Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Environ Sci (China) ; 148: 665-682, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095198

RESUMEN

Emission characteristics of biogenic volatile organic compounds (BVOCs) from dominant tree species in the subtropical pristine forests of China are extremely limited. Here we conducted in situ field measurements of BVOCs emissions from representative mature evergreen trees by using dynamic branch enclosures at four altitude gradients (600-1690 m a.s.l.) in the Nanling Mountains of southern China. Composition characteristics as well as seasonal and altitudinal variations were analyzed. Standardized emission rates and canopy-scale emission factors were then calculated. Results showed that BVOCs emission intensities in the wet season were generally higher than those in the dry season. Monoterpenes were the dominant BVOCs emitted from most broad-leaved trees, accounting for over 70% of the total. Schima superba, Yushania basihirsuta and Altingia chinensis had relatively high emission intensities and secondary pollutant formation potentials. The localized emission factors of isoprene were comparable to the defaults in the Model of Emissions of Gases and Aerosols from Nature (MEGAN), while emission factors of monoterpenes and sesquiterpenes were 2 to 58 times of those in the model. Our results can be used to update the current BVOCs emission inventory in MEGAN, thereby reducing the uncertainties of BVOCs emission estimations in forested regions of southern China.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Bosques , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , China , Contaminantes Atmosféricos/análisis , Árboles , Estaciones del Año
2.
Plants (Basel) ; 13(17)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39273940

RESUMEN

Maize is highly susceptible to drought, which affects growth and yield. This study investigated how bacterial volatile organic compounds (BVOCs) affect maize drought tolerance. Drought reduced shoot size but increased root length, an adaptation for accessing deeper soil moisture. BVOCs from strain D12 significantly increased root length and shoot growth under drought conditions. Drought also altered root biochemistry, decreasing enzyme activity, and increased osmolyte levels. BVOCs from strains F11 and FS4-14 further increased osmolyte levels but did not protect membranes from oxidative damage, while BVOCs from strains D12 and D7 strains reduced osmolyte levels and cell damage. In shoots, drought increased the levels of osmolytes and oxidative stress markers. BVOCs from FS4-14 had minimal effects on shoot biochemistry. BVOCs from D12 and F11 partially restored metabolic activity but did not reduce cell damage. BVOCs from D7 reduced metabolic activity and cell damage. These results suggest that BVOCs can modulate the biochemical response of maize to drought, with some strains evidencing the potential to enhance drought tolerance.

3.
Molecules ; 29(17)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39275045

RESUMEN

Posidonia oceanica significantly contributes to the health of oceans and coastal areas; however, its progressive decline is becoming an increasing source of concern. The present preliminary study aims to assess the chemical parameters that describe the state of preservation of the aforementioned plant meadows located in the Tremiti Islands archipelago. To better understand the plants' response to external factors, the emission of biogenic volatile organic compounds (BVOCs) was investigated using Posidonia oceanica as a biological indicator. Subsequently, the heavy metal concentrations (Ag, Al, As, Ba, Be, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Se, Sn, Ti, Tl, V, Zn) in sediments, leaves, and seawater were determined and pollution indicators were calculated to assess the deviation from the natural background levels of sediments. The dimethyl sulfoniopropionate (DMSP) to dimethyl sulfoxide (DMSO) ratio was calculated to evaluate the oxidative stress levels in the meadows because the DMSP naturally present in Posidonia oceanica is oxidized to DMSO and decreases the ratio of DMSP/DMSO. BVOC analysis revealed dimethyl sulphide (DMS) as the most abundant molecule. Morphological features led to variations in metal concentrations across sampling sites, with sheltered bays displaying a higher metal content. Degradation is indicated by a greater DMSO content in the outer leaves. In accordance with the metal content, the bioindicator ratio confirms greater degradation on the south side, which aligns with increased oxidative stress.


Asunto(s)
Alismatales , Islas , Metales Pesados , Alismatales/química , Italia , Metales Pesados/análisis , Compuestos Orgánicos Volátiles/análisis , Agua de Mar/química , Agua de Mar/análisis , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Sedimentos Geológicos/análisis , Contaminantes Químicos del Agua/análisis , Hojas de la Planta/química , Estrés Oxidativo
4.
Methods Protoc ; 7(4)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39195437

RESUMEN

This study focuses on the development and optimization of a water removal device for biogenic volatile organic compounds (BVOCs) from plant emissions. BVOCs play a crucial role in various ecological processes and have potential therapeutic effects on human health. However, it is challenging to accurately detect and analyze BVOCs due to their very low concentrations and interference by water vapor. This study systematically evaluates different filler materials and ratios to alleviate water vapor interference while maintaining BVOCs' integrity. The experimental results demonstrate that the combination of MgSO4 + Na2SO4 mixed filling and CuSO4 layered filling in a 3:3:1 ratio can effectively improve the collection efficiency and detection accuracy of BVOCs. Meanwhile, the effectiveness of the device in improving the detection of volatile compounds in plant samples is also confirmed by the VOC verification experiments on Michelia maudiae and Cinnamomum camphora tree species after mechanical damage. The experimental results show that the device is effective in improving the detection of volatile compounds in plant samples. The findings provide a powerful technical means for exploring the role of BVOCs in environmental monitoring and scientific research.

5.
Nanomaterials (Basel) ; 14(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38998727

RESUMEN

Detecting volatile organic compounds (VOCs) emitted from different plant species and their organs can provide valuable information about plant health and environmental factors that affect them. For example, limonene emission can be a biomarker to monitor plant health and detect stress. Traditional methods for VOC detection encounter challenges, prompting the proposal of novel approaches. In this study, we proposed integrating electrospinning, molecular imprinting, and conductive nanofibers to fabricate limonene sensors. In detail, polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) served here as fiber and cavity formers, respectively, with multiwalled carbon nanotubes (MWCNT) enhancing conductivity. We developed one-step monolithic molecularly imprinted fibers, where S(-)-limonene was the target molecule, using an electrospinning technique. The functional cavities were fixed using the UV curing method, followed by a target molecule washing. This procedure enabled the creation of recognition sites for limonene within the nanofiber matrix, enhancing sensor performance and streamlining manufacturing. Humidity was crucial for sensor working, with optimal conditions at about 50% RH. The sensors rapidly responded to S(-)-limonene, reaching a plateau within 200 s. Enhancing fiber density improved sensor performance, resulting in a lower limit of detection (LOD) of 137 ppb. However, excessive fiber density decreased accessibility to active sites, thus reducing sensitivity. Remarkably, the thinnest mat on the fibrous sensors created provided the highest selectivity to limonene (Selectivity Index: 72%) compared with other VOCs, such as EtOH (used as a solvent in nanofiber development), aromatic compounds (toluene), and two other monoterpenes (α-pinene and linalool) with similar structures. These findings underscored the potential of the proposed integrated approach for selective VOC detection in applications such as precision agriculture and environmental monitoring.

6.
Sci Total Environ ; 931: 172944, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38701919

RESUMEN

Air pollution poses a significant threat to public health, while biogenic volatile organic compounds (BVOCs) play a crucial role in both aspects. However, the unclear relationship between BVOCs and air pollutants in the under-canopy space limits the accuracy of air pollution control and the exploitation of forest healthcare functions. To clarify the variation of BVOCs in forest therapy bases, and their impacts on ozone (O3) and fine particulate matter (PM2.5) at nose height, total VOCs (TVOCs) in the forest were collected during typical sunny days, while air pollutants and meteorological factors were observed simultaneously. The results showed that the branch-level emissions of P. tabuliformis were dominated by healthcare-effective monoterpenoids, with only α-pinene having relative air concentrations of over 5 % in forest air samples. The correlation between concentrations of under-canopy TVOCs and emission rates of BVOCs from P. tabuliformis was weak (p > 0.09) in all seasons. However, the correlation between concentrations of TVOCs and the concentrations of O3 and PM2.5 showed clear seasonal differences. In spring, TVOCs only showed a significant negative correlation with PM2.5 in the forest (p < 0.01). In summer and autumn, TVOCs were significantly negatively correlated with both O3 (p < 0.001) and PM2.5 (p < 0.01). Specifically, the negative linear relationships were more pronounced for O3 and oxygenated VOCs in autumn (R2 = 0.40, p < 0.001) than for other relationships. The relationship between air pollutant concentrations inside and outside the forest also showed significant seasonal differences, generally characterized by a weaker correlation between them during seasons of strong emissions. Therefore, BVOCs in coniferous forests are health functions as they can provide healthcare effects and mitigate the concentration of air pollutants in the forest, and the establishment of forest therapy bases in rural areas with low NOx can be a sensible approach to promote good health, well-being, and sustainable development.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Monitoreo del Ambiente , Bosques , Ozono , Material Particulado , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Contaminación del Aire/estadística & datos numéricos , Ozono/análisis , Estaciones del Año
7.
Environ Res ; 252(Pt 1): 118844, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38579998

RESUMEN

Urban greening can improve cities' air quality by filtering the main gaseous pollutants such as tropospheric ozone (O3). However, the pollutant removal capacity offered by woody species strongly depends on eco-physiological and morphological traits. Woody species with higher stomatal conductance (gs) can remove more gases from the atmosphere, but other species can worsen air quality due to high O3 forming potential (OFP), based on their emitting rates of biogenic volatile organic compounds (bVOCs) and Leaf Mass per Area (LMA). Presently, there is a lack of data on eco-physiological (gs, bVOCs emissions) and foliar traits (LMA) for several ornamental species used in urban greening programs, which does not allow assessment of their O3 removal capacity and OFP. This study aimed to (i) parameterize gs, assess bVOCs emissions and LMA of 14 ornamental woody species commonly used in Mediterranean urban greening, and (ii) model their Net O3 uptake. The gs Jarvis model was parameterized considering various environmental conditions alongside isoprene and monoterpene foliar bVOCs emission rates trapped in the field and quantified by gas chromatography-mass spectrometry. The results are helpful for urban planning and landscaping; suggesting that Catalpa bignonioides and Gleditsia triacanthos have excellent O3 removal capacity due to their high maximum gs (gmax) equal to 0.657 and 0.597 mol H2O m-2 s-1. Regarding bVOCs, high isoprene (16.75 µg gdw-1 h-1) and monoterpene (13.12 µg gdw-1 h-1) emission rates were found for Rhamnus alaternus and Cornus mas. In contrast, no bVOCs emissions were detected for Camellia sasanqua and Paulownia tomentosa. In conclusion, 11 species showed a positive Net O3 uptake, while the use of large numbers of R. alaternus, C. mas, and Chamaerops humilis for urban afforestation planning are not recommended due to their potential to induce a deterioration of outdoor air quality.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Ozono/análisis , Contaminantes Atmosféricos/análisis , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo , Hojas de la Planta/metabolismo , Monitoreo del Ambiente/métodos
8.
Sci Total Environ ; 930: 172669, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38677435

RESUMEN

Isoprenoids (including isoprene (ISO) and monoterpenes (MTs)) are the majority of biogenic volatile organic compounds (BVOCs) which are important carbon-containing secondary metabolites biosynthesized by organisms, especially plant in terrestrial ecosystem. Results of the warming effects on isoprenoid emissions vary within species and warming facilities, and thus conclusions remain controversial. In this study, two typical subtropical tree species seedlings of Schima superba and Cunninghamia lanceolata were cultivated under three conditions, namely no warming (CK) and two warming facilities (with infrared radiators (IR) and heating wires (HW)) in open top chamber (OTC), and the isoprenoid emissions were measured with preconcentor-GC-MS system after warming for one, two and four months. The results showed that the isoprenoid emissions from S. superba and C. lanceolata exhibited uniformity in response to two warming facilities. IR and HW both stimulated isoprenoid emissions in two plants after one month of treatment, with increased ratios of 16.3 % and 72.5 % for S. superba, and 2.47 and 5.96 times for C. lanceolata. However, the emissions were suppressed after four months, with more pronounced effect for HW. The variation in isoprenoid emissions was primarily associated with the levels of Pn, Tr, monoterpene synthase (MTPS) activity. C. lanceolata predominantly released MTs (mainly α-pinene, α-terpene, γ-terpene, and limonene), with 39.7 % to 99.6 % of the total isoprenoid but ISO was only a very minor constituent. For S. superba, MTs constituted 24.7 % to 96.1 % of total isoprenoid. It is noteworthy that HW generated a greater disturbance to physiology activity in plants. Our study provided more comprehensive and more convincing support for integrating temperature-elevation experiments of different ecosystems and assessing response and adaptation of forest carbon cycle to global warming.


Asunto(s)
Cunninghamia , Terpenos , Terpenos/metabolismo , Terpenos/análisis , Contaminantes Atmosféricos/análisis , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo , Calentamiento Global , Asteraceae/metabolismo , Asteraceae/fisiología , Calor , Hemiterpenos , Butadienos
9.
Plants (Basel) ; 13(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38674517

RESUMEN

Tropospheric ozone (O3) pollution can affect plant nutritional quality and secondary metabolites by altering plant biochemistry and physiology, which may lead to unpredictable effects on crop quality and resistance to pests and diseases. Here, we investigated the effects of O3 (ambient air, Am; ambient air +80 ppb of O3, EO3) on the quality compounds and chemical defenses of a widely cultivated tea variety in China (Camellia sinensis cv. 'Baiye 1 Hao') using open-top chamber (OTC). We found that elevated O3 increased the ratio of total polyphenols to free amino acids while decreasing the value of the catechin quality index, indicating a reduction in leaf quality for green tea. Specifically, elevated O3 reduced concentrations of amino acids and caffeine but shows no impact on the concentrations of total polyphenols in tea leaves. Within individual catechins, elevated O3 increased the concentrations of ester catechins but not non-ester catechins, resulting in a slight increase in total catechins. Moreover, elevated O3 increased the emission of biogenic volatile organic compounds involved in plant defense against herbivores and parasites, including green leaf volatiles, aromatics, and terpenes. Additionally, concentrations of main chemical defenses, represented as condensed tannins and lignin, in tea leaves also increased in response to elevated O3. In conclusion, our results suggest that elevated ground-level O3 may reduce the quality of tea leaves but could potentially enhance the resistance of tea plants to biotic stresses.

10.
Plants (Basel) ; 13(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38475542

RESUMEN

The olive fruit fly (Bactrocera oleae Rossi) is the most dangerous pest of olive fruits and negatively influences the chemical and sensory quality of the oil produced. Organic farms have few tools against this pest and are constantly looking for effective and sustainable products such as geomaterials, i.e., zeolite. Since a particle film covers the canopy, a study was carried out on the olive tree's responses to zeolite foliar coating. The tested treatments were natural zeolite (NZ), zeolite enriched with ammonium (EZ), and Spintor-Fly® (SF). EZ was associated with higher photosynthetic activity with respect to the other treatments, while no differences were found between SF and NZ. Foliar treatments affect the amount of BVOC produced in both leaves and olives, where 26 and 23 different BVOCs (biogenic volatile organic compounds) were identified but not the type of compounds emitted. Foliar treatment with EZ significantly affected fruit size, and the olive fruit fly more frequently attacked the olives, while treatment with NZ had olives with similar size and attack as those treated with Spintor-Fly®; no difference in oil quantity was detected. Oil produced from olives treated with NZ presented higher values of phenolic content and intensities of bitterness and spiciness than oils from those treated with EZ and SF. According to the results of this study, using zeolite films on an olive tree canopy does not negatively influence plant physiology; it has an impact on BVOC emission and the chemical and sensory characteristics of the oil.

11.
Ecotoxicol Environ Saf ; 275: 116250, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38552387

RESUMEN

Forests emit a large amount of biogenic volatile organic compounds (BVOCs) in response to biotic and abiotic stress. Despite frequent occurrence of large forest fires in recent years, the impact of smoke stress derived from these forest fires on the emission of BVOCs is largely unexplored. Thus, the aims of the study were to quantify the amount and composition of BVOCs released by two sub-tropical tree species, Cunninghamia lanceolata and Schima superba, in response to exposure to smoke. Physiological responses and their relationship with BVOCs were also investigated. The results showed that smoke treatments significantly (p < 0.001) promoted short-term release of BVOCs by C. lanceolata leaves than S. superba; and alkanes, olefins and benzene homologs were identified as major classes of BVOCs. Both C. lanceolata and S. superba seedlings showed significant (p < 0.005) physiological responses after being smoke-stressed where photosynthetic rate remained unaffected, chlorophyll content greatly reduced and Activities of anti-oxidant enzymes and the malondialdehyde content generally increased with the increase in smoke concentration. Activities of anti-oxidant enzymes showed mainly positive correlations with the major BVOCs. In conclusion, the release of BVOCs following smoke stress is species-specific and there exists a link between activities of antioxidant enzymes and BVOCs released. The findings provide insight about management of forest fires in order to control excessive emission of smoke that would trigger increased release of BVOCs.


Asunto(s)
Compuestos Orgánicos Volátiles , Incendios Forestales , Árboles , Antioxidantes , Fumar
12.
Sci Total Environ ; 914: 169762, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38176560

RESUMEN

Accurate estimation of biogenic volatile organic compounds (BVOCs) emissions from urban plants is important as BVOCs affect the formation of secondary pollutants and human health. However, uncertainties exist for the estimation of BVOCs emissions from urban greenspace due to the lack of tree species classification with high spatial resolution. Here, we generated a tree species classification dataset with 10 m resolution to estimate tree species-level BVOCs emissions and quantify their impact on air quality in Shenzhen in southern China. The results showed that for the entire city, the BVOCs emissions based on traditional plant functional types (PFTs) dataset were substantially underestimated compared with the tree species classification data (6.37 kt versus 8.23 kt, with 22.60 % difference). The underestimation is particularly prominent in urban built-up areas, where our estimation was 1.65 kt, nearly twice of that based on PFTs data (0.86 kt). BVOCs estimation in built-up areas contributed approximately 20.07 % to the total. These BVOCs contributed substantially to the increase of ambient O3, but had limited impacts to ambient fine particulate matter (PM2.5). Our results underscore the importance of high spatial resolution tree species-level classification in more accurate estimation of BVOCs, especially in highly developed urban areas. The enhanced understanding of the patterns of BVOCs emissions by urban trees and the impact on secondary pollutants can better support fine-scale tree planning and management for livable environments in urban areas.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Ambientales , Ozono , Compuestos Orgánicos Volátiles , Humanos , Árboles , Contaminantes Atmosféricos/análisis , Compuestos Orgánicos Volátiles/análisis , Parques Recreativos , Material Particulado/análisis , Plantas , Ozono/análisis
13.
J Environ Manage ; 353: 120121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38281423

RESUMEN

Volatile organic compounds (VOCs) are the precursors of forming ozone (O3) and fine particulate matter (PM2.5). Accurate estimates of biogenic VOC (BVOC) emissions is essential for understanding the formation mechanism of O3 and PM2.5 pollution and precise reduction on anthropogenic emissions and thereby mitigating O3 and PM2.5 pollution. To gain comprehensive knowledge of BVOC emissions and improve the accuracy of their estimation, this study reviewed localized national, regional, and municipal emission estimations in China. From their comparisons, BVOC emission characteristics and deficiencies in the inventory compilation methodology were also investigated. The estimated BVOC emissions in China ranged between 10 and 58.9 Tg yr-1 and 10.9-18.9 Tg C yr-1, with diverse contributions for different BVOC categories. The simulated historical and future BVOC emissions exhibited an increasing trend. The uncertainty of the BVOC estimates was mainly from the applications of incomplete emission models, less localized accurate emission factors, deficient vegetation cover information, and low-resolution meteorological data in the inventory compilation. The regional and municipal BVOC emission inventories mainly focused on the Beijing-Tianjin-Hebei, Pearl River Delta, Sichuan Basin, and Yangtze River Delta regions, as well as the cities therein. For the same area, different studies reported diverse BVOC emissions by a maximum of two orders of magnitude. There is usually a lack of basic data with more detailed investigations and higher precision for estimation of BVOC emissions. By summarizing the measurements on terrestrial and marine BVOC emission fluxes, they are mainly focused on the Guangdong, Zhejiang and Jiangxi provinces, and Yellow Sea, East China Sea, and South China Sea, respectively. Expanding the temporal and spatial scales of observations is encouraged to enhance our understanding on the emissions and improve the emission estimates.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Compuestos Orgánicos Volátiles/análisis , Monitoreo del Ambiente , China , Material Particulado
14.
Heliyon ; 10(1): e23822, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38192865

RESUMEN

A measurement campaign was conducted on San Domino Island, part of the Tremiti Islands archipelago, located in Foggia, Italy. The area is almost entirely covered by vegetation, dominated by the following main species: Juniperus turbinata, Helichrysum italicum, Myrtus communis, Rosmarinus officinalis, Pistacia lentiscus and Pinus halepensis.This study focused on the BVOCs emitted by plants and the ground, employing a simple, economical, and efficient sampling and analysis method. The main known BVOC species emitted by Mediterranean plant species as α-pinene, ß-pinene, camphene and limonene were detected. The measurements highlighted a daily complementarity between plant and soil emissions. The daily variations in BVOCs emitted by both plants and the soil are differ, ensuring an almost constant concentration throughout the day. At the same time, the composition of sea spray aerosol (SSA) was also measured. The measurement sites were selected based on botanical characterization to account for the predominant species on San Domino Island, and the sampling was conducted at human height to accurately identify the species for potential use. The combination of beneficial effects of the substances emitted by plant species and soil, along with the simultaneous presence of SSA, are factors that could enhance the effectiveness of forest therapy in a previously unexplored location.

15.
Environ Sci Pollut Res Int ; 30(60): 125478-125491, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37999843

RESUMEN

Concerns about volatile organic compounds (VOCs) have increased due to their toxicity and secondary reaction with nitrogen oxides (NOX) to form ozone (O3). In this study, passive air sampling of VOCs, O3, NO2, and SO2 was conducted in summer, fall, winter, and spring from 2019 to 2020 at six industrial and ten urban sites in Ulsan, the largest industrial city in South Korea. Over the entire sampling period, the concentration of toluene (mean: 8.75 µg/m3) was the highest of the 50 target VOCs, followed by m,p-xylenes (4.52 µg/m3), ethylbenzene (4.48 µg/m3), 3-methylpentane (4.40 µg/m3), and n-octane (4.26 µg/m3). Total (Σ50) VOC levels did not statistically differ between seasons, indicating that large amounts of VOCs are emitted into the atmosphere throughout the year. On the other hand, O3, NO2, and SO2 exhibited strong seasonal variation depending on the meteorological conditions and emission sources. The spatial distribution of Σ50 VOCs, NO2, and SO2 indicated that industrial complexes were major sources in Ulsan, while O3 had the opposite spatial distribution. Using a positive matrix factorization model, five major sources were identified, with industrial effects dominant. Aromatic compounds, such as m,p,o-xylenes, toluene, and 1,2,4-trimethylbenzene, significantly contributed to O3 formation. The VOC/NO2 ratio and O3 concentrations suggested that reducing VOC emissions is more effective than reducing NO2 emissions in terms of preventing the secondary formation of O3. The findings of this study allow for a better understanding of the relationship between VOCs, O3, NO2, and SO2 in industrial cities.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Xilenos , Ozono/análisis , Ciudades , Compuestos Orgánicos Volátiles/análisis , Dióxido de Nitrógeno , Monitoreo del Ambiente , República de Corea , Tolueno , China , Emisiones de Vehículos/análisis
17.
Sci Total Environ ; 902: 165877, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37549697

RESUMEN

Biogenic volatile organic compounds (BVOCs), which are produced and emitted by plants, have significant chemical reactivity in the atmosphere and impacting climate change. Qinghai Province, a vital component of the plateau, has abundant vegetation resources, primarily grasslands and forests, yet BVOCs emissions and their impact on air quality remain understudied. In this study, the emissions rates and compositions of BVOCs from seven dominant vegetation types in Qinghai Province were sampled and analyzed using a closed-loop stripping dynamic headspace sampling approach combined with GC-MS, and the total emissions of BVOCs in Qinghai province in 2021 were estimated by using G95 model. At the same time, the emission characteristics of various vegetation types were also analyzed. The results showed that the emissions rates and compositions of BVOCs differed significantly among vegetation types, with monoterpenes being the dominant emission composition in coniferous forests, which accounted for >70 % of the total BVOCs emissions, while isoprene being the main composition in alpine meadow, accounting for 84.96 %. The emissions of three typical vegetation types, Picea asperata, alpine meadow and alpine steppe, were monitored daily, revealing significant diurnal and clear unimodal patterns. The study also found that the annual average BVOCs emissions from vegetation sources in Qinghai Province were estimated to be 1550.63 Gg yr-1, with isoprene contributing the highest proportion of emissions, accounting for 56.94 %. Grassland was the largest BVOCs emission source in Qinghai Province, with an annual average emission of 1438.52 Gg yr-1. Additionally, BVOCs emissions in Qinghai Province showed strong seasonal and daily variation patterns, with the highest emissions occurring in summer, with the peak in July. These findings provide the characteristics of BVOCs emissions from vegetation sources in the Tibetan Plateau, which will contribute to a better understanding of their impact on atmospheric chemistry and climate change.


Asunto(s)
Contaminantes Atmosféricos , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Contaminantes Atmosféricos/análisis , Tibet , Bosques
18.
Sci Total Environ ; 894: 165082, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37355121

RESUMEN

Biogenic volatile organic compound (BVOC) (such as isoprene (ISO) and monoterpenes (MTs)) emissions from plants play a great role in the atmospheric chemistry. Now frequency of dramatic changes of weather such as transient temperature changing increases, most current studies focus on the effects of simulating climate change (long-term) on BVOC emissions. While studies of transient effects on that are less reported. This study aimed to identify the ISO and MT emissions and the related physiological processes in the short-term scale at different temperature (T) and light intensity (PAR), in seeding stage of Schima superba and Phoebe bournei belonging to typical subtropical tree species. The results showed that the ISO and MT emissions were significantly affected by T and PAR, either independently or interactively. With the increase of T and PAR, the ISO and MT emissions increased, with the maximum rates of ISO and MTs of 39.39 and 1042.35 pmol m-2 s-1 for S. superba under 40 °C × 500 µmol m-2 s-1 condition, while the maximum rates reached 18.73 and 6737.41 pmol m-2 s-1 at 30 °C × 1500 µmol m-2 s-1 for P. bournei. The increase of ISO and MT emissions with T and PAR increasing that was related to the promotion of Pn and gs in plants. Regarding MT components, the proportion of α-pinene decreased with T and PAR increasing, with the lowest ratios of 4.91 % and 21.16 % for S. superba and P. bournei under 40 °C × 1500 µmol m-2 s-1 condition. However, the proportion of ß-pinene significantly increased, with the highest ratios of 67.42 % and 57.93 % for S. superba and P. bournei under 30 °C × 1500 µmol m-2 s-1 condition, which is attributed to differences in light tolerance between the two plants. Our study provides basis for evaluating the transient changes of environmental factors on BVOC emissions and optimizing regional BVOC emission models.


Asunto(s)
Monoterpenos , Compuestos Orgánicos Volátiles , Temperatura , Hemiterpenos , Árboles , Plantas
19.
Food Chem ; 420: 136068, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37043993

RESUMEN

Volatile organic compounds produced by bacteria (BVOCs) have been proven to effect the postharvest metabolism of fruits and vegetables. The quality, color and antioxidant capacity of membrane lipids of broccoli in storage were effectively maintained by fumigation with BVOCs produced by Lysinibacillus fusiformis combined with white light emitting diode (LED) technology. An analysis of the transcriptome and metabolome of broccoli treated with the combined LED-BVOCs technology resulted in the identification of 49 differentially expressed genes (DEGs) and 13 differentially abundant metabolites (DAMs) involved in photosynthesis (32/0 DEGs upregulated/downregulated; 0/0 DAMs with increased/decreased abundance), chlorophyll (7/0; 1/2), carotenoid (5/0; 1/4) and flavonoid (3/3; 3/2) metabolism. The maintenance of green color in harvested broccoli treated by LED-BVOCs was associated with DEGs and DAMs that inhibited chlorophyll degradation and carotenoid accumulation. Our study provides a theoretical basis for understanding the delayed senescence of broccoli during storage using BVOCs-LED technology.


Asunto(s)
Brassica , Brassica/metabolismo , Antioxidantes/farmacología , Carotenoides/metabolismo , Clorofila/metabolismo , Regulación de la Expresión Génica de las Plantas
20.
Molecules ; 28(3)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36770845

RESUMEN

In this work, a new analytical approach is proposed for monitoring biogenic volatile organic compounds (BVOCs) by combining headspace bar adsorptive microextraction (HS-BAµE) with gas chromatography-mass spectrometry (GC-MS). The HS-BAµE methodology was developed, optimized, validated and applied for the analysis of BVOCs emitted from two tree species (Eucalyptus globulus Labill. and Pinus pinaster Aiton) and compared with headspace solid phase microextraction (HS-SPME), commonly accepted as a reference technique. To achieve optimum experimental conditions, numerous assays were carried out by both methodologies, studying the release of the five major monoterpenoids (α-pinene, ß-pinene, myrcene, limonene and 1,8-cineole) from the leaves of the tree species, whereas the maximum selectivity and efficiency were obtained using an activated carbon and PDMS/DVB fiber as sorbent phases for HS-BAµE and HS-SPME, respectively. Under optimized experimental conditions, both methodologies showed similar profiling and proportional responses, although the latter present a higher sensitivity in the analytical configuration used. For the five monoterpenoids studied, acceptable detection limits (LODs = 5.0 µg L-1) and suitable linear dynamic ranges (20.0-100.0 mg L-1; r2 ≥ 0.9959) were achieved, and intra- and inter-day studies proved that both methodologies exhibited good results (RSD and %RE ≤ 19.9%), which indicates a good fit for the assessment of BVOCs by the HS-BAµE/GC-MS methodology. Assays performed on sampled leaves by both optimized and validated methodologies showed high levels of the five major BVOCs released from E. globulus Labill. (10.2 ± 1.3 to 7828.0 ± 40.0 µg g-1) and P. pinaster Aiton (9.2 ± 1.4 to 3503.8 ± 396.3 µg g-1), which might act as potential fuel during forest fire's propagation, particularly under extreme atmospheric conditions. This is the first time that BAµE technology was applied in the HS sampling mode, and, in addition to other advantages, it has proven to be an effective and promising analytical alternative for monitoring VOCs, given its great simplicity, easy handling and low cost.


Asunto(s)
Árboles , Compuestos Orgánicos Volátiles , Adsorción , Microextracción en Fase Sólida/métodos , Cromatografía de Gases y Espectrometría de Masas , Eucaliptol
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA