Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Invertebr Pathol ; 205: 108129, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38754546

RESUMEN

Bacillus thuringiensis (Bt) Cry2Aa is a member of the Cry pore-forming, 3-domain, toxin family with activity against both lepidopteran and dipteran insects. Although domains II and III of the Cry toxins are believed to represent the primary specificity determinant through specific binding to cell receptors, it has been proposed that the pore-forming domain I of Cry2Aa also has such a role. Thus, a greater understanding of the functions of Cry2Aa's different domains could potentially be helpful in the rational design of improved toxins. In this work, cry2Aa and its domain fragments (DI, DII, DIII, DI-II and DII-DIII) were subcloned into the vector pGEX-6P-1 and expressed in Escherichia coli. Each protein was recognized by anti-Cry2Aa antibodies and, except for the DII fragment, could block binding of the antibody to Cry2Aa. Cry2Aa and its DI and DI-II fragments bound to brush border membrane vesicles (BBMV) from H. armigera and also to a ca 150 kDa BBMV protein on a far western (ligand) blot. In contrast the DII, DIII and DII-III fragments bound to neither of these. None of the fragments were stable in H. armigera gut juice nor showed any toxicity towards this insect. Our results indicate that contrary to the general model of Cry toxin activity domain I plays a role in the binding of the toxin to the insect midgut.


Asunto(s)
Toxinas de Bacillus thuringiensis , Proteínas Bacterianas , Endotoxinas , Proteínas Hemolisinas , Mariposas Nocturnas , Animales , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Toxinas de Bacillus thuringiensis/metabolismo , Proteínas Bacterianas/metabolismo , Mariposas Nocturnas/metabolismo , Mariposas Nocturnas/microbiología , Sitios de Unión , Bacillus thuringiensis/metabolismo , Control Biológico de Vectores , Dominios Proteicos , Helicoverpa armigera
2.
J Sci Food Agric ; 104(11): 6769-6777, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38563403

RESUMEN

BACKGROUND: The general assumption that prebiotics reach the colon without any alterations has been challenged. Some in vitro and in vivo studies have demonstrated that 'non-digestible' oligosaccharides are digested to different degrees depending on their structural composition. In the present study, we compared different methods aiming to assess the digestibility of oligosaccharides synthesized by ß-galactosidase (ß-gal) of Lactobacillus delbruecki subsp. bulgaricus CRL450 (CRL450-ß-gal) from lactose, lactulose and lactitol. RESULTS: In the simulated gastrointestinal fluid method, no changes were observed. However, the oligosaccharides synthesized by CRL450-ß-gal were partially hydrolyzed in vitro, depending on their structure and composition, with rat small intestinal extract (RSIE) and small intestinal brush-border membrane vesicles (BBMV) from pig. Digestion of some oligosaccharides increased when mixtures were fed to C57BL/6 mice used as in vivo model; however, lactulose-oligosaccharides were the most resistant to the physiological conditions of mice. In general ß (1→6) linked products showed higher resistance compared to ß (1→3) oligosaccharides. CONCLUSION: In vitro digestion methods, without disaccharidases, may underestimate the importance of carbohydrates hydrolysis in the small intestine. Although BVMM and RSIE digestion assays are appropriate in vitro methods for these studies, in vivo studies remain the most reliable for understanding what actually happens in the digestion of oligosaccharides. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Digestión , Ratones Endogámicos C57BL , Oligosacáridos , Prebióticos , beta-Galactosidasa , Prebióticos/análisis , Animales , beta-Galactosidasa/metabolismo , beta-Galactosidasa/química , Oligosacáridos/metabolismo , Oligosacáridos/química , Ratones , Ratas , Porcinos , Masculino , Lactulosa/metabolismo , Lactulosa/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Intestino Delgado/metabolismo , Intestino Delgado/enzimología , Lactobacillus/metabolismo , Lactobacillus/enzimología , Hidrólisis , Lactosa/metabolismo , Lactosa/química
3.
J Proteomics ; 261: 104580, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35427801

RESUMEN

The Asian citrus psyllid, Diaphorina citri, is the vector of Candidatus Liberibacter asiaticus (CLas), the presumed causative agent of citrus greening disease. For successful transmission, CLas must cross the gut barrier, requiring interaction with proteins on the midgut epithelium. We compared the relative abundance of gut surface proteins for both adult and nymph D. citri, as nymphs are particularly susceptible to CLas infection. To enrich for gut surface proteins, brush border membrane vesicles were prepared from dissected guts, and proteins identified from triplicate samples run on a timsTOF mass spectrometer. A total of 1516 and 1219 proteins were identified from D. citri adults and nymphs respectively. Based on bioinformatics analysis software and manual curation, 112 adult and 87 nymph proteins were predicted to localize to the surface of the microvilli and were further categorized into integral membrane and glycosylphosphatidylinositol (GPI)-anchored proteins. Proteins exploited by insect pathogens such as aminopeptidase, alkaline phosphatase, cadherin, ABC transporters, and carboxypeptidase were among the most abundant proteins on the gut surface. In addition to providing insights into hemipteran gut physiology, the D. citri gut surface proteome will inform novel approaches to interfere with CLas interaction with the psyllid gut to prevent the spread of citrus greening. BIOLOGICAL SIGNIFICANCE: The Asian citrus psyllid (ACP), D. citri is one of the most serious pests of citrus worldwide. ACP transmits the pathogenic bacterium that causes citrus greening or huanglongbing (HLB), which has resulted in severe economic losses in global citriculture. The putative causative agent of this disease, the gram-negative bacterium Candidatus Liberibacter asiaticus (CLas), is vectored by the Asian citrus psyllid, D. citri, in a persistent and circulative manner. CLas must interact with gut surface proteins in order to enter midgut epithelial cells. However, the specific proteins exploited by CLas have yet to be identified. The characterization of the most abundant proteins on the surface of the D. citri gut provides insight into candidate receptors for CLas and other pathogens of D. citri. We hypothesize that pathogens of D. citri exploit the most abundant proteins on the surface of the gut for entry into the host insect. Importantly, the abundant gut surface proteins will provide the basis for novel approaches to disrupt CLas-D. citri interactions, with the goal of preventing further economic loss to the citrus industry.


Asunto(s)
Citrus , Hemípteros , Rhizobiaceae , Animales , Citrus/microbiología , Proteínas de la Membrana , Ninfa/microbiología , Ninfa/fisiología , Enfermedades de las Plantas/microbiología , Rhizobiaceae/fisiología
4.
Front Microbiol ; 12: 802035, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35250907

RESUMEN

The secretory insecticidal protein Sip1Ab and crystal protein Cry8Ca from Bacillus thuringiensis (Bt) are widely recognized for their coleopteran insecticidal activities. It is worthwhile to investigate the insecticidal mechanisms of these two proteins against Colaphellus bowringi Baly, which is a serious pest of cruciferous vegetables in China and other Asian countries. To that end, the genes encoding the Sip1Ab and Cry8Ca proteins were amplified from the strain QZL38 genome, then expressed in Escherichia coli, after which bioassays were conducted in C. bowringi larvae. After feeding these two proteins, the histopathological changes in the midguts of C. bowringi larvae were observed using transmission electron microscopy (TEM), and the Brush Border Membrane Vesicle (BBMV) was extracted for competition binding assays. TEM showed that ingestion of Sip1Ab caused a significant reduction in growth of the larvae, disruption of midgut microvilli, and expansion of intercellular spaces. Competition binding assays demonstrated that Sip1Ab bound to C. bowringi BBMV with a high binding affinity. However, a mixture of the two proteins in equal proportions showed no significant difference in insecticidal activity from that of Sip1Ab. These results could provide a molecular basis for the application of Sip1Ab in coleopteran insect control and contribute to the study of the Sip1Ab insecticidal mechanism as well.

5.
J Nutr Sci Vitaminol (Tokyo) ; 66(1): 60-67, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32115455

RESUMEN

A treatment for hyperphosphatemia would be expected to reduce mortality rates for CKD and dialysis patients. Although rodent studies have suggested sodium-dependent phosphate transporter type IIb (NaPi-IIb) as a potential target for hyperphosphatemia, NaPi-IIb selective inhibitors failed to achieve efficacy in human clinical trials. In this study, we analyzed phosphate metabolism in rats, dogs, and monkeys to confirm the species differences. Factors related to phosphate metabolism were measured and intestinal phosphate absorption rate was calculated from fecal excretion in each species. Phosphate uptake by intestinal brush border membrane vesicles (BBMV) and the mRNA expression of NaPi-IIb, PiT-1, and PiT-2 were analyzed. In addition, alkaline phosphatase (ALP) activity was evaluated. The intestinal phosphate absorption rate, including phosphate uptake by BBMV and NaPi-IIb expression, was the highest in dogs. Notably, urinary phosphate excretion was the lowest in monkeys, and their intestinal phosphate absorption rate was by far the lowest. Dogs and rats showed positive correlations between Vmax/Km of phosphate uptake in BBMV and NaPi-IIb expression. Although phosphate uptake was observed in the BBMV of monkeys, NaPi-IIb expression was not detected and ALP activity was low. This study revealed significant species differences in intestinal phosphate absorption. NaPi-IIb contributes to intestinal phosphate uptake in rats and dogs. However, in monkeys, phosphate is poorly absorbed due to the slight degradation of organic phosphate in the intestine.


Asunto(s)
Absorción Intestinal/fisiología , Microvellosidades/metabolismo , Fosfatos/metabolismo , Fosfatasa Alcalina/metabolismo , Animales , Perros , Haplorrinos , Ratas , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIb/análisis , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIb/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIb/metabolismo , Especificidad de la Especie
6.
Food Res Int ; 129: 108811, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32036892

RESUMEN

Enzymatic transgalactosylation, in different concentrated carbohydrate solutions, was investigated using brush border membrane vesicles (BBMV) from the pig small intestine. When lactulose was incubated with BBMV, the hydrolytic activity of the enzyme towards the disaccharide was observed to be very low compared to that towards the lactose, but the linkage specificity ß-(1 â†’ 3), previously observed in lactose solutions, was not significantly affected. As in the case of lactose, lactulose transgalactosylation by BBMV synthesizes the corresponding 3'-galactosyl derivative (ß-Gal-(1 â†’ 3)-ß-Gal-(1 â†’ 4)-ß-Fru). Fructose released during lactulose hydrolysis was found to be good acceptor for the transgalactosylation reaction, giving rise to the synthesis of the disaccharide ß-Gal-(1 â†’ 5)-Fru. When incubating an 80/20 mixture of lactulose/galactose, the presence of galactose did not affect the qualitative composition of the transglycosylated substrate but enhanced the synthesis of ß-Gal-(1 â†’ 5)-Fru and decreased the synthesis of ß-(1 â†’ 3) glycosidic bonds. The marked tendency for synthesizing this linkage indicates that under hydrolytic conditions, ß-Gal-(1 â†’ 3)-Gal- and ß-Gal-(1 â†’ 5)-Fru glycosidic bonds would be preferentially digested.


Asunto(s)
Galactosa/metabolismo , Intestino Delgado/metabolismo , Lactosa/metabolismo , Lactulosa/metabolismo , Microvellosidades/metabolismo , beta-Galactosidasa/metabolismo , Animales , Hidrólisis , Lactasa/metabolismo , Porcinos
7.
Saudi J Biol Sci ; 26(5): 1078-1083, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31303843

RESUMEN

Black cutworm (BCW) is an economically important lepidopteran insect. The control of this insect by a Bt toxin and the understanding of the interaction between the Bt toxin and its receptor molecule were the objectives of this research work. A gene coding for a Vip3A receptor molecule was identified, characterized, and cloned, from the brush border membrane vesicles (BBMV) of the BCW. The nucleotide sequence analysis of the cloned putative Vip3A-receptor gene revealed that the gene was 1.3-kb long and exhibited no homology with any gene in the gene bank. We succeeded in identifying and characterizing most of the Vip3A-receptor gene sequence; and the nucleotide sequence analysis of the cloned putative Vip3A-receptor gene (accession no. KX858809) revealed about 92% of the expected sequence was recovered, which exhibited no homology with any gene in the GenBank.

8.
Int J Biol Macromol ; 137: 562-567, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31238073

RESUMEN

Cry2A is widely used in transgenic crops in combination with Cry1A toxins. The sensitive and robust detection of Cry2A toxin in food and the environment is necessary to monitor the safety of biopesticides. Here, we describe an approach that involves the use of phage-displayed peptide for the detection of Cry2Ad2-3-the main area of Cry2Ad2 insecticidal activity. After four rounds of panning, six positive monoclonal phage particles were obtained. Pep5 with a sequence of ACSYNHNSKCGGG displayed low cross-reactivity with other Cry toxins. The working range of detection for Cry2Ad2-3 toxin standards in the brush border membrane vesicle (BBMV)-peptide sandwich ELISA was 10-50.625 ng mL-1 and the detection limit (LOD) was 8 ng mL-1. Molecular insight into the interaction of pep5 with Cry2Ad2-3 was gleaned using homology modeling and docking. Molecular docking results showed that high-affinity peptide tended to dock in the groove between the two domains of Cry2Ad2-3. The interactions within the toxin-pep5 complex were due to hydrogen bond and hydrophobic interaction. Pep5 also lead us to trap the binding region. Therefore, peptides may be a cost-efficient alternative for detecting Cry toxins and studying their mechanisms.


Asunto(s)
Proteínas Bacterianas/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Sondas Moleculares/metabolismo , Biblioteca de Péptidos , Péptidos/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/química , Sitios de Unión , Endotoxinas/química , Proteínas Hemolisinas/química , Simulación del Acoplamiento Molecular , Conformación Proteica
9.
Toxicol Rep ; 6: 389-394, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31080746

RESUMEN

Indomethacin (IndoM) has prominent anti-inflammatory and analgesic-antipyretic properties. However, high incidence and severity of side-effects on the structure and functions of the kidney, liver and intestine limits its clinical use. The present study tested the hypothesis that IndoM causes multi-organ toxicity by inducing oxidative stress that alters the structure of various cellular membranes, metabolism and hence functions. The effect of IndoM was determined on the enzymes of carbohydrate metabolism, brush border membrane (BBM) and oxidative stress in the rat kideny, liver and intestine to understand the mechanism of IndoM induced toxicity. Adult male Wister rats were given IndoM (20 mg/kg) intra-peritoneally in sodium bicarbonate twice a day for 3 d. The body weights of the rats were recorded before and after experimental procedure. IndoM administration significantly increased blood urea nitrogen, serum creatinine, cholesterol and alkaline phosphatase but inorganic phosphate indicating IndoM induced renal, hepatic and intestinal toxicity. Activity of lactate dehydrogenase along with glucose-6- and fructose-1, 6-bis phosphatase, glucose-6-phosphate dehydrogenase and NADP-malic enzyme increased but malate dehydrogenase decreased in all tissues. Lipid peroxidation (LPO) significantly increased whereas the antioxidant enzymes decreased in all rat tissues studied. The results indicate that IndoM administration caused severe damage to kidney, liver and intestine by icreasing LPO, suppressing antioxidant enzymes and inhibiting oxidative metablolism. The energy dependence was shifted to anaerobic glycolysis due to mitochondrial damage supported by increased gluconeogenesis to provide more glucose to meet energy requirements.

10.
Saudi J Biol Sci ; 25(3): 441-445, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29686508

RESUMEN

Black cutworm (BCW) Agrotis ipsilon, an economically important lepidopteran insect, has attracted a great attention. Bacillus thuringiensis (Bt) is spore forming soil bacteria and is an excellent environment-friendly approach for the control of phytophagous and disease-transmitting insects. In fact, bio-pesticide formulations and insect resistant transgenic plants based on the bacterium Bt delta-endotoxin have attracted worldwide attention as a safer alternative to harmful chemical pesticides. The major objective of the current study was to understand the mechanism of interaction of Bt toxin with its receptor molecule(s). The investigation involved the isolation, identification, and characterization of a putative receptor - vip3Aa. In addition, the kinetics of vip toxin binding to its receptor molecule was also studied. The present data suggest that Vip3Aa toxin bound specifically with high affinity to a 48-kDa protein present at the brush border membrane vesicles (BBMV) prepared from the midgut epithelial cells of BCW larvae.

11.
Biochim Biophys Acta Biomembr ; 1860(5): 960-964, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29291378

RESUMEN

Integral membrane proteins PEPT1 and PEPT2 are essential for reabsorbing almost all hydrolysed or filtered di- and tripeptides alongside a wide range of peptidomimetic drugs in the kidney. The aim of this study was to investigate the potential use of the fluorophore-conjugated dipeptide ß-Ala-Lys (AMCA) as a biosensor for measuring peptide transport activity in brush border membrane vesicles isolated from the outer cortex (BBMV-OC) and outer medulla (BBMV-OM) (representing PEPT1 and PEPT2 respectively). The vesicles were isolated using a dual magnesium precipitation and centrifugation technique. Intravesicular fluorescence accumulation was measured after incubating extra-vesicular media at pH6.6 and different concentrations of ß-Ala-Lys (AMCA) with vesicles pre-equilibrated at pH7.4. Both BBMV-OC and BMMV-OM showed accumulation of an intravesicular fluorescence signal after 20min incubation. Changing the extra-vesicular pH to 7.4 caused a significant reduction in the ß-Ala-Lys (AMCA) uptake into BBMV-OC at concentrations >100µM. When different concentrations of dipeptide, Gly-Gln was added, there was a significant inhibition of 100µM ß-Ala-Lys (AMCA) uptake into BBMV-OC and BMMV-OM, reaching 69% and 80%, respectively. Kinetic analysis of ß-Ala-Lys (AMCA) at 20min showed that the Km and Vmax were 783.7±115.7µM and 2191.2±133.9ΔF/min/mg for BBMV-OC, while BMMV-OM showed significantly higher affinity, but lower capacity at Km=93.6±21.9µM and Vmax=935.8±50.2ΔF/min/mg. These findings demonstrate the applicability of ß-Ala-Lys (AMCA) as a biosensor to measure the transport activity of the renal-type PEPT1 and PEPT2 in BBMV-OC and BMMV-OM respectively.


Asunto(s)
Cumarinas/farmacocinética , Corteza Renal/metabolismo , Médula Renal/metabolismo , Microvellosidades/metabolismo , Oligopéptidos/farmacocinética , Transportador de Péptidos 1/metabolismo , Simportadores/metabolismo , Animales , Transporte Biológico , Colorantes Fluorescentes/farmacocinética , Riñón/metabolismo , Masculino , Ratas , Ratas Wistar
12.
Int J Clin Exp Pathol ; 11(3): 1825-1835, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31938290

RESUMEN

Glutamine is an important energy source for intestinal epithelial cells (IEC); however, it is still controversial whether glutaminecan be fully utilized under pathological conditions. In this study, we investigated the changes in glutamine transport after burns and assessed the effects of exogenous glutamine administration. Finally, the potential underlying mechanisms were explored. Experimental rats were randomly divided into three groups: control group (C); burn group (B); burn+glutamine group (B+G). Rats in groups B+G and B received intragastric administration of isodose glutamine or alanine, respectively. At days 1, 3 and 5 after burns, the structure of intestinal mucosa and brush-border membrane vesicles (BBMV) were observed. The glutamine transport capacity of IEC and BBMV was detected. The synthesis of glutamine transporter ASCT2 and B0AT1 was determined. Moreover, the intestinal mucosal blood flow (IMBF), diamine oxidase activity, and the glutamine and ATP content were measured. The results showed that burn injury caused structural damage to IECs and BBMV, and significantly impaired the ability for glutamine transportation. Moreover, the mRNA and protein expressions of ASCT2 and B0AT1 as well as the glutamine and ATP content were markedly decreased. Compared with group B, most of these indicators in group B+G showed significant improvement, and approached normal levels. We conclude that glutamine administration can relieve intestinal damage, improve IMBF, promote energy synthesis and alleviate endoplasmic reticulum stress after burn injury. Finally, the synthesis and modification of ASCT2 and B0AT1 are promoted, which ultimately enhances intestinal glutamine transport.

13.
Br J Nutr ; 118(2): 81-91, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28820081

RESUMEN

The inhibition by 1,5-anhydro-d-glucitol (1,5-AG) was determined on disaccharidases of rats and humans. Then, the metabolism and fate of 1,5-AG was investigated in rats and humans. Although 1,5-AG inhibited about 50 % of sucrase activity in rat small intestine, the inhibition was less than half of d-sorbose. 1,5-AG strongly inhibited trehalase and lactase, whereas d-sorbose inhibited them very weakly. 1,5-AG noncompetitively inhibited sucrase. The inhibition of 1,5-AG on sucrase and maltase was similar between humans and rats. 1,5-AG in serum increased 30 min after oral administration of 1,5-AG (600 mg) in rats, and mostly 100 % of 1,5-AG was excreted into the urine 24 h after administration. 1,5-AG in serum showed a peak 30 min after ingestion of 1,5-AG (20 g) by healthy subjects, and decreased gradually over 180 min. About 60 % of 1,5-AG was excreted into the urine for 9 h following ingestion. Hydrogen was scarcely excreted in both rats and humans 24 h after administration of 1,5-AG. Furthermore, 1,5-AG significantly suppressed the blood glucose elevation, and hydrogen excretion was increased following the simultaneous ingestion of sucrose and 1,5-AG in healthy subjects. 1,5-AG also significantly suppressed the blood glucose elevation following the simultaneous ingestion of glucose and 1,5-AG; however, hydrogen excretion was negligible. The available energy of 1,5-AG, which is absorbed readily from the small intestine and excreted quickly into the urine, is 0 kJ/g (0 kcal/g). Furthermore, 1,5-AG might suppress the blood glucose elevation through the inhibition of sucrase, as well as intestinal glucose absorption.


Asunto(s)
Glucemia/análisis , Desoxiglucosa/farmacología , Insulina/sangre , Periodo Posprandial , Adulto , Animales , Desoxiglucosa/farmacocinética , Disacaridasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Femenino , Glucosa/administración & dosificación , Glucosa/farmacocinética , Inhibidores de Glicósido Hidrolasas/farmacología , Humanos , Hidrógeno/orina , Absorción Intestinal , Intestino Delgado/enzimología , Masculino , Ratas , Ratas Wistar , Sacarasa/antagonistas & inhibidores , Sacarosa/administración & dosificación , alfa-Glucosidasas
14.
Anal Biochem ; 537: 20-25, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28847591

RESUMEN

Epithelial brush-border membrane vesicles (BBMVs) were isolated from the intestine of common carp and studied systematically by enzyme activity, transmission electron microscopy and immunoblotting. The uptake time course and the substrate concentration effect were assessed, and then, the ability of phlorizin and cytochalasin B to inhibit uptake was analyzed. The results show that sucrase, alkaline phosphatase and Na+-K+-ATPase activities in these vesicles were enriched 7.94-, 6.74- and 0.42-fold, respectively, indicating a relatively pure preparation of apical membrane with little basolateral contamination. The vesicular structure was in complete closure, as confirmed by electron microscopy. The presence of SGLT1 on the BBMVs was confirmed by Western blot analysis. In the time course experiment, the glucose uptake by BBMVs in Na+ medium displayed an initial accumulation (overshoot) at 5 min followed by a rapid return to equilibrium values at 60 min. Over the 2-NBDG concentration range selected, the external 2-NBDG concentration in NaSCN medium graphed as a curved line. Phlorizin and cytochalasin B had an obvious inhibitory effect on 2-NBDG transport in carp BBMVs, and the detected fluorescence intensity decreased. The inhibition rate in the 1000 µM group was the strongest at 64.18% and 63.61% of phlorizin and cytochalasin B, respectively, indicating the presence of carriers other than SGLT1. This study is the first to demonstrate that 2-NBDG can be used as a convenient and sensitive probe to detect glucose uptake in fish BBMVs. This technology will provide a convenient method to discover new effects and factors in glucose metabolism.


Asunto(s)
4-Cloro-7-nitrobenzofurazano/análogos & derivados , Desoxiglucosa/análogos & derivados , Glucosa/metabolismo , Mucosa Intestinal/metabolismo , Vesículas Secretoras/metabolismo , Espectrometría de Fluorescencia , 4-Cloro-7-nitrobenzofurazano/química , 4-Cloro-7-nitrobenzofurazano/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Carpas , Citocalasina B/farmacología , Desoxiglucosa/química , Desoxiglucosa/metabolismo , Glucosa/análisis , Glucosa/química , Microscopía Electrónica de Transmisión , Florizina/farmacología , Vesículas Secretoras/química , Vesículas Secretoras/enzimología , Transportador 1 de Sodio-Glucosa/metabolismo , Tiocianatos/química
15.
Anal Biochem ; 539: 29-32, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-28279647

RESUMEN

Traditional ELISA methods of using animal immunity yield antibodies for detection Cry toxin. Not only is this incredibly harmful to the animals, but is also time-intensive. Here we developed a simple method to yield the recognition element. Using a critical selection strategy and immunoassay we confirmed a clone from the Ph.D-C7C phage library, which has displayed the most interesting Cry1Ab-binding characteristics examined in this study (Fig. 1). The current study indicates that isolating peptide is an alternative method for the preparation of a recognition element, and that the developed assay is a potentially useful tool for detecting Cry1Ab.


Asunto(s)
Proteínas Bacterianas/análisis , Bacteriófagos/metabolismo , Endotoxinas/análisis , Ensayo de Inmunoadsorción Enzimática/métodos , Proteínas Hemolisinas/análisis , Péptidos/metabolismo , Anticuerpos Monoclonales/inmunología , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/inmunología , Endotoxinas/inmunología , Proteínas Hemolisinas/inmunología , Límite de Detección , Biblioteca de Péptidos , Péptidos/aislamiento & purificación
16.
Mol Metab ; 6(3): 245-255, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28271031

RESUMEN

OBJECTIVE: Glucagon-like peptide-2 (GLP-2) is co-secreted with GLP-1 from gut endocrine cells, and both peptides act as growth factors to expand the surface area of the mucosal epithelium. Notably, GLP-2 also enhances glucose and lipid transport in enterocytes; however, its actions on control of amino acid (AA) transport remain unclear. Here we examined the mechanisms linking gain and loss of GLP-2 receptor (GLP-2R) signaling to control of intestinal amino acid absorption in mice. METHODS: Absorption, transport, and clearance of essential AAs, specifically lysine, were measured in vivo by Liquid Chromatography triple quadrupole Mass Spectrometry (LC-MS/MS) and ex vivo with Ussing chambers using intestinal preparations from Glp2r+/+ and Glp2r-/- mice. Immunoblotting determined jejunal levels of protein components of signaling pathways (PI3K-AKT, and mTORC1-pS6-p4E-BP1) following administration of GLP-2, protein gavage, and rapamycin to fasted Glp2r+/+ and Glp2r-/- mice. Expression of AA transporters from full thickness jejunum and 4F2hc from brush border membrane vesicles (BBMVs) was measured by real-time PCR and immunoblotting, respectively. RESULTS: Acute administration of GLP-2 increased basal AA absorption in vivo and augmented basal lysine transport ex vivo. GLP-2-stimulated lysine transport was attenuated by co-incubation with wortmannin, rapamycin, or tetrodotoxin ex vivo. Phosphorylation of mTORC1 effector proteins S6 and 4E-BP1 was significantly increased in wild-type mice in response to GLP-2 alone, or when co-administered with protein gavage, and abolished following oral gavage of rapamycin. In contrast, activation of GLP-1R signaling did not enhance S6 phosphorylation. Disruption of GLP-2 action in Glp2r-/- mice reduced lysine transport ex vivo and attenuated the phosphorylation of S6 and 4E-BP1 in response to oral protein. Moreover, the expression of cationic AA transporter slc7a9 in response to refeeding, and the abundance of 4F2hc in BBMVs following protein gavage, was significantly attenuated in Glp2r-/- mice. CONCLUSIONS: These findings reveal an important role for GLP-2R signaling in the physiological and pharmacological control of enteral amino acid sensing and assimilation, defining an enteroendocrine cell-enterocyte axis for optimal energy absorption.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Péptido 2 Similar al Glucagón/metabolismo , Absorción Intestinal/efectos de los fármacos , Aminoácidos/metabolismo , Animales , Células Enteroendocrinas/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Péptido 1 Similar al Glucagón/fisiología , Péptido 2 Similar al Glucagón/fisiología , Receptor del Péptido 2 Similar al Glucagón/metabolismo , Glucosa/metabolismo , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Yeyuno/metabolismo , Ratones , Ratones Endogámicos C57BL , Péptidos/metabolismo , Receptores de Glucagón/metabolismo , Transducción de Señal/efectos de los fármacos
17.
J Comp Physiol B ; 187(4): 563-573, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28180997

RESUMEN

In animals, the accepted model of carbohydrate digestion and absorption involves reduction of disaccharides into the monosaccharides glucose, fructose, and galactose followed by their individual transmembrane transport into cells. In 2011, a gene for a distinct disaccharide sucrose transporter (SCRT) was found in Drosophila melanogaster and characterized in a yeast expression system. The purpose of the present investigation was to functionally identify and characterize a putative disaccharide transporter analog in the hepatopancreas of the American lobster, Homarus americanus. Purified hepatopancreatic brush-border membrane vesicles (BBMV) were used in transport experiments using 14C-sucrose and a Millipore filter isolation technique. In the absence of sodium, an external pH of 4 significantly stimulated the uptake of 14C-sucrose compared to that occurring at pH 5, 6, or 7. At pH 7, increasing external concentrations of sodium increased 14C-sucrose uptake by BBMV in a hyperbolic fashion and this stimulation was significantly reduced when the pH was changed to 4, suggesting that both protons and sodium ions were each capable of driving the uptake of the sugar. In experiments with a variety of monosaccharides, disaccharides, and trisaccharides, used as potential inhibitors of 14C-sucrose uptake, only maltose and trehalose inhibited carrier-mediated 14C-sucrose transport. An additional experiment showed that 20 mM maltose was a competitive inhibitor of 14C-sucrose uptake. The use of a putative lobster SCRT by both maltose and trehalose is nutritionally appropriate for lobsters as they commonly digest glycogen and chitin, polymers of maltose and trehalose, respectively. These findings suggest there is a brush-border proton- or sodium-dependent, hepatopancreatic carrier process, shared by sucrose, maltose, and trehalose, that may function to absorb disaccharides that are produced from digestion of naturally occurring dietary constituents.


Asunto(s)
Proteínas Portadoras/metabolismo , Disacáridos/metabolismo , Hepatopáncreas/metabolismo , Nephropidae/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Radioisótopos de Carbono/metabolismo , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/química , Disacáridos/farmacología , Concentración de Iones de Hidrógeno , Maltosa/metabolismo , Maltosa/farmacología , Microvellosidades/metabolismo , Nephropidae/química , Sodio/metabolismo , Sacarosa/metabolismo , Trehalosa/metabolismo
18.
Toxicol Rep ; 3: 328-335, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28959553

RESUMEN

Cisplatin (CP) is a potent anti-cancer drug widely used against solid tumors. However, it exhibits pronounced adverse effects including hepatotoxicity. Several strategies were attempted to prevent CP hepatotoxicity but were not found suitable for therapeutic application. Nigella sativa has been shown to prevent/reduce the progression of certain type of cardiovascular, kidney and liver diseases. Present study investigates whether N. sativa oil (NSO) can prevent CP induced hepatotoxic effects. Rats were divided into four groups viz. control, CP, NSO and CPNSO. Animals in CPNSO and NSO group were administered NSO (2 ml/kg bwt, orally) with or without single hepatotoxic dose of CP (6 mg/kg bwt, i.p.) respectively. CP hepatotoxicity was recorded by increased serum ALT and AST activities. CP treatment caused oxidant/antioxidant imbalances as reflected by increased lipid peroxidation and decreased enzymatic and non-enzymatic antioxidants. Furthermore, the activities of various carbohydrate metabolism and membrane enzymes were altered by CP treatment. In contrast, NSO administration to CP treated rats, markedly ameliorated the CP elicited deleterious alterations in liver. Histopathological observations showed extensive liver damage in CP treated animals while greatly reduced tissue injury in CPNSO group. In conclusion, NSO appears to protect CP induced hepatotoxicity by improving energy metabolism and strengthening antioxidant defense mechanism.

19.
Br J Nutr ; 114(10): 1550-9, 2015 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-26472475

RESUMEN

Resistant glucan (RG) and hydrogenated resistant glucan (HRG) are newly developed non-digestible carbohydrate materials that decrease lifestyle-related diseases. The bioavailability of RG and HRG was investigated by in vitro experiments using human and rat small intestinal enzymes and by in vivo experiments using rats in the present study. Oligosaccharides, which are minor components of RG and HRG, were hydrolysed slightly by small intestinal enzymes of humans and rats, and the hydrolysing activity was slightly higher in rats than in humans. The amount of glucose released from HRG was greater than that from RG. However, the high-molecular-weight carbohydrates of the main components were hardly hydrolysed. Furthermore, neither RG nor HRG inhibited disaccharidase activity. When rats were raised on a diet containing 5 % of RG, HRG, resistant maltodextrin or fructo-oligosaccharide (FOS) for 4 weeks, all rats developed loose stools and did not recover during the experiment, except for the FOS group. Body weight gain was normal in all groups and was not significantly different compared with the control group. Caecal tissue and content weights were significantly increased by feeding RG or HRG, although other organ and tissue weights were not significantly different among the groups. In conclusion, RG and HRG consist of small amounts of glucose and digestible and non-digestible oligosaccharides, and large amounts of glucose polymers, which were hardly hydrolysed by α-amylase and small intestinal enzymes. RG and HRG, which were developed newly as dietary fibre materials, had no harmful effects on the growth and development of rats.


Asunto(s)
Fibras de la Dieta/metabolismo , Digestión , Glucanos/metabolismo , Animales , Ciego/anatomía & histología , Diarrea/inducido químicamente , Carbohidratos de la Dieta , Disacaridasas/antagonistas & inhibidores , Disacaridasas/metabolismo , Glucanos/efectos adversos , Glucanos/química , Humanos , Hidrogenación , Hidrólisis , Intestino Delgado/enzimología , Masculino , Estructura Molecular , Oligosacáridos/efectos adversos , Oligosacáridos/metabolismo , Tamaño de los Órganos , Polisacáridos/efectos adversos , Polisacáridos/metabolismo , Ratas , Ratas Wistar , Aumento de Peso , alfa-Amilasas/metabolismo
20.
J Dairy Res ; 82(1): 36-46, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25335546

RESUMEN

We recently reported the identification of a peptide from yoghurts with promising potential for intestinal health: the sequence (94-123) of bovine ß-casein. This peptide, composed of 30 amino acid residues, maintains intestinal homoeostasis through production of the secreted mucin MUC2 and of the transmembrane-associated mucin MUC4. Our study aimed to search for the minimal sequence responsible for the biological activity of ß-CN(94-123) by using several strategies based on (i) known bioactive peptides encrypted in ß-CN(94-123), (ii) in silico prediction of peptides reactivity and (iii) digestion of ß-CN(94-123) by enzymes of intestinal brush border membranes. The revealed sequences were tested in vitro on human intestinal mucus-producing HT29-MTX cells. We demonstrated that ß-CN(108-113) (an ACE-inhibitory peptide) and ß-CN(114-119) (an opioid peptide named neocasomorphin-6) up-regulated MUC4 expression whereas levels of the secreted mucins MUC2 and MUC5AC remained unchanged. The digestion of ß-CN(94-123) by intestinal enzymes showed that the peptides ß-CN(94-108) and ß-CN(117-123) were present throughout 1·5 to 3 h of digestion, respectively. These two peptides raised MUC5AC expression while ß-CN(117-123) also induced a decrease in the level of MUC2 mRNA and protein. In addition, this inhibitory effect was reproduced in airway epithelial cells. In conclusion, ß-CN(94-123) is a multifunctional molecule but only the sequence of 30 amino acids has a stimulating effect on the production of MUC2, a crucial factor of intestinal protection.


Asunto(s)
Caseínas/farmacología , Células Caliciformes/metabolismo , Intestinos/citología , Mucinas/biosíntesis , Mucinas/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Secuencia de Aminoácidos , Animales , Caseínas/química , Bovinos , Expresión Génica/efectos de los fármacos , Células Caliciformes/efectos de los fármacos , Células HT29 , Humanos , Microvellosidades/enzimología , Datos de Secuencia Molecular , Mucina 5AC/genética , Mucina 2/biosíntesis , Mucina 2/genética , Mucina 4/biosíntesis , Fragmentos de Péptidos/química , Péptido Hidrolasas/metabolismo , ARN Mensajero/análisis , Porcinos , Yogur/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA