Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 12: 1437787, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39188369

RESUMEN

Artesunate (ATS) is considered the most widely employed artemisnin derivative in the treatment of Plasmodium falciparum malaria. However, poor solubility and low bioavailability of ATS limit its further clinical application. Herein, we developed a new strategy based on the exosome (exo) - drug conjugation (EDC) using the milk-derived exosomes for ATS delivery. The Exo-ATS conjugates (EACs) which formed via a facile bio-conjugation of ATS to the exosomal surface, have been demonstrated to be able to not only boost the solubility and bioavailability of ATS but also enable a sustained-release of ATS from exosomes. Maximal improvement of 71.4-fold in the solubility of ATS was attained by EACs. The corresponding entrapment efficiency and drug loading capacities were found to be 90.3% and 73.9% for EACs, respectively. Further, in vivo pharmacokinetics study manifested that maximum 2.6-fold improved bioavailability of ATS was achieved by oral delivery of EACs. Moreover, EACs displayed a distinct sustained-release profile of maximum 36.2-fold prolonged half-life of ATS via intravenous delivery. We reported that for the first time the administration of EACs could be a potential drug delivery strategy aimed at ameliorating the pharmacokinetic profile of ATS based on our encouraging results and hoped that our work opened up a new avenue for the development of EDC delivery system.

2.
Discov Nano ; 19(1): 37, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38421453

RESUMEN

Early diagnosis of cancer demands sensitive and accurate detection of cancer biomarkers in blood. Carbon dots (CDs) bio-functionalization with antibodies, peptides or aptamers have played significant role in cancer diagnosis and targeted cancer therapy. Herein, a biosensor for detection of cancer biomarker carcinoembryonic antigen (CEA) in blood serum has been designed using CDs bio-functionalized with HRP-conjugated CEA antibody (CUCDs@CEAAb2) as detection probe. CDs were synthesized by upscaling of cow urine, a nitrogen rich biomass waste, by hydrothermal method. Detection probe based on CDs resulted in 3.5 times higher sensitivity as compared to conventional electrochemical sandwich immunoassay. To further improve the sensor performance, hyper-branched polyethylenimine grafted poly amino aniline (PEI-g-PAANI) was used as the sensing interface, which enabled immobilization of higher amount of capture antibody. Detection of CEA in human blood serum coupled with wide linear range (0.5-50 ng/ml), good specificity, stability, reproducibility and low detection limit (10 pg/ml) signified the excellence of CUCDs based CEA immunosensor. CUCDs exhibited excitation wavelength dependent fluorescence property and showed strong blue emission under UV irradiation. MTT assay indicated that the material is not toxic towards human dental pulp stem cells (hDPSCs) and MG63 osteosarcoma cells (cell viability > 90%). The present study demonstrates a methodology for valorization of animal waste to a cost-effective carbon based functional nanomaterial for clinical detection of cancer biomarkers.

3.
Gels ; 8(5)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35621556

RESUMEN

Hydrogels are attractive biomaterials because their chemical and mechanical properties can be tailored to mimic those of biological tissues. However, many hydrogels do not allow cell or protein attachment. Therefore, they are post-synthetically functionalized by adding functional groups for protein binding, which then allows cell adhesion in cell culture substrates. However, the degree of functionalization and covalent binding is difficult to analyze in these cases. Moreover, the density of the functional groups and the homogeneity of their distribution is hard to control. This work introduces another strategy for the biofunctionalization of hydrogels: we synthesized a polymerizable linker that serves as a direct junction between the polymeric structure and cell adhesion proteins. This maleimide-containing, polymerizable bio-linker was copolymerized with non-functionalized monomers to produce a bioactive hydrogel based on poly(2-hydroxyethyl methacrylate) (pHEMA). Therefore, the attachment site was only controlled by the polymerization process and was thus uniformly distributed throughout the hydrogel. In this way, the bio-conjugation by a protein-binding thiol-maleimide Michael-type reaction was possible in the entire hydrogel matrix. This approach enabled a straightforward and highly effective biofunctionalization of pHEMA with the adhesion protein fibronectin. The bioactivity of the materials was demonstrated by the successful adhesion of fibroblast cells.

4.
Nanomaterials (Basel) ; 12(7)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35407263

RESUMEN

Bone metastasis has been considered the fatal phase of cancers, which remains incurable and to be a challenge due to the non-availability of the ideal treatment strategy. Unlike bone cancer, bone metastasis involves the spreading of the tumor cells to the bones from different origins. Bone metastasis generally originates from breast and prostate cancers. The possibility of bone metastasis is highly attributable to its physiological milieu susceptible to tumor growth. The treatment of bone-related diseases has multiple complications, including bone breakage, reduced quality of life, spinal cord or nerve compression, and pain. However, anticancer active agents have failed to maintain desired therapeutic concentrations at the target site; hence, uptake of the drug takes place at a non-target site responsible for the toxicity at the cellular level. Interestingly, lipid-based drug delivery systems have become the center of interest for researchers, thanks to their biocompatible and bio-mimetic nature. These systems possess a great potential to improve precise bone targeting without affecting healthy tissues. The lipid nano-sized systems are not only limited to delivering active agents but also genes/peptide sequences/siRNA, bisphosphonates, etc. Additionally, lipid coating of inorganic nanomaterials such as calcium phosphate is an effective approach against uncontrollable rapid precipitation resulting in reduced colloidal stability and dispersity. This review summarizes the numerous aspects, including development, design, possible applications, challenges, and future perspective of lipid nano-transporters, namely liposomes, exosomes, solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), and lipid nanoparticulate gels to treat bone metastasis and induce bone regeneration. Additionally, the economic suitability of these systems has been discussed and different alternatives have been discussed. All in all, through this review we will try to understand how far nanomedicine is from clinical and industrial applications in bone metastasis.

5.
Chemistry ; 28(11): e202104111, 2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-34979050

RESUMEN

The importance of bioconjugation reactions continues to grow for cell specific targeting and dual therapeutic plus diagnostic medical applications. This necessitates the development of new bioconjugation chemistries, in-flow synthetic and analytical methods. With this goal, continuous flow bioconjugations were readily achieved with short residence times for strained alkyne substituted carbohydrate and therapeutic peptide biomolecules in reaction with azide and tetrazine substituted fluorophores. The strained alkyne substrates included substituted 2-amino-2-deoxy-α-D-glucopyranose, and the linear and cyclic peptide sequences QIRQQPRDPPTETLELEVSPDPAS-OH and c(RGDfK) respectively. The catalyst and reagent-free inverse electron demand tetrazine cycloadditions proved more favourable than the azide 1,3-dipolar cycloadditions. Reaction completion was achieved with residence times of 5 min at 40 °C for tetrazine versus 10 min at 80 °C for azide cycloadditions. The use of a fluorogenic tetrazine fluorophore, in a glass channelled reactor chip, allowed for intra-chip reaction monitoring by recording fluorescence intensities at various positions throughout the chip. As the Diels-Alder reactions proceeded through the chip, the fluorescence intensity increased accordingly in real-time. The application of continuous flow fluorogenic bioconjugations could offer an efficient translational access to theranostic agents.


Asunto(s)
Alquinos , Colorantes Fluorescentes , Alquinos/química , Azidas/química , Reacción de Cicloadición , Colorantes Fluorescentes/química , Ionóforos
6.
Chemosphere ; 288(Pt 2): 132527, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34637861

RESUMEN

The phytocomponent conjugated silver nanoparticles (AgNPs) have been extensively explored for various therapeutic applications such as antimicrobial, antioxidant, anticancer, anti-inflammatory, antidiabetic and anticoagulant effects. The bio-conjugation of Ag-based nanomaterial with plant extracts reduces their toxicity to biological systems and enhances their therapeutic effectiveness. The diversity of phytochemicals or capping agents provided by the plant extracts and the small size and large surface area of AgNPs permits maximum adsorption of these capping agents onto their surfaces that further promote the therapeutic performance of phytoconjugated AgNPs in various biomedical applications. The mechanistic action involved in antimicrobial and anticancer functions of AgNPs is mainly dependent on the induction of reactive oxygen species (ROS) resulting in cellular apoptosis and necrosis. This review summarizes the recent studies of various plant extract assisted synthesis of AgNPs, potential biomedical applications with the possible mechanism of action and major shortcomings affecting their therapeutic efficacy.


Asunto(s)
Nanopartículas del Metal , Plata , Antibacterianos , Antioxidantes , Nanopartículas del Metal/toxicidad , Extractos Vegetales
7.
Front Med (Lausanne) ; 8: 675122, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34504849

RESUMEN

Targeted radionuclide therapy (TRNT) is a promising approach for cancer therapy. Terbium has four medically interesting isotopes (149Tb, 152Tb, 155Tb and 161Tb) which span the entire radiopharmaceutical space (TRNT, PET and SPECT imaging). Since the same element is used, accessing the various diagnostic or therapeutic properties without changing radiochemical procedures and pharmacokinetic properties is advantageous. The use of (heat-sensitive) biomolecules as vector molecule with high affinity and selectivity for a certain molecular target is promising. However, mild radiolabeling conditions are required to prevent thermal degradation of the biomolecule. Herein, we report the evaluation of potential bifunctional chelators for Tb-labeling of heat-sensitive biomolecules using human serum albumin (HSA) to assess the in vivo stability of the constructs. p-SCN-Bn-CHX-A"-DTPA, p-SCN-Bn-DOTA, p-NCS-Bz-DOTA-GA and p-SCN-3p-C-NETA were conjugated to HSA via a lysine coupling method. All HSA-constructs were labeled with [161Tb]TbCl3 at 40°C with radiochemical yields higher than 98%. The radiolabeled constructs were stable in human serum up to 24 h at 37°C. 161Tb-HSA-constructs were injected in mice to evaluate their in vivo stability. Increasing bone accumulation as a function of time was observed for [161Tb]TbCl3 and [161Tb]Tb-DTPA-CHX-A"-Bn-HSA, while negligible bone uptake was observed with the DOTA, DOTA-GA and NETA variants over a 7-day period. The results indicate that the p-SCN-Bn-DOTA, p-NCS-Bz-DOTA-GA and p-SCN-3p-C-NETA are suitable bifunctional ligands for Tb-based radiopharmaceuticals, allowing for high yield radiolabeling in mild conditions.

8.
Molecules ; 26(15)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34361752

RESUMEN

The field of targeted radionuclide therapy is rapidly growing, highlighting the need for wider radionuclide availability. Soft Lewis acid ions, such as radioisotopes of platinum, rhodium and palladium, are particularly underdeveloped. This is due in part to a lack of compatible bifunctional chelators. These allow for the practical bioconjugation to targeting vectors, in turn enabling radiolabeling. The [16]andS4 macrocycle has been reported to chelate a number of relevant soft metal ions. In this work, we present a procedure for synthesizing [16]andS4 in 45% yield (five steps, 12% overall yield), together with a selection of strategies for preparing bifunctional derivatives. An ester-linked N-hydroxysuccimide ester (NHS, seven steps, 4% overall yield), an ether-linked isothiocyanate (NCS, eight steps, 5% overall yield) and an azide derivative were prepared. In addition, a new route to a carbon-carbon linked carboxylic acid functionalized derivative is presented. Finally, a general method for conjugating the NHS and NCS derivatives to a polar peptide (octreotide) is presented, by dissolution in water:acetonitrile (1:1), buffered to pH 9.4 using borate. The reported compounds will be readily applicable in radiopharmaceutical chemistry, by facilitating the labeling of a range of molecules, including peptides, with relevant soft radiometal ions.

9.
Methods Mol Biol ; 2355: 35-48, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34386948

RESUMEN

Synthetic molecular probes have recently been in focus for their potential use in target deconvolution, target engagement studies, and imaging. With the field expanding, new strategies to develop such tools are in high demand. While traditional conjugation techniques relying on inherently nucleophilic amino acids such as cysteine (Cys) and lysine (Lys) or pre-incorporated non-natural amino acids are still heavily used, novel methodologies for the direct and site-selective modification of peptides are attracting increasing attention. Of particular interest are Late-Stage Functionalization (LSF) approaches based on radical chemistry as they afford mild and biocompatible alternatives to transition-metal catalysis. A recent synthetic method, which leverages the unique reactivity of histidine (His), has proven to be a promising new strategy for LSF and site-selective conjugation of unprotected peptides. In this chapter, detailed step-by-step protocols depicting the C2-alkylation of His-containing peptides, the unveiling of a ketone as handle for hydrazone conjugation, and its use to site-selectively introduce a fluorophore at this residue are discussed. In addition to its application toward the synthesis of molecular probes, this methodology can be employed in peptide-based drug discovery programs, offering the possibility to rapidly explore the chemical space surrounding peptide hits. Finally, this strategy is also amenable to the preparation of novel peptide-ASO/small molecule drug conjugates.


Asunto(s)
Péptidos/química , Aminoácidos , Histidina , Hidrazonas , Sondas Moleculares , Oximas
10.
Chemistry ; 27(40): 10477-10483, 2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-33914384

RESUMEN

Biomolecular assemblies composed of proteins and oligonucleotides play a central role in biological processes. While in nature, oligonucleotides and proteins usually assemble via non-covalent interactions, synthetic conjugates have been developed which covalently link both modalities. The resulting peptide-oligonucleotide conjugates have facilitated novel biological applications as well as the design of functional supramolecular systems and materials. However, despite the importance of concerted protein/oligonucleotide recognition in nature, conjugation approaches have barely utilized the synergistic recognition abilities of such complexes. Herein, the structure-based design of peptide-DNA conjugates that bind RNA through Watson-Crick base pairing combined with peptide-mediated major groove recognition is reported. Two distinct conjugate families with tunable binding characteristics have been designed to adjacently bind a particular RNA sequence. In the resulting ternary complex, their peptide elements are located in proximity, a feature that was used to enable an RNA-templated click reaction. The introduced structure-based design approach opens the door to novel functional biomolecular assemblies.


Asunto(s)
ADN , ARN , Emparejamiento Base , Humanos , Oligonucleótidos , Proteínas
11.
Molecules ; 26(9)2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33919170

RESUMEN

Understanding the host-guest chemistry of α-/ß-/γ- cyclodextrins (CDs) and a wide range of organic species are fundamentally attractive, and are finding broad contemporary applications toward developing efficient drug delivery systems. With the widely used ß-CD as the host, we herein demonstrate that its inclusion behaviors toward an array of six simple and bio-conjugatable adamantane derivatives, namely, 1-adamantanol (adm-1-OH), 2-adamantanol (adm-2-OH), adamantan-1-amine (adm-1-NH2), 1-adamantanecarboxylic acid (adm-1-COOH), 1,3-adamantanedicarboxylic acid (adm-1,3-diCOOH), and 2-[3-(carboxymethyl)-1-adamantyl]acetic acid (adm-1,3-diCH2COOH), offer inclusion adducts with diverse adamantane-to-CD ratios and spatial guest locations. In all six cases, ß-CD crystallizes as a pair supported by face-to-face hydrogen bonding between hydroxyl groups on C2 and C3 and their adjacent equivalents, giving rise to a truncated-cone-shaped cavity to accommodate one, two, or three adamantane derivatives. These inclusion complexes can be terminated as (adm-1-OH)2⊂CD2 (1, 2:2), (adm-2-OH)3⊂CD2 (2, 3:2), (adm-1-NH2)3⊂CD2 (3, 3:2), (adm-1-COOH)2⊂CD2 (4, 2:2), (adm-1,3-diCOOH)⊂CD2 (5, 1:2), and (adm-1,3-diCH2COOH)⊂CD2 (6, 1:2). This work may shed light on the design of nanomedicine with hierarchical structures, mediated by delicate cyclodextrin-based hosts and adamantane-appended drugs as the guests.


Asunto(s)
Adamantano/química , Adamantano/farmacología , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacología , Adamantano/análogos & derivados , Calorimetría , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Espectroscopía Infrarroja por Transformada de Fourier , Relación Estructura-Actividad
12.
Int J Biol Macromol ; 165(Pt A): 388-401, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32961192

RESUMEN

Recent evidence based studies have proposed hyaluronic acid (HA) as an emerging biopolymer for various tissue engineering application. Meanwhile, stem cells (SCs) have also gained immense popularity for their tissue regenerative capacity. Thus, combining HA and stem cells for tissue engineering application have shown to foster tissue repair and regeneration process. HA possesses the ability to interact with SCs via cellular surface receptors along with the capacity to elicit the process of differentiation. The influence of HA on stem cells has been widely investigated in cartilage and bone repair but their properties of reducing inflammation has also been explored in various other tissue repair processes. In this review, we have provided an insight to the effect of crosslinked and non-crosslinked HA on various stem cells. Further, HA based scaffolds combined with stem cells have shown to have a synergistic effect in the regeneration capacity. Also, various chemically modified HA and biomolecules conjugated HA as a suitable carrier or matrix for stem cells delivery and the effect of HA in fine tuning the stem cells function is discussed.


Asunto(s)
Ácido Hialurónico/química , Regeneración , Células Madre/metabolismo , Ingeniería de Tejidos , Andamios del Tejido/química , Animales , Cartílago/metabolismo , Condrogénesis , Humanos
13.
Methods Mol Biol ; 2125: 73-75, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31463891

RESUMEN

Recently, we reported our methodology for isolating plasma membrane and lysosome from eukaryotic cell using superparamagnetic nanoparticles (SPMNPs). Here in this article, we report a step-by-step protocol for synthesis of hybrid gold nanoparticle (AuNP), surface functionalization of AuNPs on superparamagnetic nanoparticles (SPMNPs), and potential use of hybrid AuNP-SPMNP for efficient coupling of biomolecules.


Asunto(s)
Oro/química , Nanopartículas Magnéticas de Óxido de Hierro/química , Nanopartículas del Metal/química , Dispersión Dinámica de Luz , Nanopartículas Magnéticas de Óxido de Hierro/ultraestructura
14.
Colloids Surf B Biointerfaces ; 181: 561-566, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31185448

RESUMEN

This work describes the derivatization of dextran using N-(tert-butyloxycarbonyl)-S-(trityl)-L-cysteine in the presence of N,N'-carbonyldiimidazole (CDI) as a coupling agent. Homogeneous reactions in dimethyl sulfoxide allowed for an efficient coupling of the amino acid derivative to the polymer backbone. Derivatization was confirmed by infrared and 13C NMR spectroscopy, size exclusion chromatography and elemental analysis. The presence of hydrophobic protecting groups resulted in a product that can be shaped into water-insoluble particles stable in an aqueous environment and non-toxic for lung epithelial cells. It is suggested that materials composed of ester bonds between amino acids and polysaccharides are useful for targeted drug delivery, bio-imaging or surface functionalization.


Asunto(s)
Aminoácidos/química , Cisteína/análogos & derivados , Ésteres/química , Cisteína/química , Dextranos/química , Tamaño de la Partícula , Propiedades de Superficie
15.
Artif Cells Nanomed Biotechnol ; 47(1): 2361-2368, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31190563

RESUMEN

Enzymes are powerful versatile biocatalysts, however, industrial application of enzymes is usually hampered by their susceptibility. Bio-inspired Eudragit-α-amylase conjugate (E-AC) was proposed as a biocatalyst for various pharmaceutical and industrial applications. In this study, α -Amylase (E.C. 3.2.1.1) was immobilized by covalent conjugation to Eudragit L-100 under mild conditions. The effect of polymer, carbodiimide and enzyme concentrations on optimization of (E-AC) was investigated. In addition, characterization of the free α -Amylase and E-AC with regard to pH, temperature, kinetic parameters, reusability and operational and storage conditions was carried out. Results showed a shift of the optimum pH of E-AC towards the alkaline side whereas, E-AC exhibited higher thermal stability at all tested temperatures. The kinetic parameters, Km values were 2.87 mg/ml and 3.15 mg/ml and Vmax values were 8.35 mg/ml/min and 8.98 mg/ml/min for free and E-AC, respectively. E-AC retained 85% of the initial activity after five consecutive amylolytic cycles, thus emphasizing its powerful potentials. Operational storage and thermal stability were highly improved as well for E-AC conjugate with an 11.6 stabilization factor in comparison to the free α-amylase. In this study, Eudragit L-100 polymer was successfully used as smart immobilization support to create a reversibly soluble-insoluble enzyme biocatalyst to enforce and extend biotechnological applications of α-amylase in the pharmaceutical industry.


Asunto(s)
Acrilatos/química , Biocatálisis , Industria Farmacéutica , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Polímeros/química , alfa-Amilasas/química , alfa-Amilasas/metabolismo , Animales , Costos y Análisis de Costo , Industria Farmacéutica/economía , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Cinética , Temperatura
16.
Int J Pharm ; 548(1): 357-374, 2018 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-29981409

RESUMEN

The present study investigates effect of linkers [zero length (without linker), short length linker (glycine and lysine) and long length linker (PEG1000, PEG2000 and PEG3500)] on pharmacokinetics and toxicity of docetaxel (DTX) and gemcitabine (GEM) bio-conjugates. Conjugates were synthesized via carbodiimide chemistry and characterized by 1H NMR and FTIR. Conjugation of DTX and GEM via linkers showed diverse physiochemical and plasma stability profile. Cellular uptake mechanism in MCF-7 and MDA-MB-231 cell lines revealed clathrin mediated internalization of bio-conjugates developed by using long length linkers, leading to higher cytotoxicity compared with free drug congeners. DTX-PEG3500-GEM and DTX-PEG2000-GEM demonstrated 4.21 and 3.81-fold higher AUC(0-∞) of GEM in comparison with GEM alone. DTX-PEG2000-GEM and DTX-PEG3500-GEM exhibited reduced hepato-, nephro- and haemolytic toxicity as evident via histopathology, biochemical markers and SEM analysis of RBCs. Conclusively, PEG2000 and PEG3500 significantly improved pharmacokinetics without any sign of toxicity and hence can be explored further for the development of dual-drug conjugates for better therapeutic efficacy.


Asunto(s)
Antineoplásicos , Desoxicitidina/análogos & derivados , Taxoides , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Desoxicitidina/química , Desoxicitidina/farmacología , Docetaxel , Combinación de Medicamentos , Femenino , Hemólisis/efectos de los fármacos , Humanos , Polietilenglicoles/química , Polietilenglicoles/farmacología , Ratas Sprague-Dawley , Taxoides/química , Taxoides/farmacología , Gemcitabina
17.
Colloids Surf B Biointerfaces ; 161: 1-9, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29035745

RESUMEN

Surface modification of medical grade V titanium alloy (Ti-6Al-4V) with biomolecules is an important and vital step for tailoring it for various biomedical applications. Present study investigates theinfluence of type I human collagen (T1HC) bio-conjugation through a three stage process. Polished grade V titanium alloy discs were functionalizedwith free OH group by means of controlled heat and alkali treatment followed by coating of 3-aminopropyltriethoxy (APTES) silane couplingagent. T1HC were bio-conjugated through 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide hydrochloride N-hydroxysuccinimide (EDCNHS)coupling reaction. At each stage, grade V titanium alloy surfaces were characterized by atomic force microscopy (AFM), scanning electronmicroscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and Xrayphotoelectron spectroscopy (XPS). FTIR and XPS studies confirms thecovalent attachment of APTES with titanium alloy surface while terminalamine groups of APTES remained free for further attachment of T1HCthrough covalent bond. Aqueous stability of bio-conjugated titanium discsat various pH and time intervals (i.e. at pH of 5.5, 6.8 and 8.0 at timeinterval of 27 and 48h) confirmed the stability of T1HC bioconjugated collagen on titanium surface. Further human periodontalfibroblast cell line (HPdlF) culture revealed enhanced adhesion on theT1HC bio-conjugated surface compared to the polystyrene and polishedgrade V titanium alloy surfaces.


Asunto(s)
Aleaciones/química , Colágeno Tipo I/química , Fibroblastos/fisiología , Titanio/química , Carbodiimidas/química , Adhesión Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Fibroblastos/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Ligamento Periodontal/citología , Propilaminas/química , Silanos/química , Succinimidas/química
18.
Acta Biomater ; 56: 80-90, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28391052

RESUMEN

Hydrogels are facile architectures for the controlled presentation of proteins with far-reaching applications, from fundamental biological studies in three-dimensional culture to new regenerative medicine and therapeutic delivery strategies. Here, we demonstrate a versatile approach for spatially-defined presentation of engineered proteins within hydrogels through i) immobilization using bio-orthogonal strain-promoted alkyne-azide click chemistry and ii) dynamic protease-driven protein release using exogenously applied enzyme. Model fluorescent proteins were expressed using nonsense codon replacement to incorporate azide-containing unnatural amino acids in a site-specific manner toward maintaining protein activity: here, cyan fluorescent protein (AzCFP), mCherry fluorescent protein (AzmCh), and mCh decorated with a thrombin cut-site. (AzTMBmCh). Eight-arm poly(ethylene glycol) (PEG) was modified with dibenzylcyclooctyne (DBCO) groups and reacted with azide functionalized PEG in aqueous solution for rapid formation of hydrogels. Azide functionalized full-length fluorescent proteins were successfully incorporated into the hydrogel network by reaction with PEG-DBCO prior to gel formation. Temporal release and removal of select proteins (AzTMBmCh) was triggered with the application of thrombin and monitored in real-time with confocal microscopy, providing a responsive handle for controlling matrix properties. Hydrogels with regions of different protein compositions were created using a layering technique with thicknesses of hundreds of micrometers, affording opportunities for the creation of complex geometries on size scales relevant for controlling cellular microenvironments. STATEMENT OF SIGNIFICANCE: Controlling protein presentation within biomaterials is important for modulating interactions with biological systems. For example, native tissues are composed of subunits with different matrix compositions (proteins, stiffness) that dynamically interact with cells, influencing function and fate. Toward mimicking such temporally-regulated and spatially-defined microenvironments, we utilize bio-orthogonal click chemistry and protein engineering to create hydrogels with distinct regions of proteins and modify them over time. Through nonsense codon replacement, we site-specifically functionalize large proteins with i) azides for covalent conjugation and ii) an enzymatic cleavage site for user-defined release from hydrogels. Our results exemplify not only the ability to create unique bio-functionalized hydrogels with controlled mechanical properties, but also the potential for creating interesting interfaces for cell culture and tissue engineering applications.


Asunto(s)
Hidrogeles/química , Proteínas Luminiscentes/química , Polietilenglicoles/química , Trombina/química , Humanos , Proteínas Luminiscentes/genética
19.
J Nanobiotechnology ; 14(1): 58, 2016 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-27412259

RESUMEN

BACKGROUND: Due to increasing antibiotic resistance, the use of silver coated single walled carbon nanotubes (SWCNTs-Ag) and antimicrobial peptides (APs) is becoming popular due to their antimicrobial properties against a wide range of pathogens. However, stability against various conditions and toxicity in human cells are some of the major drawbacks of APs and SWCNTs-Ag, respectively. Therefore, we hypothesized that APs-functionalized SWCNTs-Ag could act synergistically. Various covalent functionalization protocols described previously involve harsh treatment of carbon nanotubes for carboxylation (first step in covalent functionalization) and the non-covalently functionalized SWCNTs are not satisfactory. METHODS: The present study is the first report wherein SWCNTs-Ag were first carboxylated using Tri sodium citrate (TSC) at 37 °C and then subsequently functionalized covalently with an effective antimicrobial peptide from Therapeutic Inc., TP359 (FSWCNTs-Ag). SWCNTs-Ag were also non covalently functionalized with TP359 by simple mixing (SWCNTs-Ag-M) and both, the FSWCNTs-Ag (covalent) and SWCNTs-Ag-M (non-covalent), were characterized by Fourier transform infrared spectroscopy (FT-IR), Ultraviolet visualization (UV-VIS) and transmission electron microscopy (TEM). Further the antibacterial activity of both and TP359 were investigated against two gram positive (Staphylococcus aureus and Streptococcus pyogenes) and two gram negative (Salmonella enterica serovar Typhimurium and Escherichia coli) pathogens and the cellular toxicity of TP359 and FSWCNTs-Ag was compared with plain SWCNTs-Ag using murine macrophages and lung carcinoma cells. RESULTS: FT-IR analysis revealed that treatment with TSC successfully resulted in carboxylation of SWCNTs-Ag and the peptide was indeed attached to the SWCNTs-Ag evidenced by TEM images. More importantly, the present study results further showed that the minimum inhibitory concentration (MIC) of FSWCNTs-Ag were much lower (~7.8-3.9 µg/ml with IC50: ~4-5 µg/ml) compared to SWCNTs-Ag-M and plain SWCNTs-Ag (both 62.6 µg/ml, IC50: ~31-35 µg/ml), suggesting that the covalent conjugation of TP359 with SWCNTs-Ag was very effective on their counterparts. Additionally, FSWCNTs-Ag are non-toxic to the eukaryotic cells at their MIC concentrations (5-2.5 µg/ml) compared to SWCNTs-Ag (62.5 µg/ml). CONCLUSION: In conclusion, we demonstrated that covalent functionalization of SWCNTs-Ag and TP359 exhibited an additive antibacterial activity. This study described a novel approach to prepare SWCNT-Ag bio-conjugates without loss of antimicrobial activity and reduced toxicity, and this strategy will aid in the development of novel and biologically important nanomaterials.


Asunto(s)
Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/química , Nanotubos de Carbono/química , Plata/química , Animales , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Línea Celular , Línea Celular Tumoral , Citratos/química , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Humanos , Macrófagos/citología , Macrófagos/efectos de los fármacos , Ratones , Pruebas de Sensibilidad Microbiana , Nanotubos de Carbono/ultraestructura , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/crecimiento & desarrollo , Plata/farmacología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Streptococcus pyogenes/efectos de los fármacos , Streptococcus pyogenes/crecimiento & desarrollo
20.
Theranostics ; 6(7): 969-85, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27217831

RESUMEN

Click chemistry combined with functional nanoparticles have drawn increasing attention in biochemical assays because they are promising in developing biosensors with effective signal transformation/amplification and straightforward signal readout for clinical diagnostic assays. In this review, we focus on the latest advances of biochemical assays based on Cu (I)-catalyzed 1, 3-dipolar cycloaddition of azides and alkynes (CuAAC)-mediated nanosensors, as well as the functionalization of nanoprobes based on click chemistry. Nanoprobes including gold nanoparticles, quantum dots, magnetic nanoparticles and carbon nanomaterials are covered. We discuss the advantages of click chemistry-mediated nanosensors for biochemical assays, and give perspectives on the development of click chemistry-mediated approaches for clinical diagnosis and other biomedical applications.


Asunto(s)
Química Clic/métodos , Pruebas Diagnósticas de Rutina/métodos , Nanoestructuras/administración & dosificación , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA