remains a significant challenge. In this study, a highly efficient three-dimensional nitrogen-doped macroporous graphene aerogel anode with a nitrogen content of approximately 4.38 ± 0.50 at% was fabricated using hydrothermal method. The anode was successfully implemented in bioelectrochemical systems inoculated with Shewanella oneidensis MR-1, resulting in a significantly higher anodic current density (1.0 A/m2) compared to the control one. This enhancement was attributed to the greater biocapacity and improved extracellular electron transfer efficiency of the anode. Additionally, the N-doped aerogel anode demonstrated excellent performance in mixed-culture inoculated bioelectrochemical systems, achieving a high power density of 4.2 ± 0.2 W/m², one of the highest reported for three-dimensional carbon-based bioelectrochemical systems to date. Such improvements are likely due to the good biocompatibility of the N-doped aerogel anode, increased extracellular electron transfer efficiency at the bacteria/anode interface, and selectively enrichment of electroactive Geobacter soli within the NGA anode. Furthermore, based on gene-level Picrust2 prediction results, N-doping significantly upregulated the conductive pili-related genes of Geobacter in the three-dimensional anode, increasing the physical connection channels of bacteria, and thus strengthening the extracellular electron transfer process in Geobacter.


Asunto(s)
Fuentes de Energía Bioeléctrica , Electrodos , Grafito , Nitrógeno , Shewanella , Nitrógeno/química , Grafito/química , Shewanella/metabolismo , Electricidad
9.
Elife ; 122024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39207443

RESUMEN

Filamentous multicellular cable bacteria perform centimeter-scale electron transport in a process that couples oxidation of an electron donor (sulfide) in deeper sediment to the reduction of an electron acceptor (oxygen or nitrate) near the surface. While this electric metabolism is prevalent in both marine and freshwater sediments, detailed electronic measurements of the conductivity previously focused on the marine cable bacteria (Candidatus Electrothrix), rather than freshwater cable bacteria, which form a separate genus (Candidatus Electronema) and contribute essential geochemical roles in freshwater sediments. Here, we characterize the electron transport characteristics of Ca. Electronema cable bacteria from Southern California freshwater sediments. Current-voltage measurements of intact cable filaments bridging interdigitated electrodes confirmed their persistent conductivity under a controlled atmosphere and the variable sensitivity of this conduction to air exposure. Electrostatic and conductive atomic force microscopies mapped out the characteristics of the cell envelope's nanofiber network, implicating it as the conductive pathway in a manner consistent with previous findings in marine cable bacteria. Four-probe measurements of microelectrodes addressing intact cables demonstrated nanoampere currents up to 200 µm lengths at modest driving voltages, allowing us to quantify the nanofiber conductivity at 0.1 S/cm for freshwater cable bacteria filaments under our measurement conditions. Such a high conductivity can support the remarkable sulfide-to-oxygen electrical currents mediated by cable bacteria in sediments. These measurements expand the knowledgebase of long-distance electron transport to the freshwater niche while shedding light on the underlying conductive network of cable bacteria.


Asunto(s)
Agua Dulce , Transporte de Electrón , Agua Dulce/microbiología , Sedimentos Geológicos/microbiología , Sulfuros/metabolismo , California , Conductividad Eléctrica , Oxidación-Reducción
10.
J Acupunct Meridian Stud ; 17(4): 111-115, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39205613

RESUMEN

Recently, several previously undiscussed concerns in acupuncture research have been brought to light. Among these, the core issue stems from the ambiguity surrounding the identity of acupoints. Hence, the question "What is the identity of acupoints?" remains of particular importance in acupuncture research. To answer this question, we reviewed the original concept of acupoints explained in Oriental medicine, from which acupuncture treatment originated, and examined scientific research on acupuncture and acupoints. We then proposed a perspective on the identity of acupoints and speculated about a possible reason for their elusive nature: qi, which congregates at and flows in and out of acupoints, might be bioelectricity, making these points inherently difficult to measure anatomically or histologically. Consequently, acupoints are suggested to be spaces where bioelectricity congregates, thus inevitably exhibiting electrical characteristics.


Asunto(s)
Puntos de Acupuntura , Terapia por Acupuntura , Humanos , Medicina Tradicional de Asia Oriental , Meridianos , Qi
11.
J Environ Manage ; 367: 121905, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39067334

RESUMEN

Escalating global water pollution exacerbated by textile-dyeing wastewater (TDW) poses significant environmental and health concerns due to the insufficient treatment methods being utilized. Thus, it is imperative to implement more effective treatment solutions to address such issues. In this research, different environmentally-friendly strategies involving effluent recirculation (ER) and Rubia cordifolia plant-derived purpurin electron mediator (EM) were introduced to enhance the treatment of real TDW and bioelectricity generation performance of an anti-gravity flow microbial fuel cell (AGF-MFC). The results revealed that optimum performance was achieved with a combination of hydraulic retention time (HRT) of 48 h with a recirculation ratio of 1, where the reduction efficiency of biochemical oxygen demand (BOD5), chemical oxygen demand (COD), ammonium (NH4+), nitrate (NO3-), sulphate (SO42-), ammonia nitrogen (NH3-N), colour and turbidity were 82.17 %, 82.15 %, 85.10 %, 80.52 %, 75.91 %, 59.52 %, 71.02 % and 93.10 %, respectively. In terms of bioelectricity generation performance, AGF-MFC showed a maximum output voltage and power density of 404.72 mV and 65.16 mW/m2, respectively. Moreover, the results also signified that higher treatment performance of TDW was obtained with natural purpurin from Rubia cordifolia plant than synthetic purpurin as EM. The reduced reactivity of highly stable synthetic purpurin EM for mediating the electron transfer was a contributing factor to the outperformance of plant-derived purpurin. Additionally, detailed electron-mediating mechanisms of purpurin were proposed to unravel the underlying electron transfer pathway involved in AGF-MFC. This research offers insight into the development of more sustainable solutions for managing TDW, and consequently reducing environmental pollution.


Asunto(s)
Fuentes de Energía Bioeléctrica , Rubia , Eliminación de Residuos Líquidos , Aguas Residuales , Aguas Residuales/química , Rubia/química , Eliminación de Residuos Líquidos/métodos , Textiles , Análisis de la Demanda Biológica de Oxígeno , Colorantes/química
12.
Biosens Bioelectron ; 263: 116552, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39038400

RESUMEN

Sulfadiazine (SDZ) is frequently detected in environmental samples, arousing much concern due to its toxicity and hard degradation. This study investigated the electricity generation capabilities, SDZ removal and microbial communities of a highly efficient mixed-culture system using repeated transfer enrichments in a bio-electrochemical system. The mixed-culture biofilm (S160-T2) produced a remarkable current density of 954.12 ± 15.08 µA cm-2 with 160 mg/L SDZ, which was 32.9 and 1.8 times higher than that of Geobacter sulfurreducens PCA with 40 mg/L SDZ and without additional SDZ, respectively. Especially, the impressive SDZ removal rate of 98.76 ± 0.79% was achieved within 96 h using the further acclimatized mixed-culture. The removal efficiency of this mixed-culture for SDZ through the bio-electrochemical system was 1.1 times higher than that using simple anaerobic biodegradation. Furthermore, the current density and removal efficiency in this system gradually decreased with increasing SDZ concentrations from 0 to 800 mg/L. In addition, community diversity data demonstrated that the dominant genera, Geobacter and Escherichia-Shigella, were enriched in mixed-culture biofilm, which might be responsible for the current production and SDZ removal. This work confirmed the important roles of acclimatized microbial consortia and co-substrates in the simultaneous removal of SDZ and electricity generation in an electrochemical system.


Asunto(s)
Fuentes de Energía Bioeléctrica , Biopelículas , Geobacter , Sulfadiazina , Geobacter/metabolismo , Geobacter/fisiología , Geobacter/aislamiento & purificación , Fuentes de Energía Bioeléctrica/microbiología , Electricidad , Técnicas Biosensibles , Biodegradación Ambiental , Técnicas Electroquímicas/métodos
13.
mBio ; 15(8): e0130224, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39041802

RESUMEN

Membrane potential is a useful marker for antimicrobial susceptibility testing (AST) due to its fundamental roles in cell function. However, the difficulties associated with measuring the membrane potential in microbes restrict its broad application. In this study, we present bioelectrical AST (BeAST) using the model fungus Saccharomyces cerevisiae. Using fluorescent indicators [DiBAC4(3), ThT, and TMRM], we measured plasma and mitochondrial membrane-potential dynamics upon electric stimulation. We find that a 2.5 second electric stimulation induces hyperpolarization of plasma membrane lasting 20 minutes in vital S. cerevisiae, but depolarization in inhibited cells. The numerical simulation of FitzHugh-Nagumo model successfully recapitulates vitality-dependent dynamics. The model also suggests that the magnitude of plasma-membrane potential dynamics (PMD) correlates with the degree of inhibition. To test this prediction and to examine if BeAST can be used for assessing novel anti-fungal compounds, we treat cells with biogenic silver nanoparticles (bioAgNPs) synthesized using orange fruit flavonoids and Fusarium oxysporum. Comparing BeAST with optical density assay alongside various stressors, we show that PMD correlates with the magnitude of growth inhibitions. These results suggest that BeAST holds promise for screening anti-fungal compounds, offering a valuable approach to tackling antimicrobial resistance. IMPORTANCE: Rapid assessment of the efficacy of antimicrobials is important for optimizing treatments, avoiding misuse and facilitating the screening of new antimicrobials. The need for rapid antimicrobial susceptibility testing (AST) is growing with the rise of antimicrobial resistance. Here, we present bioelectrical AST (BeAST). Combining time-lapse microscopy and mathematical modeling, we show that electrically induced membrane potential dynamics of yeast cells correspond to the strength of growth inhibition. Furthermore, we demonstrate the utility of BeAST for assessing antimicrobial activities of novel compounds using biogenic silver nanoparticles.


Asunto(s)
Antifúngicos , Potenciales de la Membrana , Pruebas de Sensibilidad Microbiana , Saccharomyces cerevisiae , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Antifúngicos/farmacología , Potenciales de la Membrana/efectos de los fármacos , Fusarium/efectos de los fármacos , Fusarium/crecimiento & desarrollo , Membrana Celular/efectos de los fármacos
14.
Crit Rev Biotechnol ; : 1-20, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009474

RESUMEN

Increasing industrialization and urbanization have contributed to a significant rise in wastewater discharge and exerted extensive pressure on the existing natural energy resources. Microbial fuel cell (MFC) is a sustainable technology that utilizes wastewater for electricity generation. MFC comprises a bioelectrochemical system employing electroactive biofilms of several aerobic and anaerobic bacteria, such as Geobacter sulfurreducens, Shewanella oneidensis, Pseudomonas aeruginosa, and Ochrobacterum pseudiintermedium. Since the electroactive biofilms constitute a vital part of the MFC, it is crucial to understand the biofilm-mediated pollutant metabolism and electron transfer mechanisms. Engineering electroactive biofilm communities for improved biofilm formation and extracellular polymeric substances (EPS) secretion can positively impact the bioelectrochemical system and improve fuel cell performance. This review article summarizes the role of electroactive bacterial communities in MFC for wastewater treatment and bioelectricity generation. A significant focus has been laid on understanding the composition, structure, and function of electroactive biofilms in MFC. Various electron transport mechanisms, including direct electron transfer (DET), indirect electron transfer (IET), and long-distance electron transfer (LDET), have been discussed. A detailed summary of the optimization of process parameters and genetic engineering strategies for improving the performance of MFC has been provided. Lastly, the applications of MFC for wastewater treatment, bioelectricity generation, and biosensor development have been reviewed.

15.
Saudi J Biol Sci ; 31(8): 104024, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38988338

RESUMEN

Microbial fuel cell (MFC) technology is getting acceptance as an emphatic, sustainable and energy efficient alternative of conventional wastewater treatment strategies. MFCs utilize exoelectrogens as biocatalysts to degrade the complex organic substances present in wastewater with simultaneous power generation. The present study was aimed at investigating the impact of MFC electrode's modification with CeO2 nanoparticles and polyaniline (PANI) on its performance characteristics. The hydrothermal approach was employed for the synthesis of CeO2 nanoparticles followed by their deposition on carbon cloth (CC) as MFC cathode, whereas MFC's anode i.e., CF/NF was modified by in-situe deposition of PANI. The synthesized material was characterized with FTIR, XRD, SEM, EDX and BET analysis. The experiments were performed using dual chambered MFC fed with leather tannery wastewater using modified and unmodified electrodes. The highest outcomes of power density and corresponding current density were observed with PANI@NF composite anode and CeO2@CC as cathode i.e., 279.3 mW/m2 corresponding to the current density of 581.8 mA/m2. The same MFC electrode configuration resulted in highest COD reduction, i.e., 80 % and coulombic efficiency of 19.86 %. On the other hand, MFC equipped with PANI@CF anode and CeO2@CC cathode also displayed comparable results. It was ascertained that modification of NF/CF anode with PANI (conductive polymer) and CC cathode with CeO2 nanoparticles have significantly improved the overall MFC operational performance regarding tannery wastewater treatment and bioelectricity generation.

16.
Cells ; 13(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38994988

RESUMEN

Bioelectric signals possess the ability to robustly control and manipulate patterning during embryogenesis and tissue-level regeneration. Endogenous local and global electric fields function as a spatial 'pre-pattern', controlling cell fates and tissue-scale anatomical boundaries; however, the mechanisms facilitating these robust multiscale outcomes are poorly characterized. Computational modeling addresses the need to predict in vitro patterning behavior and further elucidate the roles of cellular bioelectric signaling components in patterning outcomes. Here, we modified a previously designed image pattern recognition algorithm to distinguish unique spatial features of simulated non-excitable bioelectric patterns under distinct cell culture conditions. This algorithm was applied to comparisons between simulated patterns and experimental microscopy images of membrane potential (Vmem) across cultured human iPSC colonies. Furthermore, we extended the prediction to a novel co-culture condition in which cell sub-populations possessing different ionic fluxes were simulated; the defining spatial features were recapitulated in vitro with genetically modified colonies. These results collectively inform strategies for modeling multiscale spatial characteristics that emerge in multicellular systems, characterizing the molecular contributions to heterogeneity of membrane potential in non-excitable cells, and enabling downstream engineered bioelectrical tissue design.


Asunto(s)
Células Madre Pluripotentes Inducidas , Potenciales de la Membrana , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Potenciales de la Membrana/fisiología , Algoritmos , Simulación por Computador , Modelos Biológicos , Técnicas de Cocultivo
17.
Prog Biophys Mol Biol ; 191: 25-39, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38971325

RESUMEN

Cancer is a pernicious and pressing medical problem; moreover, it is a failure of multicellular morphogenesis that sheds much light on evolutionary developmental biology. Numerous classes of pharmacological agents have been considered as cancer therapeutics and evaluated as potential carcinogenic agents; however, these are spread throughout the primary literature. Here, we briefly review recent work on ion channel drugs as promising anti-cancer treatments and present a systematic review of the known cancer-relevant effects of 109 drugs targeting ion channels. The roles of ion channels in cancer are consistent with the importance of bioelectrical parameters in cell regulation and with the functions of bioelectric signaling in morphogenetic signals that act as cancer suppressors. We find that compounds that are well-known for having targets in the nervous system, such as voltage-gated ion channels, ligand-gated ion channels, proton pumps, and gap junctions are especially relevant to cancer. Our review suggests further opportunities for the repurposing of numerous promising candidates in the field of cancer electroceuticals.


Asunto(s)
Canales Iónicos , Neoplasias , Fenotipo , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Canales Iónicos/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Animales , Fenómenos Electrofisiológicos/efectos de los fármacos
18.
Sci Total Environ ; 947: 174670, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39002600

RESUMEN

Sugarcane straw removal for bioenergy production will increase substantially in the next years, but this may deplete soil organic carbon (SOC) and exacerbate greenhouse gas (GHG) emissions. These aspects are not consistently approached in bioenergy life cycle assessment (LCA). Using SOC modeling and LCA approach, this study addressed the life cycle GHG balance from sugarcane agroindustry in different scenarios of straw removal, considering the potential SOC changes associated with straw management in sugarcane-cultivated soils in Brazil. Long-term simulations showed SOC losses of up to -0.5 Mg ha-1 yr-1 upon complete straw removal, whereas the moderate removal had little effects on SOC and the maintenance of all straw in the field increased SOC accumulation by up to 0.4 Mg ha-1 yr-1. Our analysis suggests that accounting for SOC changes in LCA calculations could lower the net GHG benefits of straw-derived bioenergy, whose emissions intensity varied according to soil type. Overall, SOC depletion induced by complete straw removal increased the life cycle GHG emissions of straw-derived bioenergy by 26 % (3.9 g CO2eq MJ-1) compared to a scenario without taking SOC changes into account. Straw removal for cellulosic ethanol could be effective for mitigating GHG emissions relative to gasoline, but it was not advantageous for bioelectricity generation depending on the energy sources that are displaced. Therefore, straw-induced change of SOC stocks is a critical factor to model life cycle GHG emissions of straw-derived bioenergy.

19.
Bioprocess Biosyst Eng ; 47(7): 1057-1070, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38842769

RESUMEN

The treatment of agroindustrial wastewater using microbial fuel cells (MFCs) is a technological strategy to harness its chemical energy while simultaneously purifying the water. This manuscript investigates the organic load effect as chemical oxygen demand (COD) on the production of electricity during the treatment of cassava wastewater by means of a dual-chamber microbial fuel cell in batch mode. Additionally, specific conditions were selected to evaluate the semi-continuous operational mode. The dynamics of microbial communities on the graphite anode were also investigated. The maximum power density delivered by the batch MFC (656.4 µW m - 2 ) was achieved at the highest evaluated organic load (6.8 g COD L - 1 ). Similarly, the largest COD removal efficiency (61.9%) was reached at the lowest organic load (1.17 g COD L - 1 ). Cyanide degradation percentages (50-70%) were achieved across treatments. The semi-continuous operation of the MFC for 2 months revealed that the voltage across the cell is dependent on the supply or suspension of the organic load feed. The electrode polarization resistance was observed to decreases over time, possibly due to the enrichment of the anode with electrogenic microbial communities. A metataxonomic analysis revealed a significant increase in bacteria from the phylum Firmicutes, primarily of the genus Enterococcus.


Asunto(s)
Fuentes de Energía Bioeléctrica , Manihot , Aguas Residuales , Fuentes de Energía Bioeléctrica/microbiología , Manihot/química , Aguas Residuales/microbiología , Aguas Residuales/química , Análisis de la Demanda Biológica de Oxígeno , Electrodos , Purificación del Agua/métodos
20.
bioRxiv ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38915670

RESUMEN

Membrane potential (MP) changes can provide a simple readout of bacterial functional and metabolic state or stress levels. While several optical methods exist for measuring fast changes in MP in excitable cells, there is a dearth of such methods for absolute and precise measurements of steady-state membrane potentials (MPs) in bacterial cells. Conventional electrode-based methods for the measurement of MP are not suitable for calibrating optical methods in small bacterial cells. While optical measurement based on Nernstian indicators have been successfully used, they do not provide absolute or precise quantification of MP or its changes. We present a novel, calibrated MP recording approach to address this gap. In this study, we used a fluorescence lifetime-based approach to obtain a single-cell resolved distribution of the membrane potential and its changes upon extracellular chemical perturbation in a population of bacterial cells for the first time. Our method is based on (i) a unique VoltageFluor (VF) optical transducer, whose fluorescence lifetime varies as a function of MP via photoinduced electron transfer (PeT) and (ii) a quantitative phasor-FLIM analysis for high-throughput readout. This method allows MP changes to be easily visualized, recorded and quantified. By artificially modulating potassium concentration gradients across the membrane using an ionophore, we have obtained a Bacillus subtilis-specific MP versus VF lifetime calibration and estimated the MP for unperturbed B. subtilis cells to be -65 mV and that for chemically depolarized cells as -14 mV. We observed a population level MP heterogeneity of ~6-10 mV indicating a considerable degree of diversity of physiological and metabolic states among individual cells. Our work paves the way for deeper insights into bacterial electrophysiology and bioelectricity research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA