Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 937
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Mol Graph Model ; 133: 108866, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39303334

RESUMEN

This study presents a computational investigation into the mechanistic pathway and the linker units involved in forming the zwitterionic 1,2-anti-addition product of non-conjugated diacetylenes, di(propargyl)ether (DPE), di(prop-2yn-1yl)sulfane (DPS) and 1,6-Heptadiyne (HD) catalyzed by the inter-molecular phosphine/borane frustrated Lewis pairs (FLPs), i.e., PPh2[C6H3(CF3)2](P-CF)/[B(C6F5)3]([B]) and P(o-tolyl)3(P-tol)/[B(C6F5)3]([B]). The potential energy surface (PES) calculations reveal that the anti-addition of P-CF to the internal C-atoms of acetylene units is energetically more favored than that of the addition of P-tol in DPE, DPS, and HD by ∼10.0, ∼9.2, and ∼6.0 kcal/mol, respectively. The calculations performed with DPE contain "-O-," linker unit exhibits superior reactivity than DPS and HD, which suggests the electronegativity of linkers plays a significant role and facilitates the addition of Lewis bases. The higher electronegativity of linker units enables the 1,2-addition reaction by lowering the free energy activation barriers, as observed in the DFT calculations. The Molecular Electrostatic Potential (MESP) study shows that the electrostatic interactions favor the addition of P-CF to the active acetylene positions (C5/C4/C4) of [B]-DPE/DPS/HD-π complexes than the P-tol. The Distortion/Interaction (D/I) analysis reveals that transition states involving P-CF (TS1, TS3, and TS5) exhibit more interaction energy (ΔEInt) and less distortion energies (ΔEd) than that of the P-tol (TS2, TS4, and TS6). Further, the Energy Decomposition Analysis (EDA) also rationalizes the preferential approach of the electron-deficient Lewis base over the electron-rich one on the basis of the significant contribution of orbital interaction energies (ΔEorbital) in the cases of P-CF; TS1, TS3, and TS5. This study suggests that the electronic effects of substrates and the FLPs are crucial to facilitate the desired products formed with non-conjugated terminal alkynes.

2.
Adv Mater ; : e2409436, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120050

RESUMEN

Dual-atom catalysts (DACs) originate unprecedented reactivity and maximize resource efficiency. The fundamental difficulty lies in the high complexity and instability of DACs, making the rational design and targeted performance optimization a grand challenge. Here, an atomically dispersed Pd2 DAC with an in situ generated Pd─Pd bond is constructed by a dynamic strategy, which achieves high activity and selectivity for semi-hydrogenation of alkynes and functional internal acetylene, twice higher than commercial Lindlar catalyst. Density functional theory calculations and systematic experiments confirms the ultrahigh properties of Pd2 DAC originates from the synergistic effect of the dynamically generated Pd─Pd bonds. This discovery highlights the potential for dynamic strategies and opens unprecedented possibilities for the preparation of robust DACs on an industrial scale.

3.
Molecules ; 29(15)2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39124964

RESUMEN

An efficient and operationally simple method for the synthesis of ß-keto sulfones through the BF3·OEt2-promoted reaction of alkynes and sodium sulfinates is developed. With its facile and selective access to the targets, it features good functional group compatibility, mild conditions, easily available starting materials, and good yields. Notably, the reaction does not require metal catalysts or chemical reagents with pungent odors.

4.
Chemistry ; : e202402406, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39187432

RESUMEN

A concise hydrosilylation of alkynes for synthesizing ß-(E)-vinylsilanes catalyzed by dirhodium(II)/XantPhos has been developed. In this reaction, ß-(E)-vinylsilanes were generated from the isomerization of ß-(Z)-vinylsilanes catalyzed by dirhodium(II) hydride species rather than the direct insertion of triple bond into M-H or M-Si bond (traditional Chalk-Harrod mechanism or modified Chalk-Harrod mechanism). The hydrosilylation displayed a broad substrate scope for alkynes and tertiary silanes, tolerating diverse functional groups including halides, nitrile, amines, esters, and heterocycles.

5.
Chem Rec ; 24(8): e202400058, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39136671

RESUMEN

Organophosphorus heterocycles have long been acknowledged for their significant potential across diverse fields, including catalysis, material science, and drug development. Incorporating phosphorus functionalities into organic compounds offers a means to effectively tailor their medicinal properties, augment biological responses, and enhance selectivity and bioavailability. The distinctive physical and photoelectric characteristics of phosphorus-containing conjugated compounds have garnered considerable interest as promising materials for organic optoelectronics. These compounds find extensive utility in various applications such as light-emitting diodes, photovoltaic cells, phosphole-based fluorophores, and semiconductors.

6.
Int J Mol Sci ; 25(16)2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39201437

RESUMEN

A new variant of Fisher indole synthesis involving Bronsted acid-catalyzed hydrohydrazination of unactivated terminal and internal acetylenes with arylhydrazines is reported. The use of polyphosphoric acid alone either as the reaction medium or in the presence of a co-solvent appears to provide the required balance for activating the C-C triple bond towards the nucleophilic attack of the hydrazine moiety without unrepairable reactivity loss of the latter due to competing amino group protonation. Additionally, the formal hydration of acetylenes to the corresponding ketones occurs under the same conditions, making it an alternative approach for generating carbonyl groups from alkynes.


Asunto(s)
Alquinos , Hidrazinas , Indoles , Alquinos/química , Indoles/química , Indoles/síntesis química , Hidrazinas/química , Ciclización , Catálisis , Aminación , Ácidos Fosfóricos/química , Estructura Molecular
7.
Small ; : e2403517, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39045902

RESUMEN

The cyclization of 3-hydroxy alkynes and the carboxylation of terminal alkynes both with CO2 are two attractive strategies to simultaneously reduce CO2 emission and produce value-added chemicals. Herein, the differential activation of alkynes over atomically precise Ag nanoclusters (NCs) supported on Metal-organic framework-derived highly-open mesoporous CeO2 (HM-CeO2) by reserving or removing their surface captopril ligands is reported. The ligand-capped Ag NCs possess electron-rich Ag atoms as efficient π-activation catalytic sites in cyclization reactions, while the naked Ag NCs possess partial positive-charged Ag atoms as perfect σ-activation catalytic sites in carboxylation reactions. Impressively, via coupling with HM-CeO2 featuring abundant basic sites and quick mass transfer, the ligand-capped Ag NCs afford 97.9% yield of 4,4-dimethyl-5-methylidene-1,3-dioxolan-2-one for the cyclization of 2-methyl-3-butyn-2-ol with CO2, which is 4.5 times that of the naked Ag NCs (21.7%), while the naked Ag NCs achieve 98.5% yield of n-butyl 2-alkynoate for the carboxylation of phenylacetylene with CO2, which is 15.6 times that of ligand-capped Ag NCs (6.3%). Density functional theory calculations reveal the ligand-capped Ag NCs can effectively activate alkynyl carbonate ions for the intramolecular ring closing in cyclization reaction, while the naked Ag NCs are highly affiliative in stabilizing terminal alkynyl anions for the insertion of CO2 in carboxylation reaction.

8.
Chemistry ; : e202402424, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037953

RESUMEN

The reaction between aldehydes or ketones and alkynes -the carbonyl-alkyne metathesis- constitutes a very useful strategy for the synthesis of a,b-unsaturated carbonyls. We now demonstrate that iodine is a highly efficient catalyst for both the intra- and intermolecular metathesis reaction in very small concentrations (0.1-1 mol%). Our protocol outperforms other catalytic systems, is operationally very simple, cheap, metal-free, and tolerates a large variety of functional groups (e.g., -CN, -CO2Me, -Br, -OH) at very low catalyst loadings. We can furthermore show that iodine-catalyzed carbonyl-alkyne metatheses can be combined with other iodine-catalyzed reactions in one-pot procedures to afford larger and more complex molecular structures. Finally, our mechanistic studies indicate that the iodonium ion is the active catalyst under the reaction conditions.

9.
Beilstein J Org Chem ; 20: 1246-1255, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887576

RESUMEN

Three bis- or tris-brominated 2-trifluoromethylquinolines have been successfully applied in palladium-catalysed Sonogashira reactions, leading to several examples of alkynylated quinolines in good to excellent yields. Optical properties of selected products have been studied by steady state absorption and fluorescence spectroscopy which give insights of the influence of the substitution pattern and of the type of substituents on the optical properties.

10.
Angew Chem Int Ed Engl ; 63(39): e202410283, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-38943496

RESUMEN

The direct synthesis of alkenes from alkynes usually requires the use of transition-metal catalysts. Unfortunately, efficient biocatalytic alternatives for this transformation have yet to be discovered. Herein, the selective bioreduction of electron-deficient alkynes to alkenes catalysed by ene-reductases (EREDs) is described. Alkynes bearing ketone, aldehyde, ester, and nitrile moieties have been effectively reduced with excellent conversions and stereoselectivities, observing clear trends for the E/Z ratios depending on the nature of the electron-withdrawing group. In the case of cyanoalkynes, (Z)-alkenes were obtained as the major product, and the reaction scope was expanded to a wide variety of aromatic substrates (up to >99 % conversion, and Z/E stereoselectivities of up to >99/1). Other alkynes containing aldehyde, ketone, or ester functionalities also proved to be excellent substrates, and interestingly gave the corresponding (E)-alkenes. Preparative biotransformations were performed on a 0.4 mmol scale, producing the desired (Z)-cyanoalkenes with good to excellent isolated yields (63-97 %). This novel reactivity has been rationalised through molecular docking by predicting the binding poses of key molecules in the ERED-pu-0006 active site.


Asunto(s)
Alquenos , Alquinos , Alquinos/química , Alquenos/química , Alquenos/metabolismo , Nitrilos/química , Nitrilos/metabolismo , Estereoisomerismo , Oxidación-Reducción , Estructura Molecular , Catálisis , Oxidorreductasas/metabolismo , Oxidorreductasas/química , Biocatálisis
11.
Angew Chem Int Ed Engl ; : e202410833, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38923633

RESUMEN

We herein describe the first example of ligand-controlled, copper-catalyzed regiodivergent asymmetric difunctionalization of terminal alkynes through a cascade hydroboration and hydroallylation process. The catalytic system, consisting of (R)-DTBM-Segphos and CuBr, could efficiently achieve asymmetric 1,1-difunctionalization of aryl terminal alkynes, while ligand switching to (S,S)-Ph-BPE could result in asymmetric 1,2-difunctionalization exclusively. In addition, alkyl substituted terminal alkynes, especially industrially relevant acetylene and propyne, were also valid feedstocks for asymmetric 1,1-difunctionalization. This protocol is characterized by good functional group tolerance, a broad scope of substrates (>150 examples), and mild reaction conditions. We also showcase the value of this method in the late-stage functionalization of complicated bioactive molecules and simplifying the synthetic routes toward the key intermediacy of natural product (bruguierol A). Mechanistic studies combined with DFT calculations provide insight into the mechanism and origins of this ligand-controlled regio- and stereoselectivity.

12.
ChemSusChem ; 17(13): e202400331, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38695852

RESUMEN

An efficient heterogeneous catalytic system for the oxidative aminocarbonylation of alkynes and amines in the presence of CO/O2 to afford substituted propiolamides has been developed. The active nanocatalyst, [Pd/Mg3Al-LDH]-300(D), is composed by Pd nanoaggregates (2-3 nm average particle size) stabilized over a partially dehydrated [Mg3Al-LDH] matrix. The methodology has resulted widely applicable, being the first catalytic system, either homogeneous or heterogeneous, able to activate not only aliphatic amines but also poorly-nucleophilic aromatic amines. In fact, >60 substituted propiolamides have been synthesized in good to excellent isolated yields through this methodology, being 27 novel compounds. An important characterization effort (XRD, 27Al MAS NMR, TGA, TPD-CO2, BET area, XPS, HAADF-HRSTEM and HRTEM) and optimization of the synthesis conditions of the optimal catalyst has been performed. This study, together with a series of kinetic and mechanistic essays, indicates that the optimal catalyst is composed by Pd(0) species stabilized in a partially dehydrated/dehydroxylated LDH material with a Mg/Al molar ratio of 3 and a small crystallite size. All the experimental data indicates that the in situ formation of [PdI2] active species in the material surface together with the presence of a matrix with the optimal acid/base properties are key aspects of this process.

13.
Chemistry ; 30(42): e202400930, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38780030

RESUMEN

Diarylacetylenes ArC≡CAr featuring condensed aromatic hydrocarbon fragments (Ar) such as naphthalene, anthracene, phenanthrene and pyrene were converted into vinylidene ligands by 1,2-migration reactions within the coordination sphere of half-sandwich complexes [MII(dppe)Cp]+ (MII = RuII, FeII). Comparison of the extent of conversion of the alkyne substrates to the vinylidene complexes [Ru{=C=CAr2}(dppe)Cp]+ with those obtained from acetylenes functionalized by smaller groups (H, CH3, Ph) show that the molecular volume (VM) of the migrating group and relief of steric congestion plays a role during the rearrangement process. Conversely, the H-atoms from the larger condensed ring aryl groups that are in close proximity to the migrating sites also have a significant influence on the efficacy and extent of the reaction by restricting access of the alkyne to the metal center, resulting in a less effective migration reaction. This combination of competing steric factors (acceleration due to relief of steric congestion and restricted access of the alkyne moiety to the reaction site) is exemplified by the facile migration of 1-pyryl entities and the low yields of vinylidene products formed from 1,2-bis(9-anthryl)acetylene.

14.
Angew Chem Int Ed Engl ; 63(29): e202405030, 2024 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-38695837

RESUMEN

Polymeric materials with antibacterial properties hold great promise for combating multidrug-resistant bacteria, which pose a significant threat to public health. However, the synthesis of most antibacterial polymers typically involves complicated and time-consuming procedures. In this study, we demonstrate a simple and efficient strategy for synthesizing functional poly(vinylpyridinium salt)s via pyridinium-yne click polymerization. This click polymerization could proceed with high atom economy under mild conditions without any external catalyst, yielding soluble and thermally stable poly(vinylpyridinium salt)s with satisfactory molecular weights and well-defined structures in excellent yields. Additionally, the incorporation of luminescent units such as fluorene, tetraphenylethylene, and triphenylamine into the polymer backbone confers excellent aggregation-enhanced emission properties upon the resulting polymers, rendering them suitable for bacterial staining. Moreover, the existence of pyridinium salt imparts intrinsic antibacterial activity against multidrug-resistant bacteria to the polymers, enabling them to effectively inhibit wound bacterial infection and significantly expedite the healing process. This work not only provides an efficient method to prepare antibacterial polymers, but also opens up the possibility of various applications of polymers in healthcare and other antibacterial fields.


Asunto(s)
Antibacterianos , Química Clic , Farmacorresistencia Bacteriana Múltiple , Pruebas de Sensibilidad Microbiana , Polimerizacion , Compuestos de Piridinio , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Compuestos de Piridinio/química , Compuestos de Piridinio/farmacología , Compuestos de Piridinio/síntesis química , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Estructura Molecular , Staphylococcus aureus/efectos de los fármacos , Polímeros/química , Polímeros/farmacología , Polímeros/síntesis química
15.
Beilstein J Org Chem ; 20: 891-897, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711595

RESUMEN

A stereoselective N-alkenylation of azoles with alkynes and iodine(III) electrophile is reported. The reaction between various azoles and internal alkynes is mediated by benziodoxole triflate as the electrophile in a trans-fashion, affording azole-bearing vinylbenziodoxoles in moderate to good yields. The tolerable azole nuclei include pyrazole, indazole, 1,2,3-triazole, benzotriazole, and tetrazole. The iodanyl group in the product can be leveraged as a versatile synthetic handle, allowing for the preparation of hitherto inaccessible types of densely functionalized N-vinylazoles.

16.
Small ; : e2401103, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709231

RESUMEN

The unsaturated amides are traditionally synthesized by acylation of carboxylic acids or hydration of nitrile compounds but are rarely investigated by hydroaminocarbonylation of alkynes using heterogeneous single-metal-site catalysts (HSMSCs). Herein, single-Pd-site catalysts supported on N-doping carbon (NC) with different nitrogen dimensions inherited from corresponding metal-organic-framework precursors are successfully synthesized. 2D NC-supported single-Pd-site (Pd1/NC-2D) exhibited the best performance with near 100% selectivity and 76% yield of acrylamide for acetylene hydroaminocarbonylation with better stability, superior to those of Pd1/NC-3D, single-metal-site/nanoparticle coexisting catalyst, and nanoparticle catalyst. The coordination environment and molecular evolution of the single-Pd-site during the process of acetylene hydroaminocarbonylation on Pd1/NC-2D are detailly illuminated by various characterizations and density functional theoretical calculations (DFT). DFT also showed the energy barrier of rate-determining step on Pd1/NC-2D is lower than that of Pd1/NC-3D. Furthermore, Pd1/NC-2D catalyst illustrated the general applicability of the hydroaminocarbonylation for various alkynes.

17.
Angew Chem Int Ed Engl ; 63(26): e202400441, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38587149

RESUMEN

Nickel-catalyzed transannulation reactions triggered by the extrusion of small gaseous molecules have emerged as a powerful strategy for the efficient construction of heterocyclic compounds. However, their use in asymmetric synthesis remains challenging because of the difficulty in controlling stereo- and regioselectivity. Herein, we report the first nickel-catalyzed asymmetric synthesis of N-N atropisomers by the denitrogenative transannulation of benzotriazones with alkynes. A broad range of N-N atropisomers was obtained with excellent regio- and enantioselectivity under mild conditions. Moreover, density functional theory (DFT) calculations provided insights into the nickel-catalyzed reaction mechanism and enantioselectivity control.

18.
Chemistry ; 30(35): e202401027, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38634437

RESUMEN

Utilizing periodic acid as an environmentally benign oxidizing agent, this study introduces a novel mechanochemical method that mimics ozonolysis to convert internal alkynes into 1,2-diketones, showcasing effective emulation of ozone's reactivity. Notably, this oxidation occurs at room temperature in aerobic conditions, eliminating the need for toxic transition metals, hazardous oxidants, or expensive solvents. Through control experiments validating the mechanism, substantial evidence supports a concerted reaction pathway. This progress marks a significant stride toward cleaner and more efficient chemical synthesis, mitigating the environmental impact of conventional processes. Assessing the green chemistry metrics in both solvent-free and previously reported solvent-based methods, our eco-friendly protocol demonstrates an E-factor of 7.40, a 51.7 % atom economy, a 45.5 % atom efficiency, 100 % carbon efficiency, and 11.9 % reaction mass efficiency when solvents are not used.

19.
Adv Sci (Weinh) ; 11(24): e2309645, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38650176

RESUMEN

Chiral aldehydes containing a tertiary stereogenic center are versatile building blocks in organic chemistry. In particular, such structural motifs bearing an α,α-diaryl moiety are very challenging scaffolds and their efficient asymmetric synthesis is not reported. In this work, a phosphoric acid-catalyzed enantioselective synthesis of α,α-diaryl aldehydes from simple terminal alkynes is presented. This approach yields a wide range of highly enolizable α,α-diaryl aldehydes in good yields with excellent enantioselectivities. Facile transformations of the products, as well as an efficient synthesis of bioactive molecules, including an effective anti-smallpox agent and an FDA-approved antidepressant drug (+)-sertraline, are demonstrated.

20.
Small ; 20(33): e2401107, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38530045

RESUMEN

Selective semi-hydrogenation of alkynes is a significant reaction for preparing functionalized alkenes. Electrochemical semi-hydrogenation presents a sustainable alternative to the traditional thermal process. In this research, affordable copper acetylacetonate is employed as a catalyst precursor for the electrocatalytic hydrogenation of alkynes, using MeOH as the hydrogen source in an undivided cell. Good to excellent yields for both aromatic and aliphatic internal/terminal alkynes are obtained under constant current conditions. Notably, up to 99% Z selectivity is achieved for various internal alkynes. Mechanistic investigations revealed the formation of copper nanoparticles (NPs) at the cathode during electrolysis, acting as the catalyst for the selective semireduction of alkynes. The copper NPs deposited cathode demonstrated reusable for further hydrogenation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA