Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 668
Filtrar
1.
Int J Biol Macromol ; : 135342, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39242011

RESUMEN

Whey protein isolate (WPI) has the potential to be a Pickering stabilizer, but its applications in emulsions are restricted due to its structural susceptibility to external environments. Proanthocyanidin (PAC) is a natural antioxidant polyphenol that can improve protein properties and enhance the stability and longevity of emulsions. In the current work, PACs were employed to bind WPIs, forming a complex to stabilize Pickering emulsion. Fluorescence spectroscopy, infrared spectroscopy, confocal microscopy, quartz crystal microbalance with dissipation monitoring (QCM-D), and antioxidant stability of the emulsion were performed to characterize the structural changes of the protein/polyphenol complexes and their effects on the interfacial properties and stability of the emulsion. Results indicated that PACs and WPIs might bind through hydrogen bonding and hydrophobic interactions, effectively increasing the hydrophilicity of the complexes. QCM-D and emulsion stability showed that adsorption at the oil-water interface of the complexes was the largest, and the stability of the Pickering emulsion was optimal when the concentration ratio of PAC to WPI exceeded 1:1. The antioxidant properties of Pickering emulsions were positively correlated with the addition of PACs. These findings demonstrated that PACs could improve the properties of WPIs and enhance the stability and antioxidant properties of WPI Pickering emulsions.

2.
J Dairy Sci ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39265835

RESUMEN

Fermented milk beverages have been known for years and are characterized by excellent health-promoting properties. Therefore, consumer attention has been drawn to this product type in recent years. In the presented research, the technology of production in laboratory and industrial scale of controlled fermentation of whey beverages containing sweet and sour organic cow's or goat's whey with the addition of organic fruit juices (apple, blackcurrant juice or Kamchatka berry), has been described. Food production on a laboratory scale involves small batch processes designed for experimentation and refinement, often with precise control over variables and conditions. In contrast, industrial-scale food production in enterprises focuses on large volume output with an emphasis on efficiency, consistency, and adherence to regulatory standards for mass consumption. In this study was examined the amino acid content and nutritional value of the obtained products. Tests were carried out on fermented whey drinks' microbiology and antioxidant properties. The significance was determined using an ANOVA (ANOVA)-each prepared drink was characterized by better antioxidant properties and nutritional values compared with product without juice addition. Microbiological examination proved that only one product was not fit for consumption according to the Polish norm. Using whey (goat and cow) as a base for a fermented beverage with enhanced health benefits is a positive step toward using products commonly regarded as waste.

3.
Plants (Basel) ; 13(17)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39273963

RESUMEN

Plumeria rubra L. is an ornamental Caribbean plant widely known for its ethnobotanical uses and pharmacological activities. The 'Tonda Palermitana' cultivar, on which no data are to date available, is commonly cultivated in Sicily. The aim of our study was to characterize the micro-morphological features of leaves and flowers of this cultivar by light and Scanning Electron Microscopy and to investigate the phytochemical profile and the biological properties of their food-grade extracts (LE and FE, respectively) by LC-DAD-ESI-MS analysis and different in vitro assays. Numerous branched laticifers were observed, and their secretion contained alkaloids and lipophilic compounds as confirmed by histological analyses. Phytochemical analyses showed the presence of alkaloids (9%), terpenoids (13%) and fatty acids (6%), together with a very abundant presence of iridoids (28%) and polyphenols (39%). The most notable biological activity of both extracts appears to be the antioxidant one, showing half-inhibitory concentrations (IC50) about 5 times lower than those detected in anti-inflammatory assays (383.74 ± 5.65 and 232.05 ± 2.87 vs. 1981.23 ± 12.82 and 1215.13 ± 10.15, for FE and LE, respectively), with LE showing the best, and statistically significant (p < 0.001), biological activity. These results allow us to speculate promising nutraceutical and cosmeceutical applications for this old Sicilian cultivar.

4.
Indian J Microbiol ; 64(3): 1355-1365, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39282197

RESUMEN

Extracellular polysaccharides (EPS) produced by Lactic Acid Bacteria have an individual effect on the flavour and consistency of novel food materials, as well as potential therapeutic applications. The purpose of this study was to create, improve, and characterise EPS from Lactobacillus amylovorus MTCC 8129. FTIR examination showed the compound's composition (acetyl group, hydroxy group, ring structure) as well as the numerous interlinks between sugar residues, which were then validated by Nuclear Magnetic Resonance Spectroscopy. Thermogravimetric examination showed that the EPS exhibited resistance to heat at a temperature of 640 °C, with antioxidant levels ranging from 70 to 85% and emulsification activity above 50%. Furthermore, it has 180% water holding capacity and 140% oil holding capacity. Based on these findings, it seems that the EPS that was reviewed might potentially be an advantageous addition to the food processing industry.

5.
Food Chem X ; 23: 101783, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39280229

RESUMEN

Exploring natural antioxidants is essential to delay lipid oxidation. This study investigated the inhibitory effect of Adinandra nitida (AN) extract in six edible oils, compared to TP and TBHQ. Methods included extract preparation, bioactive compounds analysis, in vitro antioxidant activities by FRAP, DPPH, and ABTS assays, fatty acid composition detection, and POV determination. The results showed that AN was rich in total flavonoids, total phenols and had better iron ion reduction ability than TBHQ. In oleic and linoleic acid-rich oils, AN significantly delayed early-stage lipid oxidation, outperforming TP and TBHQ. In linolenic acid-rich oils, AN maintained a stable effect. Molecular docking studies revealed strong binding interactions between main compounds and fatty acids, with Camelliaside A in (7.83) showing higher binding energy to linolenic acid than TBHQ (7.64), supporting the antioxidant effects. These findings suggest AN as a promising natural alternative to synthetic antioxidants, enhancing oil stability and shelf life.

6.
Antioxidants (Basel) ; 13(8)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39199171

RESUMEN

This study investigates agro-industrial by-products as sources of bioactive compounds, particularly focusing on phenolic compounds known for their antioxidant properties. With growing interest in natural alternatives to synthetic antioxidants due to safety concerns, this study highlights the health benefits of plant-derived phenolic compounds in food preservation and healthcare products. Traditional and advanced analytical techniques were used to obtain phytochemical profiles of various residue extracts, including espresso (SCG) and cold-brew spent coffee grounds (CBCG), pineapple peel (PP), beetroot pomace (BP), apple pomace (AP), black carrot pomace (BCP), and garlic peel (GP). Assessments of total phenolic content (TPC), total flavonoid content (TFC), and antioxidant capacity (AC) supported their revalorization. CBCG showed the highest TPC, TFC, and AC. TPC content in by-products decreased in the order CBCG > SCG > GP > BCP > PP > AP > BP, with a similar trend for TFC and AC. Phytochemical profiling via FI-ESI-FTICR-MS enabled the preliminary putative identification of a range of compounds, with polyphenols and terpenes being the most abundant. Univariate and multivariate analyses revealed key patterns among samples. Strong positive correlations (Pearson's R > 0.8) indicated significant contribution of polyphenols to antioxidant capacities. These findings highlight the potential of agro-industrial residues as natural antioxidants, advocating for their sustainable utilization.

7.
Foods ; 13(16)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39200539

RESUMEN

The aim of this study was to preliminarily determine the content of bioactive components in the fruiting bodies of four previously unstudied mushroom species: Aleuria aurantia, Phallus hadriani, Phanus conchatus, Geastrum pectinatum, their antioxidant activity and the content of polyphenols, minerals and heavy metals. METHODS: Determination of active compounds by gas chromatography-mass spectrometry was carried out in addition to thermogravimetric determinations, quantitative determination of total polyphenols by spectrophotometry using Folin-Ciocalteu reagent, determination of antioxidant activity using 2,2-diphenyl-1-picryl hydrazyl radical (DPPH) and 2,2'-azino-di-[3-ethylbentiazoline sulphonated] (ATBS). In addition, spectrometric analysis of selected minerals and heavy metals was performed by inductively coupled plasma optical emission spectroscopy (ICP-OES). RESULTS: The mushrooms analysed varied in terms of their bioactive constituents. They contained components with varying effects on human health, including fatty acids, oleamide, 1,2-dipalmitoylglycerol, (2-phenyl-1,3-dioxolan-4-yl)-methyl ester of oleic acid, deoxyspergualin, 2-methylenocholestan-3-ol, hexadecanoamide, isoallochan, 2,6-diaminopurine, and adenine. All contained polyphenols and varying amounts of minerals (calcium, magnesium, iron, zinc, potassium, phosphorus, sodium, copper, silicon and manganese) and exhibited antioxidant properties of varying potency. No exceedances of the permissible concentration of lead and cadmium were observed in any of them. CONCLUSIONS: All of the mushrooms studied can provide material for the extraction of various bioactive compounds with physiological effects. In addition, the presence of polyphenols and minerals, as well as antioxidant properties and the absence of exceeding the permissible concentration of heavy metals, indicate that these species could be interesting material in the design of foods with health-promoting properties, nutraceuticals or dietary supplements. However, the use of the fruiting bodies of these mushrooms requires mandatory toxicological and clinical studies.

8.
Food Res Int ; 192: 114824, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39147516

RESUMEN

Anthocyanins are water-soluble pigments, but they tend to be unstable in aqueous solutions. Modification of their molecular structure offers a viable approach to alter their intrinsic properties and enhance stability. Aromatic and aliphatic acid methyl esters were used as acyl donors in the enzymatic acylation of cyanidin-3-O-glucoside (C3G), and their analysis was conducted using ultraperformance liquid chromatography-mass spectrometry (UPLC-MS). The highest conversion rate achieved was 96.41 % for cyanidin-3-O-(6″-feruloyl) glucoside. Comparative evaluations of stability revealed that aromatic acyl group-conjugated C3G exhibited superior stability enhancement compared with aliphatic acyl group derivatives. The stability of aliphatic C3G decreased with increasing carbon chain length. The molecular geometries of different anthocyanins were optimized, and energy level calculations using density functional theory (DFT) identified their sites with antioxidant activities. Computational calculations aligned with the in vitro antioxidant assay results. This study provided theoretical support for stabilizing anthocyanins and broadened the application of acylated anthocyanins as food colorants and nutrient supplements.


Asunto(s)
Antocianinas , Glucósidos , Antocianinas/química , Acilación , Glucósidos/química , Antioxidantes/química , Ésteres/química , Espectrometría de Masas , Estructura Molecular , Cromatografía Líquida de Alta Presión
9.
Foods ; 13(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39123593

RESUMEN

In response to the global challenge of food wastage and high perishability of blackberries, this study evaluated the use of ultrasound-assisted hot air drying (US-HAD) to convert downgraded blackberries into powders, comparing it with traditional hot air drying (HAD). US-HAD reduced the drying time and achieved a final moisture content of 12%. Physicochemical analyses (colourimetry, total soluble solids, titratable acidity, and total phenolic content) were conducted on fresh fruit, powders, and fortified cookies. US-HAD cookies exhibited promising antioxidant activity, with ABTS values ranging from 8.049 to 8.536 mmol TEAC/100 g and DPPH values from 8.792 to 9.232 mmol TEAC/100 g, significantly higher than control cookies. The TPC was 13.033 mgGAE/g in HAD cookies and 13.882 mgGAE/g in US-HAD cookies. UHPLC-ESI-MS analysis showed an increase in phenolic compounds content in fortified cookies compared to the control. Sensory analysis highlighted a superior blackberry flavour and overall acceptability in US-HAD cookies, with statistical analysis confirming their superior nutritional and sensory qualities. Integrating US-HAD blackberry powder into cookies helps reduce food waste and enhances the nutritional profiles of baked goods, offering functional foods with health benefits. This work provides a scientific basis for developing enriched functional cookies, offering a healthy and sustainable alternative for utilising damaged fruits.

10.
Nanomaterials (Basel) ; 14(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39120408

RESUMEN

Platinum-based materials exhibit a broad spectrum of biological activities, including antioxidant, anti-inflammatory, antimicrobial, and pro-collagen synthesis properties, making them particularly useful for various biomedical applications. This review summarizes the biological effects and therapeutic potential of platinum-based active ingredients in dermatological and skincare applications. We discuss their synthesis methods and their antioxidant, anti-inflammatory, antimicrobial, and collagen synthesis properties, which play essential roles in treating skin conditions including psoriasis and acne, as well as enhancing skin aesthetics in anti-aging products. Safety and sustainability concerns, including the need for green synthesis and comprehensive toxicological assessments to ensure safe topical applications, are also discussed. By providing an up-to-date overview of current research, we aim to highlight both the potential and the current challenges of platinum-based active ingredients in advancing dermatology and skincare solutions.

11.
J Sci Food Agric ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39126140

RESUMEN

BACKGROUND: Achachairu is an exotic fruit that is being studied for its bioactive compound composition. However, there is scarce information on the properties of its by-products and their incorporation into food. In this study, achachairu peels were used to obtain phenolic-rich and sustainable ingredients. Furthermore, their potential for use in the fortification of food, particularly cereal-based products, was evaluated. Different ratios of ethanol:water were used to extract the phenolic compounds from achachairu (100:0, 90:10 and 70:30). The optimal extract was characterised regarding its total phenolic content (TPC) and antioxidant, antimicrobial and anti-enzymatic properties. Finally, achachairu peel powder and extract were incorporated into bread and their influence on the texture, antioxidant properties and shelf life of the product was evaluated. RESULTS: High-performance liquid chromatographic analysis showed that the 90:10 extract contained a higher phenolic composition than the other samples. The achachairu extract presented a TPC of 88.7 mgGAE g-1, good antioxidant capacity towards DPPH and ABTS radicals and the capacity to inhibit the activity of α-amylase by almost 80%. The addition of achachairu peel powder and extract to bread increased its hardness, chewiness and gumminess, not affecting the remaining texture parameters. An increase in the TPC, antioxidant properties and shelf life of the product was also observed. CONCLUSION: This study proves the potential for achachairu by-products incorporated into cereal-based products to improve their biological properties while extending the food shelf life. © 2024 Society of Chemical Industry.

12.
Int J Mol Sci ; 25(16)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39201717

RESUMEN

Entrapping bioactive ingredients like elderberry extract in hydrogels improves their stability and functionality in food matrices. This study assessed the effect of sequential thermal treatment with ultrasound (US) or high hydrostatic pressure (HHP) and treatment duration on pea protein-psyllium hydrogels as elderberry extract carriers. Measurements included color parameters, extract entrapment efficiency, physical stability, textural properties, microrheology, FT-IR, thermal degradation (TGA), SEM images, total polyphenols content, antioxidant activity, and reducing power. The control hydrogel was obtained using only thermal induction. Both treatments impacted physical stability by affecting biopolymer aggregate structures. Thermal and US combined induction resulted in hydrogels with noticeable color changes and reduced entrapment efficiency. Conversely, thermal and HHP-combined induction, especially with extended secondary treatment (10 min), enhanced hydrogel strength, uniformity, and extract entrapment efficiency (EE = 33% for P10). FT-IR and TGA indicated no chemical structural alterations post-treatment. Sequential thermal and HHP induction preserved polyphenol content, antioxidant activity (ABTS = 5.8 mg TE/g d.m.; DPPH = 11.1 mg TE/g d.m.), and reducing power (RP = 1.08 mg TE/g d.m.) due to the dense hydrogel structure effectively enclosing the elderberry extract. Sequential thermal and HHP induction was more effective in developing pea protein-psyllium hydrogels for elderberry extract entrapment.


Asunto(s)
Antioxidantes , Hidrogeles , Presión Hidrostática , Proteínas de Guisantes , Extractos Vegetales , Hidrogeles/química , Extractos Vegetales/química , Proteínas de Guisantes/química , Antioxidantes/química , Espectroscopía Infrarroja por Transformada de Fourier , Polifenoles/química , Portadores de Fármacos/química , Ondas Ultrasónicas
13.
Comput Biol Chem ; 112: 108178, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39191167

RESUMEN

Colorectal cancer (CRC) poses a significant global health challenge, characterized by substantial prevalence variations across regions. This study delves into the therapeutic potential of rutin, a polyphenol abundant in fruits, for treating CRC. The primary objectives encompass identifying molecular targets and pathways influenced by rutin through an integrated approach combining bioinformatic analysis and experimental validation. Employing Gene Set Enrichment Analysis (GSEA), the study focused on identifying potential differentially expressed genes (DEGs) associated with CRC, specifically those involved in regulating reactive oxygen species, metabolic reprogramming, cell cycle regulation, and apoptosis. Utilizing diverse databases such as GEO2R, CTD, and Gene Cards, the investigation revealed a set of 16 targets. A pharmacological network analysis was subsequently conducted using STITCH and Cytoscape, pinpointing six highly upregulated genes within the rutin network, including TP53, PCNA, CDK4, CCNEB1, CDKN1A, and LDHA. Gene Ontology (GO) analysis predicted functional categories, shedding light on rutin's potential impact on antioxidant properties. KEGG pathway analysis enriched crucial pathways like metabolic and ROS signaling pathways, HIF1a, and mTOR signaling. Diagnostic assessments were performed using UALCAN and GEPIA databases, evaluating mRNA expression levels and overall survival for the identified targets. Molecular docking studies confirmed robust binding associations between rutin and biomolecules such as TP53, PCNA, CDK4, CCNEB1, CDKN1A, and LDHA. Experimental validation included inhibiting colorectal cell HT-29 growth and promoting cell growth with NAC through MTT assay. Flow cytometric analysis also observed rutin-induced G1 phase arrest and cell death in HT-29 cells. RT-PCR demonstrated reduced expression levels of target biomolecules in HT-29 cells treated with rutin. This comprehensive study underscores rutin's potential as a promising therapeutic avenue for CRC, combining computational insights with robust experimental evidence to provide a holistic understanding of its efficacy.


Asunto(s)
Neoplasias Colorrectales , Biología Computacional , Especies Reactivas de Oxígeno , Rutina , Rutina/farmacología , Rutina/química , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Transducción de Señal/efectos de los fármacos
14.
Int J Biol Macromol ; 278(Pt 3): 134935, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39179088

RESUMEN

For the first time, Frankincense resin (FR) has been carboxymethylated to produce CMFR - AuNPs and the conjugate was utilized for the Doxorubicin drug loading. The carboxymethylation of the carboxylic, phenolic, and hydroxyl functional groups of FR has been developed into carboxymethylated Frankincense resin (CMFR). A novel CMFR-AuNPs was synthesized using the developed CMFR as a stabilizing and reducing agent. The antibacterial, antioxidant, and in-vitro anticancer activities were investigated by using CMFR-AuNPs and CMFR - AuNPs@DOX. CMFR-AuNPs demonstrated antioxidative properties by quenching DPPH radicals effectively. CMFR-AuNPs and DOX@CMFR-AuNPs demonstrated strong antibacterial activity against K. pneumoniae, S. aureus, B. subtilis, and E. coli. The cell viability was tested for CMFR -AuNPs at various concentrations of Dox-loaded CMFR -AuNPs (CMFR-AuNPs + Dox1, CMFR-AuNPs + Dox 2, & CMFR-AuNPs + Dox 3). The highest inhibition was observed on MCF-7 and HeLa cell lines using CMFR-AuNPs + Dox 3, respectively. Various techniques such as UV, FTIR, TGA, XRD, SEM, EDAX and TEM were used to characterize the designed CMFR and CMFR-AuNPs. After carboxy methylation, the amorphous nature of FR changed to crystallinity, as reflected in the XRD spectra. The XRD spectrum of the CMFR- AuNPs showed FCC structure due to the involvement of hydroxyl and carboxylic functional groups of CMFR strongly bound with the AuNPs. TGA results revealed that the CMFR is thermally more stable than FR. TEM revealed that CMFR - AuNPs were well dispersed, spherical, and hexagonal with an average diameter of 7 to 10 nm, while the size of doxorubicin loaded (DOX@CMFR-AuNPs) AuNPs was 11 to 13 nm. Green CMFR-AuNPs have the potential to enhance the drug loading and anticancer efficacy of drugs.


Asunto(s)
Antineoplásicos , Antioxidantes , Doxorrubicina , Oro , Nanopartículas del Metal , Oro/química , Nanopartículas del Metal/química , Humanos , Antioxidantes/farmacología , Antioxidantes/química , Antineoplásicos/farmacología , Antineoplásicos/química , Doxorrubicina/química , Doxorrubicina/farmacología , Resinas de Plantas/química , Antibacterianos/farmacología , Antibacterianos/química , Células MCF-7 , Células HeLa , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico
15.
Food Chem ; 461: 140957, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39182336

RESUMEN

The aim of this study was to fabricate novel transglutaminase (TGase)-mediated glycosylated whey protein isolate (WPI) nanoparticles for the encapsulation and delivery of curcumin. The influences of glycosylation on the physiochemical properties, stability, bioavailability, and antioxidant properties of WPI nanoparticles loaded with curcumin were investigated. Composite nanoparticles exhibited uniform distribution and small particle sizes. The main driving forces for the formation of curcumin nanoparticles were electrostatic interactions, hydrogen bonding, and hydrophobic interactions. The encapsulation and loading efficiency of curcumin after TGase-type glycosylation were significantly increased in comparison to WPI-curcumin nanoparticles. Glycosylated WPI-curcumin nanoparticles had stronger antioxidant properties and stability to resist external environmental changes than WPI-curcumin nanoparticles. In addition, glycosylated WPI-curcumin nanoparticles showed a controlled release and enhanced curcumin bioavailability in vitro gastrointestinal digestion. This study provides novel insights for self-assembled glycosylated protein nanoparticles as delivery systems for protecting hydrophobic nutrients.


Asunto(s)
Curcumina , Nanopartículas , Transglutaminasas , Proteína de Suero de Leche , Curcumina/química , Curcumina/metabolismo , Proteína de Suero de Leche/química , Proteína de Suero de Leche/metabolismo , Nanopartículas/química , Glicosilación , Transglutaminasas/química , Transglutaminasas/metabolismo , Tamaño de la Partícula , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Composición de Medicamentos , Disponibilidad Biológica , Antioxidantes/química
16.
Environ Sci Pollut Res Int ; 31(38): 50929-50941, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39107637

RESUMEN

Peanut is an economically important crop, but it is susceptible to Cr contamination. In this study, we used peanut as experimental material to investigate the effects of exogenous P, Se interacting with Cr on the nutrient growth and antioxidant system of peanut seedlings by simulating Cr (0 µM, 50 µM, and 100 µM) stress environment. The results showed that exogenous P, Se supply could mitigate irreversible damage to peanut seedlings by altering the distribution of Cr in roots and aboveground, changing root conformation, and repairing damaged cells to promote growth. When the Cr concentration is 100 µM, it exhibits the highest toxicity. Compared to the control group P and Se (0 MM), the treatment with simultaneous addition of P + Se (0.5 + 6.0) resulted in a significant increase in root length and root tip number by 248.7% and 127.4%, respectively. Additionally, there was a 46.9% increase in chlorophyll content, a 190.2% increase in total surface area of the seedlings, and a respective increase of 149.1% and 180.3% in soluble protein content in the shoot and roots. In addition, by restricting the absorption of Cr and reducing the synthesis of superoxide dismutase SOD (Superoxide dismutase), CAT (Catalase), POD (Peroxidase), and MDA (Malonaldehyde), it effectively alleviates the oxidative stress on the antioxidant system. Therefore, the exogenous addition of P (0.5 MM) and Se (6.0 MM) prevented the optimal concentration of chromium toxicity to peanuts. Our research provides strong evidence that the exogenous combination of P and Se reduces the risk of peanut poisoning by Cr, while also exploring the optimal concentration of exogenous P and Se under laboratory conditions, providing a basis for further field experiments.


Asunto(s)
Antioxidantes , Arachis , Fósforo , Plantones , Selenio , Arachis/efectos de los fármacos , Plantones/efectos de los fármacos , Selenio/farmacología , Homeostasis , Cromo , Estrés Oxidativo/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Raíces de Plantas/efectos de los fármacos , Contaminantes del Suelo
17.
Food Chem ; 460(Pt 3): 140746, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39126951

RESUMEN

The exceptional biodegradability and active biological functions of bio-based packaging materials have attracted increasing interest. In this study, a bioplastic film was developed by introducing simultaneously polyphenols (tea polyphenols, TPs) and peptides (nisin) into a soy protein isolate/sodium alginate (SPI/SA) based film-forming matrix. The research results revealed that the dynamic coordinated interaction between TPs and nisin enhanced mechanical properties, UV-resistance, and thermal stability of bioplastic films. Furthermore, the bioplastic film exhibited antibacterial activity and antioxidant properties. Significantly, biofilm growth of Staphylococcus aureus treated with TPs-5/Nisin-5 bioplastic film was inhibited by 91.12% compared to the blank group. The shelf life of beef with TPs-5/Nisin-5 bioplastic film was prolonged by 2 days because of the synergistic effect of TPs and nisin. Additionally, the bioplastic film biodegraded in the natural environment about 21 days. This environmentally friendly regeneration strategy and the integration of advantageous functions provided ideas for the development of active food packaging.


Asunto(s)
Antibacterianos , Antioxidantes , Embalaje de Alimentos , Nisina , Polifenoles , Staphylococcus aureus , Polifenoles/química , Polifenoles/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Antioxidantes/química , Antioxidantes/farmacología , Embalaje de Alimentos/instrumentación , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Nisina/farmacología , Nisina/química , Péptidos/química , Péptidos/farmacología , Rayos Ultravioleta , Extractos Vegetales/química , Extractos Vegetales/farmacología , Biopelículas/efectos de los fármacos , Animales , Bovinos , Plásticos Biodegradables/química , Plásticos Biodegradables/farmacología , Sinergismo Farmacológico , Té/química
18.
Food Res Int ; 191: 114691, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059947

RESUMEN

To better enhance printing effects meanwhile casting functionality, antioxidation and absorption of bioactive component in printed Ca2+-nano starch (NS)-lutein (L)-surimi were investigated. Results shown that Ca2+-NS-L promoted surimi printability due to enhanced gel strength and denser structure. Mixing Ca2+-NS-L endowed printed surimi with antioxidation (DPPH, ABTS, hydroxyl radical, Fe2+ reduction were 42 %, 79 %, 65 %, 0.104 mg·mL-1, respectively) due to the ability of lutein with more -OH groups and conjugate bonds to capture free radicals. It also manifested in cellular antioxidation that Ca2+-NS-L-surimi regulated the level of Nrf2 to protect gene expression of antioxidases (SOD, CAT, GSH-Px increased by 30-180 %, compared to damaged cells) through keap1-Nrf2-ARE pathway. Additionally, lutein absorption and transportation of Ca2+-NS-L-surimi increased by 20 %, compared to NS-L. Possibly, combination of samples and membrane was facilitated by surface hydrophobic, promoting endocytosis. Meanwhile, digestive surimi (peptides) with acidic-alkaline amino acids and negative charges made samples be attracted and moved in bypass parts under electrostatic traction and repulsion (electrostatic domain) to promote transport process. Also, Ca2+ facilitated CaM expression in membrane and formed Ca2+ channel by combining with CaM to accelerate entry of samples into cells. Conclusively, Ca2+-NS-L both strengthened printability of surimi and antioxidation, promoting application of printed functional surimi.


Asunto(s)
Antioxidantes , Calcio , Luteína , Factor 2 Relacionado con NF-E2 , Impresión Tridimensional , Almidón , Humanos , Antioxidantes/metabolismo , Luteína/metabolismo , Luteína/química , Células Hep G2 , Almidón/metabolismo , Almidón/química , Células CACO-2 , Calcio/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Nanopartículas/química
19.
J Anim Sci Technol ; 66(3): 587-602, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38975577

RESUMEN

This research was conducted to study the effects of organic selenium (Se) supplements at different levels on pork loin quality during storage. Fifteen pork loins were procured randomly from three groups, Con (fed basal diet), Se15 (fed 0.15 ppm organic Se along with 0.10 ppm inorganic Se), and Se45 (fed 0.45 ppm organic Se along with 0.10 ppm inorganic Se). Each sample was analyzed for Se contents, antioxidant properties (glutathione peroxidase [GPx] activity, 2,2'-azinobis-[3-ethylbenzothiazoline-6-sulfonic acid] [ABTS] and 2,2-diphenyl-1-picrylhydrazyl [DPPH] radical scavenging activities, 2-thiobarbituric acid reactive substances), physicochemical properties (water holding capacity, pH, color), and metabolomic analysis during 14-day storage period. Se45-supplemented group showed significantly higher Se contents and GPx activity than the other groups throughout the storage period. However, other antioxidant properties were not significantly affected by Se supplementation. Selenium supplementation did not have an adverse impact on physicochemical properties. Nuclear Magnetic Resonance-based metabolomic analysis indicated that the selenium supply conditions were insufficient to induce metabolic change. These results suggest that organic Se (0.15 and 0.45 ppm) can accumulate high Se content in pork loins without compromising quality.

20.
J Ethnopharmacol ; 335: 118536, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39004192

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Plasmodium resistance to antimalarial drugs raises the urgent need to seek for alternative treatments. Aqueous extract of Hibiscus asper leaves is currently used in malaria management but remains less documented. AIM OF THE STUDY: The study aims to evaluate antimalarial effects of the aqueous extract of Hibiscus asper. UHPLC/MS, was used to identify some likely compounds present in the plant that were thereafter docked to some malaria parasite proteins. STUDY DESIGN: In vitro anti-plasmodium and antioxidant, UHPLC/Ms analysis, in vivo antimalarial of the plant extract, and in silico molecular docking prediction of some identified compounds were performed to investigate the pharmacological effects of H. asper. MATERIAL AND METHODS: The in vitro antiplasmodial activity of the extract was carried out on Plasmodium falciparum strains using SYBR-green dye; then, the curative antimalarial activity was conducted on Plasmodium berghei NK65-infected male Wistar rats. The UHPLC/MS analysis was used to identify plant compounds, followed by interactions (docking affinity) between some compounds and parasitic enzymes such as P. falciparum purine nucleoside phosphorylase (2BSX) and 6-phosphogluconate dehydrogenase (6FQY) to explore potential mechanisms of action at the molecular level. RESULTS: No hemolysis effect of the extract was observed at concentrations up to 100 mg/mL. In vitro test of the aqueous leaves extract of H. asper showed inhibitory activity against P. falciparum Dd2 and 3D7 strains with IC50 values of 19.75 and 21.97 µg/mL, respectively. The curative antimalarial test of the H. asper extract in infected rats exhibited significant inhibition of the parasite growth (p < 0.001) with inhibition percentage of 95.11%, 97.68% and 95.59% at all the doses (50, 100 and 200 mg/kg) respectively. The extract corrected major physiological alterations such as liver and kidney impairments, oxidative stress and architectural disorganization in liver, spleen and kidneys tissues. The UHPLC/MS analysis identified 7 compounds, namely chlorogenic acid, azulene, quercetin, rhodine, 1-ethyl-2,4-dimethyl benzene and phthalan. Out of seven compounds identified in the extract quercetin and phthalan showed higher in silico inhibitory activity against P. falciparum purine nucleoside phosphorylase and Plasmodium falciparum 6-phosphosgluconate dehydrogenase parasite enzymes. CONCLUSION: These findings indicate that H. asper could be a promising complementary medicine to manage malaria. Meanwhile, the affinity of annoted compounds with these enzymes should be further confirmed.


Asunto(s)
Antimaláricos , Hibiscus , Simulación del Acoplamiento Molecular , Extractos Vegetales , Hojas de la Planta , Plasmodium berghei , Plasmodium falciparum , Ratas Wistar , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antimaláricos/farmacología , Antimaláricos/aislamiento & purificación , Animales , Plasmodium falciparum/efectos de los fármacos , Masculino , Plasmodium berghei/efectos de los fármacos , Hibiscus/química , Malaria/tratamiento farmacológico , Malaria/parasitología , Ratas , Antioxidantes/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA