Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Cancer ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38975879

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) remains the most lethal cancer type. PDAC is characterized by fibrotic, hypoxic, and presumably acidic tumor microenvironment (TME). Acidic TME is an important player in tumor development, progression, aggressiveness, and chemoresistance. The dysregulation of ductal ion transporters/channels might contribute to extracellular pH (pHe) acidification and PDAC progression. Our aim was to test whether H+/K+-ATPases and pH-sensitive K+ channels contribute to these processes and could be targeted by clinically approved drugs. We used human pancreatic cancer cells adapted to various pHe conditions and grown in monolayers and spheroids. First, we created cells expressing pHoran4 at the outer plasma membrane and showed that pantoprazole, the H+/K+-ATPase inhibitor, alkalinized pHe. Second, we used FluoVolt to monitor the membrane voltage (Vm) and showed that riluzole hyperpolarized Vm, most likely by opening of pH-sensitive K+ channels such as TREK-1. Third, we show that pantoprazole and riluzole inhibited cell proliferation and viability of monolayers and spheroids of cancer cells adapted to various pHe conditions. Most importantly, combination of the two drugs had significantly larger inhibitory effects on PDAC cell survival. We propose that co-targeting H+/K+-ATPases and pH-sensitive K+ channels by re-purposing of pantoprazole and riluzole could provide novel acidosis-targeted therapies of PDAC.

2.
Biol Chem ; 404(4): 355-375, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36774650

RESUMEN

Modulation of two-pore domain potassium (K2P) channels has emerged as a novel field of therapeutic strategies as they may regulate immune cell activation and metabolism, inflammatory signals, or barrier integrity. One of these ion channels is the TWIK-related potassium channel 1 (TREK1). In the current study, we report the identification and validation of new TREK1 activators. Firstly, we used a modified potassium ion channel assay to perform high-throughput-screening of new TREK1 activators. Dose-response studies helped to identify compounds with a high separation between effectiveness and toxicity. Inside-out patch-clamp measurements of Xenopus laevis oocytes expressing TREK1 were used for further validation of these activators regarding specificity and activity. These approaches yielded three substances, E1, B3 and A2 that robustly activate TREK1. Functionally, we demonstrated that these compounds reduce levels of adhesion molecules on primary human brain and muscle endothelial cells without affecting cell viability. Finally, we studied compound A2 via voltage-clamp recordings as this activator displayed the strongest effect on adhesion molecules. Interestingly, A2 lacked TREK1 activation in the tested neuronal cell type. Taken together, this study provides data on novel TREK1 activators that might be employed to pharmacologically modulate TREK1 activity.


Asunto(s)
Canales de Potasio de Dominio Poro en Tándem , Humanos , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Células Endoteliales/metabolismo , Enfermedades Neuroinflamatorias , Encéfalo/metabolismo , Moléculas de Adhesión Celular/metabolismo
3.
Front Pharmacol ; 12: 705421, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34267666

RESUMEN

Pulmonary arterial hypertension (PAH) is an aggressive vascular remodeling disease that carries a high morbidity and mortality rate. Treprostinil (Remodulin) is a stable prostacyclin analogue with potent vasodilatory and anti-proliferative activity, approved by the FDA and WHO as a treatment for PAH. A limitation of this therapy is the severe subcutaneous site pain and other forms of pain experienced by some patients, which can lead to significant non-compliance. TWIK-related potassium channels (TREK-1 and TREK-2) are highly expressed in sensory neurons, where they play a role in regulating sensory neuron excitability. Downregulation, inhibition or mutation of these channels leads to enhanced pain sensitivity. Using whole-cell patch-clamp electrophysiological recordings, we show, for the first time, that treprostinil is a potent antagonist of human TREK-1 and TREK-2 channels but not of TASK-1 channels. An increase in TASK-1 channel current was observed with prolonged incubation, consistent with its therapeutic role in PAH. To investigate treprostinil-induced inhibition of TREK, site-directed mutagenesis of a number of amino acids, identified as important for the action of other regulatory compounds, was carried out. We found that a gain of function mutation of TREK-1 (Y284A) attenuated treprostinil inhibition, while a selective activator of TREK channels, BL-1249, overcame the inhibitory effect of treprostinil. Our data suggests that subcutaneous site pain experienced during treprostinil therapy may result from inhibition of TREK channels near the injection site and that pre-activation of these channels prior to treatment has the potential to alleviate this nociceptive activity.

4.
Biochim Biophys Acta ; 1862(10): 1994-2003, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27443495

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers and new therapeutic targets are urgently needed. One of the hallmarks of cancer is changed pH-homeostasis and potentially pH-sensors may play an important role in cancer cell behavior. Two-pore potassium channels (K2P) are pH-regulated channels that conduct a background K(+) current, which is involved in setting the plasma membrane potential (Vm). Some members of the K2P superfamily were reported as crucial players in driving tumor progression. The aim of this study was to investigate pH-regulated K(+) currents in PDAC cells and determine possible effects on their pathological phenotype. Using a planar high-throughput patch-clamp system (SyncroPatch 384PE) we identified a pH-regulated K(+) current in the PDAC cell line BxPC-3. The current was inhibited by extracellular acidification and intracellular alkalization. Exposure to a set of different K(+) channel inhibitors, and the TREK-1 (K2P2.1)-specific activator BL1249, TREK-1 was identified as the main component of pH-regulated current. A voltage-sensor dye (VF2.1.Cl) was used to monitor effects of pH and BL1249 on Vm in more physiological conditions and TREK-1-mediated current was found as critical player in setting Vm. We assessed a possible role of TREK-1 in PDAC progression using cell proliferation and migration assays and observed similar trends with attenuated proliferation/migration rates in acidic (pH<7.0) and alkaline (pH>7.4) conditions. Notably, BL1249 inhibited both PDAC cell proliferation and migration indicating that hyperpolarization of Vm attenuates cancer cell behavior. TREK-1 may therefore be a promising novel target for PDAC therapy.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Movimiento Celular , Proliferación Celular , Potenciales de la Membrana , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Humanos , Concentración de Iones de Hidrógeno , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Canales de Potasio de Dominio Poro en Tándem/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA