Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Chemistry ; : e202401255, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162779

RESUMEN

An imbalance in cysteine (Cys) levels in the cells and plasma has been identified as the risk indicator for various human diseases. The structural similarity of cysteine with its congener homocysteine and glutathione offers challenges in its measurement. Herein, we report a hydrogen-bonded organic-inorganic framework of Cu(II) (HOIF) for the selective detection of cysteine over other biothiols. The non-fluorescent HOIF showed 12-fold green emission in the presence of cysteine. The monomeric unit of HOIF is stabilized via intermolecular hydrogen bonds, resulting in a non-porous network structure. Non-interference from homocysteine, glutathione, and other competitive bio-analytes revealed explicit affinity of HOIF for cysteine. Fluorimetric titration showed a wide working concentration window (650 nM-800 µM) for measuring cysteine in an aqueous medium. The mechanistic investigation involving HRMS, EPR, and UV-vis spectroscopic studies revealed the decomplexation of HOIF with Cys, resulting in a fluorescence turn-on response from the luminescent ligand. Validation using a commercial dye, "Cysteine Green", confirmed the prospect of HOIF for early diagnostic purposes. Utilizing the fluorescence turn-on property of HOIF in the presence of cysteine, we measured cysteine quantitatively in the blood plasma samples. Bio-imaging of endogenous cysteine in cancer cells indicated the ability of HOIF to monitor the intracellular cysteine.

2.
Mar Pollut Bull ; 207: 116821, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39146712

RESUMEN

The chemical composition of spilt oils from events that took place on the north-eastern coast of Brazil in 2019 and 2022 was investigated to better understand their sources, and post-spill processes. Oils from both events originated from different sources, based on their fingerprints, hydrocarbons composition and specific biomarkers, such as the C23 tricyclic terpane and oleanane. Despite the differences, the source rocks share similarities in paleoenvironments and depositional conditions and both oils suffered little weathering, mainly due to evaporation and dissolution. Our findings for 2019 spilt oil reinforce that it is a mixed product, enriched both in lighter n-alkanes and 25-norhopanes. Differently, the 2022 samples exhibited characteristics of a non-processed crude oil that originated from a paraffinic deposit in storage tanks. The molecular composition and diagnostic ratios reported for samples from these spill events help to establish baselines for ongoing monitoring of oil spills in marine ecosystems.


Asunto(s)
Monitoreo del Ambiente , Hidrocarburos , Contaminación por Petróleo , Petróleo , Contaminantes Químicos del Agua , Brasil , Hidrocarburos/análisis , Petróleo/análisis , Contaminantes Químicos del Agua/análisis
3.
Diagnostics (Basel) ; 14(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39202271

RESUMEN

Barrett's esophagus (BE) is a known precursor to esophageal adenocarcinoma (EAC). Guidelines recommend BE screening in populations with multiple risk factors, for which non-endoscopic esophageal cell collection with biomarker testing is considered as an acceptable alternative to esophagogastroduodenoscopy (EGD). The aim of this study was to evaluate analytical performance characteristics of EsoGuard® (EG), a DNA methylation biomarker assay, as a laboratory-developed test (LDT) in esophageal samples collected with the swallowable EsoCheck® (EC) device. EG is a next-generation sequencing (NGS) assay that evaluates methylated vimentin (VIM) and cyclin A1 (CCNA1), clinically validated biomarkers for the detection of BE and EAC. The studies were conducted according to standards of College of American Pathology (CAP), Clinical Laboratory Improvement Amendments (CLIA), and New York (NY) state requirements for the analytical validation of molecular assays. Comparison to Sanger sequencing showed that EG was 100% accurate at all 31 CpG sites evaluated by the assay. The analytical sensitivity, specificity, and accuracy of the assay were 89%, 100%, and 96%, respectively. Intra- and inter-assay precision was 100%. The limit of detection (LOD) was 1 in 400 methylated cells, and the reference range was 84%. In summary, EsoGuard demonstrates high analytical accuracy, repeatability, and reproducibility in samples collected using the EsoCheck device.

4.
Mol Cell Proteomics ; 23(9): 100824, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39097268

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) suffers from a lack of an effective diagnostic method, which hampers improvement in patient survival. Carbohydrate antigen 19-9 (CA19-9) is the only FDA-approved blood biomarker for PDAC, yet its clinical utility is limited due to suboptimal performance. Liquid chromatography-mass spectrometry (LC-MS) has emerged as a burgeoning technology in clinical proteomics for the discovery, verification, and validation of novel biomarkers. A plethora of protein biomarker candidates for PDAC have been identified using LC-MS, yet few has successfully transitioned into clinical practice. This translational standstill is owed partly to insufficient considerations of practical needs and perspectives of clinical implementation during biomarker development pipelines, such as demonstrating the analytical robustness of proposed biomarkers which is critical for transitioning from research-grade to clinical-grade assays. Moreover, the throughput and cost-effectiveness of proposed assays ought to be considered concomitantly from the early phases of the biomarker pipelines for enhancing widespread adoption in clinical settings. Here, we developed a fit-for-purpose multi-marker panel for PDAC diagnosis by consolidating analytically robust biomarkers as well as employing a relatively simple LC-MS protocol. In the discovery phase, we comprehensively surveyed putative PDAC biomarkers from both in-house data and prior studies. In the verification phase, we developed a multiple-reaction monitoring (MRM)-MS-based proteomic assay using surrogate peptides that passed stringent analytical validation tests. We adopted a high-throughput protocol including a short gradient (<10 min) and simple sample preparation (no depletion or enrichment steps). Additionally, we developed our assay using serum samples, which are usually the preferred biospecimen in clinical settings. We developed predictive models based on our final panel of 12 protein biomarkers combined with CA19-9, which showed improved diagnostic performance compared to using CA19-9 alone in discriminating PDAC from non-PDAC controls including healthy individuals and patients with benign pancreatic diseases. A large-scale clinical validation is underway to demonstrate the clinical validity of our novel panel.

5.
Vet Clin Pathol ; 53(2): 261-272, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38825585

RESUMEN

BACKGROUND: Regenerating island-derived proteins (REG) are upregulated in people with sepsis, pancreatitis, and gastrointestinal diseases. One member of the REG family, namely REG3E, was recently identified in pancreatic tissue and plasma of dogs, with high expression in pancreatitis and sepsis. OBJECTIVES: We aimed to develop and validate an ELISA to measure REG3E concentrations in canine blood. METHODS: An indirect sandwich ELISA was developed using recombinant canine REG3E protein and polyclonal anti-canine REG3E antibodies raised in guinea pigs and rabbits. Antibody specificity was assessed using western blot and mass spectrometric analysis of protein purified from canine plasma. Assay validation included evaluation of dilutional linearity, parallelism, spiking recovery, repeatability and reproducibility, stability, interferences, and comparison of serum and heparinized plasma. RESULTS: Antibodies bound specifically to REG3E with no evidence of cross-reactivity with other proteins. The limit of detection of the ELISA was 15 ng/mL, and the lower limit of quantification was 30 ng/mL. The assay demonstrated good to excellent linearity, dilutional and mixing parallelism, and recovery, with mean observed-to-expected ratios of 104%, 107%, 102%, and 92%, respectively, and no evidence of a hook effect. Coefficients of variation were ≤8.5% for repeatability and ≤14.3% for reproducibility at three different levels. Measurements of REG3E in plasma were not significantly influenced by different storage conditions, freeze-thawing cycles, hemolysis, lipemia, or icterus. There was no significant difference between REG3E concentrations in heparinized plasma and serum samples. CONCLUSIONS: The canine REG3E ELISA has acceptable precision, accuracy, linearity, and reproducibility for the measurement of REG3E in canine plasma and serum.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática , Animales , Perros/sangre , Ensayo de Inmunoadsorción Enzimática/veterinaria , Reproducibilidad de los Resultados , Conejos , Proteínas Asociadas a Pancreatitis/sangre , Proteínas Recombinantes
6.
Nat Prod Res ; : 1-7, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38768436

RESUMEN

Brazilian green propolis is used in folk medicine because of its various biological properties. The hydroalcoholic extract of Brazilian green propolis is characteristic for possessing several pharmacological properties. Phytochemical investigations have attributed some of these properties to the presence of compounds, which were chosen as analytical markers. This paper reports the development and analytical validation using UPLC-MS/MS in MRM mode. Veratraldehyde was used as an internal standard in qualitative and quantitative analyses of the extracts. Relative standard deviation values obtained for intra-day and inter-day precision were lower than 4%. Of the five parameters for robustness, wavelength detection and flow rate were the critical ones. Limits of detection and quantification ranged from 0.300 to 39.500 ng.mL-1 and from 1.400 to 85.00 ng.mL-1, respectively. The recoveries were between 94.00 and 119.00%, with relative standard deviation values around 5.0%. The developed method is precise, sensitive, and reliable for analysing Brazilian green propolis.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38635926

RESUMEN

A method was developed for the determination of tropane alkaloids (TAs), including atropine, scopolamine, anisodamine and homatropine in buckwheat and related products. This work presents an optimised methodology based on QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) extraction procedure followed by ultra-high performance liquid chromatography combined with time-of-flight mass spectrometry for the determination of TAs (atropine, scopolamine, anisodamine and homatropine) in buckwheat samples. The analytical methodology was successfully validated, demonstrating good linearity, low limit of quantification, repeatability (RSDr < 15%), inter-day precision (RSDR < 19%) and recovery (74-113%). Finally, 13 commercial samples of buckwheat were analysed and the results demonstrated that they were in compliance with the current European regulations regarding TAs.


Asunto(s)
Fagopyrum , Tropanos , Fagopyrum/química , Cromatografía Líquida de Alta Presión , Tropanos/análisis , Tropanos/química , Espectrometría de Masas , Contaminación de Alimentos/análisis
8.
Sensors (Basel) ; 24(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38676029

RESUMEN

The increasing use of inertial measurement units (IMU) in biomedical sciences brings new possibilities for clinical research. The aim of this paper is to demonstrate the accuracy of the IMU-based wearable Syde® device, which allows day-long and remote continuous gait recording in comparison to a reference motion capture system. Twelve healthy subjects (age: 23.17 ± 2.04, height: 174.17 ± 6.46 cm) participated in a controlled environment data collection and performed a series of gait tasks with both systems attached to each ankle. A total of 2820 strides were analyzed. The results show a median absolute stride length error of 1.86 cm between the IMU-based wearable device reconstruction and the motion capture ground truth, with the 75th percentile at 3.24 cm. The median absolute stride horizontal velocity error was 1.56 cm/s, with the 75th percentile at 2.63 cm/s. With a measurement error to the reference system of less than 3 cm, we conclude that there is a valid physical recovery of stride length and horizontal velocity from data collected with the IMU-based wearable Syde® device.


Asunto(s)
Tobillo , Marcha , Dispositivos Electrónicos Vestibles , Humanos , Marcha/fisiología , Masculino , Tobillo/fisiología , Femenino , Adulto , Adulto Joven , Fenómenos Biomecánicos/fisiología , Acelerometría/instrumentación , Acelerometría/métodos , Análisis de la Marcha/métodos , Análisis de la Marcha/instrumentación
9.
Metabolites ; 14(4)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38668328

RESUMEN

As end-products of the intersection between the genome and environmental influences, metabolites represent a promising approach to the discovery of novel biomarkers for diseases. However, many potential biomarker candidates identified by metabolomics studies fail to progress beyond analytical validation for routine implementation in clinics. Awareness of the challenges present can facilitate the development and advancement of innovative strategies that allow improved and more efficient applications of metabolite-based markers in clinical settings. This minireview provides a comprehensive summary of the pre-analytical factors, required analytical validation studies, and kit development challenges that must be resolved before the successful translation of novel metabolite biomarkers originating from research. We discuss the necessity for strict protocols for sample collection, storage, and the regulatory requirements to be fulfilled for a bioanalytical method to be considered as analytically validated. We focus especially on the blood as a biological matrix and liquid chromatography coupled with tandem mass spectrometry as the analytical platform for biomarker validation. Furthermore, we examine the challenges of developing a commercially viable metabolomics kit for distribution. To bridge the gap between the research lab and clinical implementation and utility of relevant metabolites, the understanding of the translational challenges for a biomarker panel is crucial for more efficient development of metabolomics-based precision medicine.

10.
ESMO Open ; 9(3): 102903, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38452436

RESUMEN

BACKGROUND: HER2DX, a multianalyte genomic test, has been clinically validated to predict breast cancer recurrence risk (relapse risk score), the probability of achieving pathological complete response post-neoadjuvant therapy (pCR likelihood score), and individual ERBB2 messenger RNA (mRNA) expression levels in patients with early-stage human epidermal growth factor receptor 2 (HER2)-positive breast cancer. This study delves into the comprehensive analysis of HER2DX's analytical performance. MATERIALS AND METHODS: Precision and reproducibility of HER2DX risk, pCR, and ERBB2 mRNA scores were assessed within and between laboratories using formalin-fixed paraffin-embedded (FFPE) tumor tissues and purified RNA. Robustness was appraised by analyzing the impact of tumor cell content and protocol variations including different instruments, reagent lots, and different RNA extraction kits. Variability was evaluated across intratumor biopsies and genomic platforms [RNA sequencing (RNAseq) versus nCounter], and according to protocol variations. RESULTS: Precision analysis of 10 FFPE tumor samples yielded a maximal standard error of 0.94 across HER2DX scores (1-99 scale). High reproducibility of HER2DX scores across 29 FFPE tumors and 20 RNAs between laboratories was evident (correlation coefficients >0.98). The probability of identifying score differences >5 units was ≤5.2%. No significant variability emerged based on platform instruments, reagent lots, RNA extraction kits, or TagSet thaw/freeze cycles. Moreover, HER2DX displayed robustness at low tumor cell content (10%). Intratumor variability across 212 biopsies (106 tumors) was <4.0%. Concordance between HER2DX scores from 30 RNAs on RNAseq and nCounter platforms exceeded 90.0% (Cohen's κ coefficients >0.80). CONCLUSIONS: The HER2DX assay is highly reproducible and robust for the quantification of recurrence risk, pCR likelihood, and ERBB2 mRNA expression in early-stage HER2-positive breast cancer.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Reproducibilidad de los Resultados , Recurrencia Local de Neoplasia/genética , ARN/análisis , ARN Mensajero/genética
11.
J Clin Endocrinol Metab ; 109(9): 2269-2273, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-38441247

RESUMEN

CONTEXT: Telomerase reverse transcriptase (TERT) promoter-mutated thyroid cancers are associated with a decreased rate of disease-free and disease-specific survival. High-quality analytical validation of a diagnostic test promotes confidence in the results that inform clinical decision-making. OBJECTIVE: This work aimed to demonstrate the analytical validation of the Afirma TERT promoter mutation assay. METHODS: TERT promoter C228T and C250T variant detection in genomic DNA (gDNA) was analyzed by assessing variable DNA input and the limit of detection (LOD) of variant allele frequency (VAF). The negative and positive percentage agreement (NPA and PPA) of the Afirma TERT test was examined against a reference primer pair as was the analytical specificity from potential interfering substances (RNA and blood gDNA). Further, the intrarun, interrun, and interlaboratory reproducibility of the assay were tested. RESULTS: The Afirma TERT test is tolerant to variation in DNA input amount (7-13 ng) and can detect expected positive TERT promoter variants down to 5% VAF LOD at 7 ng DNA input with greater than 95% sensitivity. Both NPA and PPA were 100% against the reference primer pair. The test remains accurate in the presence of 20% RNA or 80% blood gDNA for an average patient sample that typically has 30% VAF. The test also demonstrated a 100% confirmation rate when compared with an external next-generation sequencing-based reference assay executed in a non-Veracyte laboratory. CONCLUSION: The analytical robustness and reproducibility of the Afirma TERT test support its routine clinical use among thyroid nodules with indeterminate cytology that are Afirma Genomic Sequencing Classifier suspicious or among Bethesda V/VI nodules.


Asunto(s)
Mutación , Regiones Promotoras Genéticas , Telomerasa , Neoplasias de la Tiroides , Telomerasa/genética , Humanos , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/diagnóstico , Neoplasias de la Tiroides/sangre , Reproducibilidad de los Resultados , Análisis Mutacional de ADN/métodos , Análisis Mutacional de ADN/normas , Frecuencia de los Genes , Sensibilidad y Especificidad
12.
Oncotarget ; 15: 200-218, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38484152

RESUMEN

We describe the analytical validation of NeXT Personal®, an ultra-sensitive, tumor-informed circulating tumor DNA (ctDNA) assay for detecting residual disease, monitoring therapy response, and detecting recurrence in patients diagnosed with solid tumor cancers. NeXT Personal uses whole genome sequencing of tumor and matched normal samples combined with advanced analytics to accurately identify up to ~1,800 somatic variants specific to the patient's tumor. A personalized panel is created, targeting these variants and then used to sequence cell-free DNA extracted from patient plasma samples for ultra-sensitive detection of ctDNA. The NeXT Personal analytical validation is based on panels designed from tumor and matched normal samples from two cell lines, and from 123 patients across nine cancer types. Analytical measurements demonstrated a detection threshold of 1.67 parts per million (PPM) with a limit of detection at 95% (LOD95) of 3.45 PPM. NeXT Personal showed linearity over a range of 0.8 to 300,000 PPM (Pearson correlation coefficient = 0.9998). Precision varied from a coefficient of variation of 12.8% to 3.6% over a range of 25 to 25,000 PPM. The assay targets 99.9% specificity, with this validation study measuring 100% specificity and in silico methods giving us a confidence interval of 99.92 to 100%. In summary, this study demonstrates NeXT Personal as an ultra-sensitive, highly quantitative and robust ctDNA assay that can be used to detect residual disease, monitor treatment response, and detect recurrence in patients.


Asunto(s)
ADN Tumoral Circulante , Neoplasias , Humanos , ADN Tumoral Circulante/genética , Mutación , Neoplasias/diagnóstico , Neoplasias/genética , ADN de Neoplasias/genética , Bioensayo , Biomarcadores de Tumor/genética
13.
Pract Lab Med ; 39: e00365, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38371895

RESUMEN

Objectives: To verify the analytical performance of the HepatoPredict kit, a novel tool developed to stratify Hepatocellular Carcinoma (HCC) patients according to their risk of relapse after a Liver Transplantation (LT). Methods: The HepatoPredict tool combines clinical variables and a gene expression signature in an ensemble of machine-learning algorithms to forecast the benefit of a LT in HCC patients. To ensure the accuracy and reliability of this method, extensive analytical validation was conducted to verify its specificity and robustness. The experiments were designed following the guidelines for multi-target genomic assays such as ISO201395-2019, MIQE, CLSI-MM16, CLSI-MM17, and CLSI-EP17-A. The validation process included reproducibility between operators and between RNA extractions and RT-qPCR runs, and interference of input RNA levels or varying reagent levels. A recently retrained version of the HepatoPredict algorithms was also tested. Results: The validation process demonstrated that the HepatoPredict kit met the required standards for robustness (p > 0.05), analytical specificity (inclusivity of 95 %), and sensitivity (LoB, LoD, linear range, and amplification efficiency between 90 and 110 %). The operator, equipment, input RNA, and reagents used had no significant effect on the HepatoPredict results. Additionally, the testing of a recently retrained version of the HepatoPredict algorithm, showed that this new version further improved the accuracy of the kit and performed better than existing clinical criteria in accurately identifying HCC patients who are more likely to benefit LT. Conclusions: Even with the introduced variations in molecular and clinical variables, the HepatoPredict kit's prognostic information remains consistent. It can accurately identify HCC patients who are more likely to benefit from a LT. Its robust performance also confirms that it can be easily integrated into standard diagnostic laboratories.

14.
Biomed Chromatogr ; 38(2): e5781, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37994231

RESUMEN

Sulfamethazine (SMZ), trimethoprim (TMP) and doxycycline (DOXY) are drugs of choice used in the treatment of intestinal and respiratory infections that affect poultry and swine. The aim of this study was develop and validate a simple, sensitive and fast method for the simultaneous determination of SMZ, TMP and DOXY in veterinary formulations by high-performance liquid chromatography. The separation was performed on a Macherey-Nagel C8 analytical column (4 × 125 mm, 5 µm), with a flow rate of 0.5 ml min-1 and detection at 268, 270 and 350 nm, for SMZ, TMP and DOXY, respectively. All measurements were performed in acetonitrile-water (45:55 v/v; pH 3.0). The analytical curves were linear (r > 0.9997) in the concentration range of 5.0-35.0 µg ml-1 for SMZ, 1.0-7.0 µg ml-1 for TMP and 7.0-13.0 µg ml-1 for DOXY. The method proved to be precise, robust, accurate and selective. In accelerated stability, the sample was analyzed for 6 months, with no major variations observed in organoleptic analysis and pH. Therefore, the developed method was proved to be suitable for routine quality control analyses for the simultaneous determination of SMZ, TMP and DOXY in pharmaceutical formulations.


Asunto(s)
Sulfametazina , Trimetoprim , Animales , Porcinos , Trimetoprim/análisis , Cromatografía Líquida de Alta Presión/métodos , Sulfametazina/análisis , Doxiciclina , Agua
16.
Braz. J. Pharm. Sci. (Online) ; 60: e23126, 2024. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1533981

RESUMEN

Abstract A simple, rapid, precise, accurate and sustainable spectrofluorimetric method (SFM) was developed, validated and applied for the determination of 4-aminobenzoic acid and aromatic amino acids (phenylalanine, tryptophan and tyrosine). These compounds are used in biopharmaceutical formulations and therefore must be analyzed by quality control laboratories to meet the criteria established in pharmacopoeias. In general, potentiometric titration (PT) is described in the compendia as the official analytical technique. However, this method showed low sensitivity and selectivity, and moreover was performed with a non-aqueous solvent (acetic acid), which led to higher consumption of reagents and consequently to the formation of residues. Therefore, the SFM was developed in aqueous medium at pH 7.2 using phosphate buffer. It was successfully validated according to the ICH guidelines and showed good linearity range (r>0.999), specificity, accuracy and precision (within and between days) and robustness. The test results were compared between the SFM and PT using raw material samples, while according to the F- and t-tests at 95% confidence level, no statistical difference was found between the methods


Asunto(s)
Control de Calidad , Productos Biológicos/clasificación , Espectrometría de Fluorescencia/métodos , Ácido 4-Aminobenzoico/agonistas , Aminoácidos Aromáticos/efectos adversos
17.
ACS Sens ; 9(1): 228-235, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-38110361

RESUMEN

The practice of monitoring therapeutic drug concentrations in patient biofluids can significantly improve clinical outcomes while simultaneously minimizing adverse side effects. A model example of this practice is vancomycin dosing in intensive care units. If dosed correctly, vancomycin can effectively treat methicillin-resistant streptococcus aureus (MRSA) infections. However, it can also induce nephrotoxicity or fail to kill the bacteria if dosed too high or too low, respectively. Although undeniably important to achieve effectiveness, therapeutic drug monitoring remains inconvenient in practice due primarily to the lengthy process of sample collection, transport to a centralized facility, and analysis using costly instrumentation. Adding to this workflow is the possibility of backlogs at centralized clinical laboratories, which is not uncommon and may result in additional delays between biofluid sampling and concentration measurement, which can negatively affect clinical outcomes. Here, we explore the possibility of using point-of-care electrochemical aptamer-based (E-AB) sensors to minimize the time delay between biofluid sampling and drug measurement. Specifically, we conducted a clinical agreement study comparing the measurement outcomes of E-AB sensors to the benchmark automated competitive immunoassays for vancomycin monitoring in serum. Our results demonstrate that E-ABs are selective for free vancomycin─the active form of the drug, over total vancomycin. In contrast, competitive immunoassays measure total vancomycin, including both protein-bound and free drug. Accounting for these differences in a pilot study consisting of 85 clinical samples, we demonstrate that the E-AB vancomycin measurement achieved a 95% positive correlation rate with the benchmark immunoassays. Therefore, we conclude that E-AB sensors could provide clinically useful stratification of patient samples at trough sampling to guide effective vancomycin dose recommendations.


Asunto(s)
Infecciones Estreptocócicas , Vancomicina , Humanos , Antibacterianos , Proyectos Piloto , Suero , Oligonucleótidos
18.
Res Vet Sci ; 165: 105069, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37951004

RESUMEN

Thiobarbituric acid reactive substances (TBARS), carbonyls and reactive oxygen species (ROS) are oxidant compounds that can provide useful information on the oxidative status. Pigs can be affected by oxidative stress in different situations including physiological conditions such as lactation and also in different diseases, and the measurement of these three analytes in saliva could be potentially useful as biomarkers of the redox status in this species. Assays for the measurement of TBARS and carbonyls by spectrophotometry and ROS by luminol-based chemiluminescence in pigs' saliva were analytically validated and were applied in saliva of pigs after an in vitro incubation with different doses of ascorbic acid (AA). All the assays showed a satisfactory analytical precision and accuracy. The 240 h-incubation of saliva samples with 60 mM of AA induced to an increased TBARS and carbonyls production. TBARS, carbonyls and ROS can be estimated in saliva of pigs by the assays validated in this report. In addition, these assays can detect changes in the concentration of these analytes associated to incubation of saliva samples with AA.


Asunto(s)
Oxidantes , Saliva , Femenino , Porcinos , Animales , Especies Reactivas de Oxígeno , Sustancias Reactivas al Ácido Tiobarbitúrico , Saliva/metabolismo , Estrés Oxidativo , Antioxidantes/metabolismo , Ácido Ascórbico
19.
Mol Biol Rep ; 50(11): 9587-9599, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37787843

RESUMEN

BACKGROUND: Analytical validity is a prerequisite to use a next generation sequencing (NGS)-based application as an in vitro diagnostic test or a companion diagnostic in clinical practice. Currently, in the United States and the European Union, the intended use of such NGS-based tests does not refer to guided drug therapy on the basis of pharmacogenetic profiling of drug metabolizing enzymes, although the value of pharmacogenetic testing has been reported. However, in research, a large variety of NGS-based tests are used and have been confirmed to be at least comparable to array-based testing. METHODS AND RESULTS: A systematic evaluation was performed screening and assessing published literature on analytical validation of NGS applications for pharmacogenetic profiling of CYP2C9, CYP2C19, CYP2D6, VKORC1 and/or UGT1A1. Although NGS applications are also increasingly used for implementation assessments in clinical practice, we show in the present systematic literature evaluation that published information on the current status of analytical validation of NGS applications targeting drug metabolizing enzymes is scarce. Furthermore, a comprehensive performance evaluation of whole exome and whole genome sequencing with the intended use for pharmacogenetic profiling has not been published so far. CONCLUSIONS: A standard in reporting on analytical validation of NGS-based tests is not in place yet. Therefore, many relevant performance criteria are not addressed in published literature. For an appropriate analytical validation of an NGS-based qualitative test for pharmacogenetic profiling at least accuracy, precision, limit of detection and specificity should be addressed to facilitate the implementation of such tests in clinical use.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Farmacogenética , Farmacogenética/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación Completa del Genoma , Citocromo P-450 CYP2D6 , Exoma
20.
Diagnostics (Basel) ; 13(19)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37835839

RESUMEN

Selected patients with early-stage melanoma have a "hidden high risk" of poor oncologic outcomes. They might benefit from clinical trials, and ultimately, if warranted by trial results, judicious everyday use of adjuvant therapy. A promising tool to identify these individuals is the immunoprint® assay. This immunohistochemical 7-biomarker prognostic test was clinically validated in three independent cohorts (N = 762) to classify early-stage patients as high-risk or low-risk regarding melanoma recurrence and mortality. Using College of American Pathologists (CAP) recommendations, we analytically validated this assay in primary melanoma specimens (N = 20 patients). We assessed assay precision by determining consistency of risk classification under repeated identical conditions (repeatability) or across varying conditions (reproducibility), involving separate assay runs, operators (laboratory scientists), and/or observers (e.g., dermatopathologists). Reference classification was followed by five analytical validation phases: intra-run/intra-operator, intra-observer, inter-run, inter-operator, and inter-observer. Concordance of classifications in each phase was assessed via Fleiss' kappa (primary endpoint) and percent agreement (secondary endpoint). Seven-marker signature classification demonstrated high consistency across validation categories (Fleiss' kappa 0.864-1.000; overall percent agreement 95-100%), in 9/10 cases, exceeding, and in 1/10 cases, closely approaching, CAP's recommended 0.9 level. The 7-marker assay has now been verified to provide excellent repeatability, reproducibility, and precision, besides having been clinically validated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA