Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Micron ; 170: 103462, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37087964

RESUMEN

This paper describes for the first time the application of atomic force microscopy-based infrared spectroscopy (AFM-IR) to evaluate cellular response to adaptogen, based on an in vitro model of cervical cancer. HeLa cervical cells were exposed to different concentrations of withaferin A, a very promising anti-cancer adaptogenic substance. AFM-IR approach was used to image single cells post-adaptogen treatment and to track subtle biochemical changes in cells at the nanoscale level. Partial least squares (PLS) regression was applied to build predictive models that allowed for the identification of spectral markers of adaptogen-induced alterations Spectroscopic studies were enriched with fluorescence staining to determine whether the adaptogen affects cell morphology. The results showed that with the increase in the concentration of adaptogen, changes in the cell nucleus and the actin cytoskeleton become more and more significant. It has been demonstrated that the AFM-IR technique can successfully study the cellular response to the anti-cancer agent at the single-cell level with nanoscale spatial resolution. On the basis of the promising findings presented in this paper, it is possible to conclude that withaferin A has great potential in inhibiting the proliferation of cervical cancer cells in a dose-dependent manner. It has been found that both the increase in the concentration of withaferin A and the increase in incubation time with the adaptogen resulted in a decrease in the intensity of the bands assigned to nucleic acids. This may be due to DNA condensation, internuclear cleavage, or degradation during apoptosis. The findings also suggest changes in the secondary structure of proteins that may be a consequence of disruption of the actin cytoskeleton, progressive apoptosis, or significant biochemical changes. Furthermore, noticeable changes were also observed in the bands originating from lipids vibrations, and an increased share of the band near 2920 cm-1, considered an important marker of apoptosis, was noted. The metabolism of carbohydrates in cells also changes under the influence of the adaptogen. AFM-IR provides nanoscale insight into the structural and morphological properties of cells after drug treatment and is an indisputable milestone in the development of new anti-cancer approaches.


Asunto(s)
Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias del Cuello Uterino/tratamiento farmacológico , Microscopía de Fuerza Atómica/métodos , Espectrofotometría Infrarroja/métodos , Células HeLa , Citoesqueleto de Actina
2.
Appl Spectrosc ; 75(7): 901-910, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33739171

RESUMEN

There is a great need for the analysis of the chemical composition, structure, functional groups, and interactions at polymer-metal interfaces in terms of adhesion, corrosion, and insulation. Although atomic force microscopy-based infrared (AFM-IR) spectroscopy can provide chemical analysis with nanoscale spatial resolution, it generally requires to thin a sample to be placed on a substrate that has low absorption of infrared light and high thermal conductivity, which is often difficult for samples that contain hard materials such as metals. This study demonstrates that the combination of AFM-IR with low-angle microtomy (LAM) sample preparation can analyze buried polymer-metal interfaces with higher spatial resolution than that with the conventional sample preparation of a thick vertical cross-section. In the LAM of a polymer layer on a metal substrate, the polymer layer is tapered to be thin in the vicinity of the interface, and thus, sample thinning is not required. An interface between an epoxyacrylate layer and copper wire in a flexible printed circuit cable was measured using this method. A carboxylate interphase layer with a thickness of ∼130 nm was clearly visualized at the interface, and its spectrum was obtained without any signal contamination from the neighboring epoxyacrylate, which was difficult to achieve on a thick vertical cross-section. The combination of AFM-IR with LAM is a simple and useful method for high-spatial-resolution chemical analysis of buried polymer-metal interfaces.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA