Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 874
Filtrar
1.
Phytomedicine ; 135: 156022, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39284270

RESUMEN

BACKGROUND: Intrahepatic cholangiocarcinoma (ICC) is an aggressive and highly lethal cancer with an increasing incidence worldwide that lacks effective treatment regimens. Hypocrellin A (HA), a natural small compound isolated from S. bambusicola, has multiple biomedical activities, including antitumor activity. PURPOSE: We intended to investigate the therapeutic effects of HA on ICC and its potential mechanisms. METHODS: RBE and HuccT1 cell lines were utilized for in vitro experiments. CCK8 assay, colony formation analysis, RTCA, and immunofluorescence staining of ki67 were employed to evaluate the suppression effects of HA on proliferation. The inhibitory effects of HA on cell migration and invasion were evaluate through transwell and wound healing assays, and Hoechst 33,258 staining was performed to evaluate apoptosis. Additionally, we performed transcriptome sequencing and molecular docking for targeting identification, and immunoblotting and immunofluorescence of key molecules for validation. Two in vivo models, HuccT1 xenografts, and the primary ICC model (KRAS/P19/SB) established via hydrodynamic tail-vein injection were implemented. Multiplex immunohistochemistry (mIHC) was used to illustrate the multi-target inhibitory effects of HA. RESULTS: The IC50 values of HA against RBE and HuccT1 cells were 4.612 µM and 10.01 µM for 24 h, as determined through the CCK8 assay. Our results confirmed that HA significantly repressed the proliferation, migration, invasion, and promoted the apoptosis of ICC cells at low concentrations. Moreover, HA exerted its anti-cancer effects through multi-target inhibition of the PI3K-AKT-mTOR, MAPK, and STAT3 signaling pathways. This inhibitory effect was rescued by Recilisib, an activator of the PI3K-AKT-mTOR pathway. Bioinformatics analysis of a multi-center RNA-Seq cohort (n = 90) demonstrated significant associations between these target pathways and the occurrence and poor prognosis of ICC. Animal studies suggested that HA strongly inhibited tumor growth in xenograft ICC models, and repressed the tumor number and size in the liver of primary ICC models by suppressing these three crucial pathways. CONCLUSION: HA, a novel natural small molecule, demonstrated promising therapeutic efficacy against ICC through its multi-target inhibitory effects on the PI3K-AKT-mTOR, MAPK, and STAT3 signaling pathways. Moreover, it exhibited notable therapeutic benefits in a primary ICC model (KRAS/P19/SB), positioning it as a novel therapeutic agent for ICC.

2.
Arch Biochem Biophys ; 761: 110149, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39271096

RESUMEN

BACKGROUND: The pathogenesis exploration and timely intervention of hepatocellular carcinoma (HCC) are crucial due to its global impact on human health. As a general tumor biomarker, stanniocalcin 2 (STC2), its role in HCC remains unclear. We aimed to analyze the effect and mechanism of STC2 on HCC. METHODS: STC2 expressions in HCC tissues and cell lines were measured. si-STC2 and oe-STC2 transfections were utilized to analyze how STC2 affected cell functions. Functional enrichment analysis of STC2 was performed by Gene Set Enrichment Analysis (GSEA). The regulatory mechanism of STC2 on HCC was investigated using 2-DG, 3-MA, IGF-1, Rap, and LY294002. The impact of STC2 on HCC progression in vivo was evaluated by the tumor formation experiment. RESULTS: Higher levels of STC2 expression were observed in HCC tissues and cell lines. Besides, STC2 knockdown reduced proliferation, migration, and invasion, while inducing cell apoptosis. Further analysis indicated a positive correlation between STC2 and glycolysis. STC2 knockdown inhibited glycolysis progression and down-regulated the expressions of PKM2, GLUT1, and HK2 in HCC cells. However, treatment with glycolysis inhibitor (2-DG) prevented oe-STC2 from promoting the growth of HCC cells. Additionally, STC2 knockdown up-regulated the levels of LC3II/LC3I and Beclin1 and reduced the phosphorylation of PI3K, AKT, and mTOR. Treatment with 3-MA, IGF-1, Rap, and LY294002 altered the function of STC2 on proliferation and glycolysis in HCC cells. Tumor formation experiment results revealed that STC2 knockdown inhibited HCC progression. CONCLUSIONS: STC2 knockdown inhibited cell proliferation and glycolysis in HCC through the PI3K/Akt/mTOR pathway-mediated autophagy induction.

3.
Mol Neurobiol ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39302617

RESUMEN

Chemobrain is a cognitive impairment observed in up to 75% of cancer patients treated with doxorubicin (DOX). Cognitive deficits associated with DOX are complex, and multiple interplay pathways contribute to memory impairment and the loss of concentration. Empagliflozin (EMPA), a sodium-glucose co-transporter-2 (SGLT-2) inhibitor with neuroprotective potential, has recently been elucidated because of its regulatory effects on oxidative stress and neuroinflammation. Thus, this study aimed to explore the protective mechanisms of EMPA in DOX-induced chemobrain. Rats were allocated to four groups: normal (NC), EMPA, DOX, and EMPA + DOX. Chemobrain was induced in the third and fourth groups by DOX (2 mg/kg, IP) on the 0th, 7th, 14th, and 21st days of the study, while EMPA was administered (10 mg/kg, PO) for 28 consecutive days in both the EMPA and EMPA + DOX groups. Behavioral and biochemical assessments were then performed. Rats treated with DOX exhibited significant memory, learning, and muscle coordination dysfunctions. Moreover, DOX boosted oxidative stress in the brain, as evidenced by elevated malondialdehyde (MDA) content together with decreased levels of nuclear factor-erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) and reduced glutathione (GSH). Neuroinflammation was also observed as an upsurge of tumor necrosis factor-alpha (TNF-α) and nuclear factor kappa B (NF-κB) (p65). Additionally, DOX diminished the expression of brain-derived neurotrophic factor (BDNF) and increased phosphoinositol-3-kinase (PI3K), phosphorylated-Akt (pAkt), and mammalian target of rapamycin (mTOR) content. EMPA exhibited potent neuroprotective potential in DOX-induced cognitive impairment, attributed to its antioxidant and neuroplasticity-enhancing properties and suppression of the PI3K/Akt/mTOR/NF-κB/TNF-α signaling pathway.

4.
Int Immunopharmacol ; 142(Pt B): 113186, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39298817

RESUMEN

Silicosis is a progressive interstitial lung disease characterized by diffuse pulmonary fibrosis. The transdifferentiation of lung fibroblasts into myofibroblasts is a key cellular event driving the progression of silicosis fibrosis. Recent studies have shown that PD-L1 expression is significantly upregulated in activated fibroblasts, and PD-L1 plays a crucial role in mediating fibroblast transdifferentiation. This study aims to elucidate the molecular mechanisms regulating PD-L1 expression in fibroblasts and analyze the functional significance of PD-L1 upregulation in fibroblast activity and silicosis fibrosis. In this research, an in vitro model of TGF-ß1-induced NIH-3 T3 fibroblast transdifferentiation was established. Small molecule inhibitors, siRNA, and plasmids were used to interfere with the PI3K/AKT/mTOR signaling pathway and PD-L1 expression. It was found that TGF-ß1 stimulation increased PD-L1 expression in fibroblasts, while blocking the PI3K/AKT/mTOR pathway inhibited this upregulation. Knockdown of PD-L1 significantly inhibited fibroblast transdifferentiation and impeded TGF-ß1-induced activation of the PI3K/AKT/mTOR pathway, whereas PD-L1 overexpression had the opposite effect. Additionally, PD-L1 protein in fibroblasts undergoes ubiquitin-proteasome-mediated degradation, negatively regulating PD-L1 upregulation. In vivo, adeno-associated virus was used to specifically knockdown PD-L1 in mouse lung fibroblasts, resulting in significantly reduced lung tissue damage and fibrosis in silicosis mice. This effect was associated with the involvement of the PI3K/AKT/mTOR pathway. In summary, PD-L1 expression in fibroblasts is upregulated during transdifferentiation, a process regulated by the PI3K/AKT/mTOR pathway. Upregulated PD-L1 enhances PI3K/AKT/mTOR signaling through positive feedback, sustaining fibroblast activation. Ubiquitin-proteasome-mediated protein degradation may serve as a negative feedback mechanism maintaining PD-L1 homeostasis.

5.
Mol Clin Oncol ; 21(5): 81, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39301125

RESUMEN

Terpenoids are a large group of naturally occurring organic compounds with a wide range of components. A phytoconstituent in this group, andrographolide, which is derived from a plant called Andrographis paniculate, offers a number of advantages, including anti-inflammatory, anticancer, anti-angiogenesis and antioxidant effects. The present review elucidates the capacity of andrographolide to inhibit signaling pathways, namely the nuclear factor-κB (NF-κB), hypoxia-inducible factor 1 (HIF-1), the Janus kinase (JAK)/signal transducer and activator of transcription (STAT), phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR), Wnt/ß-catenin and mitogen-activated protein kinase (MAPK) pathways, which are involved in cellular processes and responses such as the inflammatory response, apoptosis and angiogenesis. Inhibiting pathways enables andrographolide to exhibit its anticancer effects against breast, colorectal and lung cancer. The present review focuses on the anticancer effects of andrographolide, specifically in breast, colorectal and lung cancer through the NF-κB, HIF-1 and JAK/STAT signaling pathways. Therefore, the Google Scholar, PubMed and ScienceDirect databases were used to search for references to these prevalent types of cancer and the anticancer mechanisms of andrographolide associated with them. The following key words were used: Andrographolide, anticancer, JAK/STAT, HIF-1, NF-κB, PI3K/AKT/mTOR, Wnt/ß-catenin and MAPK pathways, and the literature was limited to studies published between 2010 to 2023. The present review article provides details about the different involvements of signaling pathways in the anticancer mechanisms of andrographolide.

6.
Molecules ; 29(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39274913

RESUMEN

The enmein-type diterpenoids are a class of anticancer ent-Kaurane diterpnoids that have received much attention in recent years. Herein, a novel 1,14-epoxy enmein-type diterpenoid 4, was reported in this project for the first time. A series of novel enmein-type diterpenoid derivatives were also synthesized and tested for anticancer activities. Among all the derivatives, compound 7h exhibited the most significant inhibitory effect against A549 cells (IC50 = 2.16 µM), being 11.03-folds better than its parental compound 4. Additionally, 7h exhibited relatively weak anti-proliferative activity (IC50 > 100 µM) against human normal L-02 cells, suggesting that it had excellent anti-proliferative selectivity for cancer cells. Mechanism studies suggested that 7h induced G0/G1 arrest and apoptosis in A549 cells by inhibiting the PI3K/AKT/mTOR pathway. This process was associated with elevated intracellular ROS levels and collapsed MMP. In summary, these data identified 7h as a promising lead compound that warrants further investigation of its anticancer properties.


Asunto(s)
Antineoplásicos , Apoptosis , Proliferación Celular , Diterpenos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Humanos , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Diterpenos/farmacología , Diterpenos/química , Diterpenos/síntesis química , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células A549 , Diseño de Fármacos , Línea Celular Tumoral , Relación Estructura-Actividad , Especies Reactivas de Oxígeno/metabolismo
7.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(8): 1476-1484, 2024 Aug 20.
Artículo en Chino | MEDLINE | ID: mdl-39276043

RESUMEN

OBJECTIVE: To investigate the effects of kuwanon G (KG) on proliferation, apoptosis, migration and invasion of gastric cancer cells and the molecular mechanisms. METHODS: The effects of KG on proliferation and growth of gastric cancer cells were assessed with CCK-8 assay and cell clone formation assay, by observing tumor formation on the back of nude mice and using immunohistochemical analysis of Ki-67. The effect of KG on cell apoptosis was analyzed using Annexin V-FITC/PI apoptosis detection kit, Western blotting and TUNEL staining. The effects of KG on cell migration and invasion were detected using Transwell migration and invasion assay and Western blotting for matrix metalloproteinase (MMP). The role of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway in KG-mediated regulation of gastric cancer cell proliferation, migration, and invasion was verified by Western blotting and rescue assay. RESULTS: KG significantly inhibited proliferation and reduced clone formation ability of gastric cancer cells in a concentration-dependent manner (P < 0.05). KG treatment also increased apoptosis, enhanced the expressions of cleaved caspase-3 and Bax, down-regulated Bcl-2, lowered migration and invasion capacities and inhibited the expression of MMP2 and MMP9 in gastric cancer cells (P < 0.05). Mechanistic validation showed that KG inhibited the activation of the PI3K/AKT/mTOR pathway, and IGF-1, an activator of the PI3K/AKT/mTOR pathway, reversed the effects of KG on proliferation, migration and invasion of gastric cancer cells (P < 0.05). CONCLUSION: KG inhibits proliferation, migration and invasion and promotes apoptosis of gastric cancer cells at least in part by inhibiting the activation of the PI3K/AKT/mTOR pathway.


Asunto(s)
Apoptosis , Movimiento Celular , Proliferación Celular , Ratones Desnudos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Neoplasias Gástricas , Serina-Treonina Quinasas TOR , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Ratones , Apoptosis/efectos de los fármacos , Animales , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Invasividad Neoplásica , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Caspasa 3/metabolismo
8.
Mol Med Rep ; 30(5)2024 11.
Artículo en Inglés | MEDLINE | ID: mdl-39219289

RESUMEN

Hepatic fibrosis (HF) is a process that occurs during the progression of several chronic liver diseases, for which there is a lack of effective treatment options. Carthamus tinctorius L. (CTL) is often used in Chinese or Mongolian medicine to treat liver diseases. However, its mechanism of action remains unclear. In the present study, CTL was used to treat rats with CCl4­induced HF. The histopathological, biochemical and HF markers of the livers of the rats were analyzed, and CTL­infused serum was used to treat hepatic stellate cells (HSCs) in order to detect the relevant markers of HSC activation. Protein expression pathways were detected both in vitro and in vivo. Histopathological results showed that CTL significantly improved CCl4­induced liver injury, reduced aspartate aminotransferase and alanine aminotransferase levels, promoted E­cadherin expression, and decreased α­smooth muscle actin (SMA), SOX9, collagen I and hydroxyproline expression. Moreover, CTL­infused serum was found to decrease α­SMA and collagen I expression in HSCs. Further studies showed that CTL inhibited the activity of the PI3K/Akt/mTOR pathway in the rat livers. Following the administration of the PI3K agonist 740Y­P to HSCs, the inhibitory effect of CTL on the PI3K/Akt//mTOR pathway was blocked. These results suggested that CTL can inhibit HF and HSC activation by inhibiting the PI3K/Akt/mTOR pathway.


Asunto(s)
Carthamus tinctorius , Células Estrelladas Hepáticas , Cirrosis Hepática , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Animales , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Carthamus tinctorius/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Ratas , Masculino , Tetracloruro de Carbono , Ratas Sprague-Dawley , Extractos Vegetales/farmacología , Hígado/metabolismo , Hígado/patología , Hígado/efectos de los fármacos
9.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119821, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39159684

RESUMEN

Resistance to endocrine therapy is a major clinical challenge in estrogen receptor (ER)-positive breast cancer. Obesity is associated with the clinical response to ER-positive breast cancers; however, the mechanism underlying obesity-induced resistance to endocrine therapy in ER-positive breast cancers remains unclear. In this study, we investigated the molecular mechanisms underlying obesity-induced resistance to tamoxifen (TAM), an anti-estrogen agent, in the ER-positive breast cancer cell line MCF-7 using differentiated adipocyte-conditioned medium (D-CM). Treatment of the cells with D-CM promoted TAM resistance by reducing TAM-induced apoptosis. The expression levels of the ERα target genes were higher in D-CM-treated cells than those in untreated ones. In contrast, when the cells were cultured in the presence of TAM, the expression levels were decreased, with or without D-CM. Moreover, the expression of the markers for cancer stem-like cells (CSCs) and mammosphere formation was enhanced by co-treating with D-CM and TAM, compared with TAM alone. The phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway was activated in MCF-7 cells by D-CM treatment, even in the presence of TAM. Inhibition of the PI3K/Akt/mTOR pathway decreased the expression levels of the CSC markers, suppressed mammosphere formation, and resensitized to TAM via inducing apoptosis in D-CM-treated cells. These results indicate that the conditioned medium of differentiated adipocytes promoted TAM resistance by inducing the CSC phenotype through activation of the PI3K/Akt/mTOR pathway in ER-positive breast cancer cells. Thus, the PI3K/Akt/mTOR pathway may be a therapeutic target in obese patients with ER-positive breast cancers.


Asunto(s)
Adipocitos , Neoplasias de la Mama , Resistencia a Antineoplásicos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Tamoxifeno , Humanos , Tamoxifeno/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Medios de Cultivo Condicionados/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Células MCF-7 , Adipocitos/metabolismo , Adipocitos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores de Estrógenos/metabolismo , Apoptosis/efectos de los fármacos , Antineoplásicos Hormonales/farmacología
10.
Biomed Pharmacother ; 178: 117268, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39116780

RESUMEN

Gastric precancerous lesion (GPL) is a crucial stage in the development of gastric cancer, characterized by incomplete intestinal epithelial chemotaxis and heterogeneous hyperplasia with high malignant potential. Early intervention in GPL is vital for preventing gastric cancer. Additionally, there are shared risk factors and pathogenesis between tumors and coronary heart disease (CHD), with an increasing number of tumor patients GPL complicated with CHD due to improved survival rates. Reperfusion therapy in CHD can result in myocardial ischemia-reperfusion injury (MIRI). Traditional Chinese medicine (TCM) has demonstrated unique advantages in treating GPL and MIRI by promoting blood circulation and removing blood stasis. Panax ginseng total saponin (PNS), a component of TCM known for its blood circulation benefits, has shown positive effects in inhibiting tumor growth and improving myocardial ischemia. This study utilized a GPL-MIRI mouse model to investigate the effects of PNS in treatment. Results indicated that PNS significantly improved typical GPL lesions in mice, such as incomplete intestinal epithelialization and heteroplasia, and also reduced myocardial infarction. At the molecular level, PNS exhibited a bidirectional regulatory role in the GPL-MIRI model. It enhanced the autophagic process in gastric mucosal cells by inhibiting the PI3K/Akt/mTOR signaling pathway, while suppressed excessive autophagy in cardiomyocytes. These findings offer new insights and treatment strategies for managing GPL and MIRI using the TCM compound PNS.


Asunto(s)
Autofagia , Daño por Reperfusión Miocárdica , Panax notoginseng , Saponinas , Transducción de Señal , Neoplasias Gástricas , Animales , Masculino , Ratones , Autofagia/efectos de los fármacos , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/metabolismo , Panax notoginseng/química , Fosfatidilinositol 3-Quinasas/metabolismo , Lesiones Precancerosas/tratamiento farmacológico , Lesiones Precancerosas/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Saponinas/farmacología , Saponinas/uso terapéutico , Transducción de Señal/efectos de los fármacos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
11.
Bone ; 188: 117222, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39102974

RESUMEN

BACKGROUND: Zoledronic acid (ZOL) is a type of bisphosphonate with good therapeutic effects on orthopaedic diseases. However, the pharmacological functions of ZOL on steroid-induced avascular necrosis of femoral head (SANFH) and the underlying mechanism remain unclear, which deserve further research. METHODS: SANFH models both in vivo and in vitro were established by dexamethasone (Dex) stimulation. Osteoclastogenesis was examined by TRAP staining. Immunofluorescence was employed to examine autophagy marker (LC3) level. Cell apoptosis was analyzed by TUNEL staining. The interaction between Foxhead box D3 protein (FOXD3) and Annexin A2 (ANXA2) promoter was analyzed using ChIP and dual luciferase reporter gene assays. RESULTS: Dex aggravated osteoclastogenesis and induced osteoclast differentiation and autophagy in vitro, which was abrogated by ZOL treatment. PI3K inhibitor LY294002 abolished the inhibitory effect of ZOL on Dex-induced osteoclast differentiation and autophagy. FOXD3 overexpression neutralized the downregulation effects of ZOL on Dex-induced osteoclasts by transcriptionally activating ANXA2. ANXA2 knockdown reversed the effect of FOXD3 overexpression on ZOL-mediated biological effects in Dex-treated osteoclasts. In addition, ZOL improved SANFH symptoms in rats. CONCLUSION: ZOL alleviated SANFH through regulating FOXD3 mediated ANXA2 transcriptional activity and then promoting PI3K/AKT/mTOR pathway, revealing that FOXD3 might be a target for ZOL in SANFH treatment.


Asunto(s)
Anexina A2 , Autofagia , Necrosis de la Cabeza Femoral , Factores de Transcripción Forkhead , Activación Transcripcional , Ácido Zoledrónico , Animales , Necrosis de la Cabeza Femoral/inducido químicamente , Necrosis de la Cabeza Femoral/patología , Necrosis de la Cabeza Femoral/genética , Necrosis de la Cabeza Femoral/tratamiento farmacológico , Ácido Zoledrónico/farmacología , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Autofagia/efectos de los fármacos , Autofagia/genética , Anexina A2/metabolismo , Anexina A2/genética , Masculino , Activación Transcripcional/efectos de los fármacos , Dexametasona/farmacología , Dexametasona/efectos adversos , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteoclastos/patología , Diferenciación Celular/efectos de los fármacos , Ratones , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Apoptosis/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
12.
Molecules ; 29(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125009

RESUMEN

Human pharyngeal squamous cell carcinoma (HPSCC) is the most common malignancy in the head and neck region, characterized by high mortality and a propensity for metastasis. Fucoxanthin, a carotenoid isolated from brown algae, exhibits pharmacological properties associated with the suppression of tumor proliferation and metastasis. Nevertheless, its potential to inhibit HPSCC proliferation and metastasis has not been fully elucidated. This study represents the first exploration of the inhibitory effects of fucoxanthin on two human pharyngeal squamous carcinoma cell lines (FaDu and Detroit 562), as well as the mechanisms underlying those effects. The results showed dose-dependent decreases in the proliferation, migration, and invasion of HPSCC cells after fucoxanthin treatment. Further studies indicated that fucoxanthin caused a significant reduction in the expression levels of proteins in the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) pathway, as well as the downstream proteins matrix metalloproteinase (MMP)-2 and MMP-9. Specific activators of PI3K/AKT reversed the effects of fucoxanthin on these proteins, as well as on cell proliferation and metastasis, in FaDu and Detroit 562 cells. Molecular docking assays confirmed that fucoxanthin strongly interacted with PI3K, AKT, mTOR, MMP-2, and MMP-9. Overall, fucoxanthin, a functional food component, is a potential therapeutic agent for HPSCC.


Asunto(s)
Movimiento Celular , Proliferación Celular , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Xantófilas , Humanos , Serina-Treonina Quinasas TOR/metabolismo , Xantófilas/farmacología , Xantófilas/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proliferación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Neoplasias Faríngeas/tratamiento farmacológico , Neoplasias Faríngeas/patología , Neoplasias Faríngeas/metabolismo , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Metástasis de la Neoplasia , Simulación del Acoplamiento Molecular
13.
Chem Biol Interact ; 402: 111218, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39209016

RESUMEN

This review aims to summarize the role of alkaloids as potential modulators of the PI3K/Akt/mTOR (PAMT) pathway in cancer therapy. The PAMT pathway plays a critical role in cell growth, survival, and metabolism, and its dysregulation contributes to cancer hallmarks. In healthy cells, this pathway is tightly controlled. However, this pathway is frequently dysregulated in cancers and becomes abnormally active. This can happen due to mutations in genes within the pathway itself or due to other factors. This chronic overactivity promotes cancer hallmarks such as uncontrolled cell division, resistance to cell death, and increased blood vessel formation to nourish the tumor. As a result, the PAMT pathway is a crucial therapeutic target for cancer. Researchers are developing drugs that specifically target different components of this pathway, aiming to turn it off and slow cancer progression. Alkaloids, a class of naturally occurring nitrogen-containing molecules found in plants, have emerged as potential therapeutic agents. These alkaloids can target different points within the PAMT pathway, inhibiting its activity and potentially resulting in cancer cell death or suppression of tumor growth. Research is ongoing to explore the role of various alkaloids in cancer treatment. Berberine reduces mTOR activity and increases apoptosis by targeting the PAMT pathway, inhibiting cancer cell proliferation. Lycorine inhibits Akt phosphorylation and mTOR activation, increasing pro-apoptotic protein production and decreasing cell viability. In glioblastoma models, harmine suppresses mTORC1. This review focuses on alkaloids such as evodiamine, hirsuteine, chaetocochin J, indole-3-carbinol, noscapine, berberine, piperlongumine, and so on, which have shown promise in targeting the PAMT pathway. Clinical studies evaluating alkaloids as part of cancer treatment are underway, and their potential impact on patient outcomes is being investigated. In summary, alkaloids represent a promising avenue for targeting the dysregulated PAMT pathway in cancer, and further research is warranted.


Asunto(s)
Alcaloides , Neoplasias , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Humanos , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Alcaloides/farmacología , Alcaloides/química , Alcaloides/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química
14.
Mol Oncol ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39092562

RESUMEN

Metastatic castration-resistant prostate cancer (mCRPC) is characterized by loss of androgen receptor (AR) sensitivity and oncogenic activation of the PI3K/AKT/mTOR (PAM) pathway. Loss of the PI3K regulator PTEN is frequent during prostate cancer (PC) initiation, progression, and therapeutic resistance. Co-targeting the PAM/AR pathways is a promising mCRPC treatment strategy but is hampered by reciprocal negative feedback inhibition or feedback relief. Most PAM inhibitors selectively spare (or weakly inhibit) one or more key nodes of the PAM pathway, potentiating drug resistance depending on the PAM pathway mutation status of patients. We posited that gedatolisib, a uniformly potent inhibitor of all class I PI3K isoforms, as well as mTORC1 and mTORC2, would be more effective than inhibitors targeting single PAM pathway nodes in PC cells. Using a combination of functional and metabolic assays, we evaluated a panel of PC cell lines with different PTEN/PIK3CA status for their sensitivity to multi-node PAM inhibitors (PI3K/mTOR: gedatolisib, samotolisib) and single-node PAM inhibitors (PI3Kα: alpelisib; AKT: capivasertib; mTOR: everolimus). Gedatolisib induced anti-proliferative and cytotoxic effects with greater potency and efficacy relative to the other PAM inhibitors, independent of PTEN/PIK3CA status. The superior effects of gedatolisib were likely associated with more effective inhibition of critical PAM-controlled cell functions, including cell cycle, survival, protein synthesis, oxygen consumption rate, and glycolysis. Our results indicate that potent and simultaneous blockade of all class I PI3K isoforms, mTORC1, and mTORC2 could circumvent PTEN-dependent resistance. Gedatolisib, as a single agent and in combination with other therapies, reported promising preliminary efficacy and safety in various solid tumor types. Gedatolisib is currently being evaluated in a Phase 1/2 clinical trial in combination with darolutamide in patients with mCRPC previously treated with an AR inhibitor, and in a Phase 3 clinical trial in combination with palbociclib and fulvestrant in patients with HR+/HER2- advanced breast cancer.

15.
Curr Med Chem ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39171586

RESUMEN

The heterogeneous disease, breast cancer (BC), is a frequently detected cancer today, including hormone receptor-positive (HR+), human epidermal growth factor receptor-2-positive (HER2+), and triple-negative (ER-, PR-, HER2-) BC. Advanced endocrine therapies could improve about 85% HR+ BC patient survival. Still, 20% - 30% of cases of endocrine therapy resistance are observed. For all kinds of breast cancer, drug resistance is a common and dangerous phenomenon, comprised of two types: de novo resistance and acquired resistance (prolonged exposure). According to recent works of literature, the PI3K/AKT/mTOR pathway has become an emerging target for overcoming drug resistance in BC therapy due to its close association with tumour growth and resistance from current therapies. Activation of the PI3K/AKT/mTOR pathway was found to promote multidrug resistance by elevating drugs' outflow. The first orally active PI3K inhibitor, Alpelisib (BYL-719) in fulvestrant combination, was approved for treating HR+/ HER2- metastatic BC. Therefore, utilizing PI3K/mTOR/AKT inhibitors in combination with currently available strategies could be an optimistic approach to overcoming drug resistance and resensitizing drug-resistant tumor cells of BC. Here, in this perspective, BC cancer therapies related to drug resistance, the involvement of PI3K/AKT/mTOR pathway in drug resistance and multi-drug resistance, and the role of PI3K/AKT/mTOR inhibitors in getting rid of drug resistance have been illuminated.

16.
Chem Biol Drug Des ; 104(2): e14587, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39175102

RESUMEN

Natural compounds such as thymoquinone (TQ) have recently gained increasing attention in treating glioblastoma (GBM). However, the effects of TQ in reversing drug resistance are not completely understood. Therefore, we aimed to examine TQ impacts on GBM cells with doxorubicin (DOX) resistance and the involvement of the PI3K/Akt/mTOR pathway. GBM cancer U87 and U87/DOX (resistant cells) cells were exposed to DOX and TQ, and cell proliferation was assessed by the MTT assay. ELISA was applied to evaluate cell apoptosis. The expression of apoptotic mediators such as Caspase-3, Bax, Bcl-2 and PI3K, Akt, mTOR, P-gp, and PTEN was assessed via qRT-PCR and western blot. We found that a combination of TQ and DOX suppressed dose-dependent cell growth capacity in cells and increased the cytotoxic effects of DOX in resistant cells. In addition, TQ treatment increased DOX-mediated apoptosis in U87/DOX cell lines via modulating the pro- and anti-apoptotic markers. A combination of TQ and DOX upregulated PTEN and downregulated PI3K, Akt, and mTOR, suppressing this signal transduction in resistant cells. In conclusion, we showed TQ potentiated doxorubicin-mediated antiproliferative and pro apoptotic function DOX-resistant glioblastoma cells, which is mediated by targeting and suppressing PI3K/Akt/mTOR signal transduction.


Asunto(s)
Apoptosis , Benzoquinonas , Doxorrubicina , Resistencia a Antineoplásicos , Glioblastoma , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Humanos , Doxorrubicina/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Benzoquinonas/farmacología , Benzoquinonas/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , Transducción de Señal/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasas/metabolismo , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos
17.
Heliyon ; 10(14): e34528, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39114045

RESUMEN

Background: 5-Fluorouracil (5-Fu), a prominent chemotherapeutic agent for colorectal cancer (CRC) treatment, is often associated with gastrointestinal toxicities, particularly diarrhea. Our previous study demonstrated that berberine (BBR) ameliorates 5-Fu-induced intestinal mucosal injury by modulating the gut microbiota in rats. Nevertheless, the precise molecular mechanism underlying BBR's protective effect on intestinal mucosa remains elusive, and its impact on the anti-tumor efficacy of 5-Fu warrants further investigation. Methods: The effect of BBR on 5-Fu-induced intestinal mucosal injury was investigated using a tumor-bearing murine model, employing H&E staining, 16 S rDNA sequencing, transcriptome sequencing, Western blot analysis, cell experiments and constructing a pseudo-germ-free tumor xenograft model. Result: Our findings demonstrate that BBR alleviates intestinal mucosal damage, reduces the levels of inflammatory factors (IL-6, TNF-α, and IL-1ß), and inhibits epithelial cell apoptosis in 5-Fu-treated mice without compromising 5-Fu's anti-tumor efficacy. Moreover, 16 S rDNA sequencing indicated that BBR significantly increases the abundance of Akkermansia and decreases the abundance of pathogenic bacteria Escherichia/Shigella at the genus level. Mechanistically, transcriptome sequencing and Western blot analysis confirmed that BBR upregulates PI3K/AKT/mTOR expression in the intestinal mucosa. However, this effect was not observed in tumor tissues. Notably, BBR did not demonstrate a direct protective effect on 5-Fu-treated CCD841 and SW480 cells. Additionally, BBR had no effect on the PI3K/AKT/mTOR pathway in the intestinal tissue of the 5-Fu-treated mouse model with a depleted gut microbiota. Conclusion: This study indicates that BBR alleviates 5-Fu-induced intestinal mucosal injury by modulating the gut microbiota and regulating the PI3K/AKT/mTOR signaling pathway without compromising the anti-tumor efficacy of 5-Fu.

18.
Cell Biochem Biophys ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39126432

RESUMEN

Delayed cerebral vasospasm (CVS) after subarachnoid hemorrhage (SAH) is a serious complication. This article aimed to explore the mechanism of hyperbaric oxygenation (HBO) inhibiting delayed CVS after SAH. The 60 SD rats were grouped: normal control group (NC), sham operation group (Sham), SAH Model (Model), and HBO treatment group. The SAH model was established by injecting blood twice into the cisterna magna (CM), and the neurological function of the rats were evaluated by modified Garcia scale. The plasma of the rats was collected at 1, 3, 6, and 9 days after HBO treatment. Plasma levels of PI3K/Akt/mTOR pathway-related proteins were detected by Western blot (WB). TUNEL method was used to observe the apoptosis rate of basilar artery (BA) endothelial cells (ECs). Hematoxylin-eosin staining (HE) staining was used to observe the inner diameter and the thickness of vessel wall of rat cerebral arteries. The relationship between mTOR and middle cerebral artery spasm was analyzed. As against the Model, the neurological function was visibly increased, the expressions of Bcl-2, PI3K, mTOR, and p-Akt/Akt protein in plasma were visibly increased, the expression of Bax protein was visibly decreased, and the degree of CVS was visibly reduced in the HBO group (all P < 0.05). The level of mTOR is negatively correlated with the degree of CVS after SAH, and HBO can inhibit the occurrence of delayed CVS.

19.
Front Pharmacol ; 15: 1412565, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39139643

RESUMEN

Background:Pancreatic cancer is a leading cause of cancer-related mortality worldwide with increasing global incidence. We previously reported the anticancer effect of Rhus coriaria ethanolic extract (RCE) in triple negative breast and colon cancer cells. Herein, we investigated the anticancer effect of RCE on human pancreatic cancer cells. Methods: Cell viability was measured using Cell Titer-Glo and staining of viable and dead cells based on differential permeability to two DNA binding dyes. Cell cycle distribution and annexin V staining was carried out in Muse cell analyzer. Protein level was determined by Western blot. Tumor growth was assessed by in ovo chick embryo chorioallantoic membrane assay. Results: We found that RCE significantly inhibited the viability and colony growth of pancreatic cancer cells (Panc-1, Mia-PaCa-2, S2-013, AsPC-1). The antiproliferative effects of RCE in pancreatic cancer cells (Panc-1 and Mia-PaCa-2) were mediated through induction of G1 cell cycle arrest, Beclin-1-independent autophagy, and apoptosis. RCE activated both the extrinsic and intrinsic pathways of apoptosis and regulated the Bax/Bcl-2 apoptotic switch. Mechanistically, we found that RCE inhibited the AKT/mTOR pathway, downstream of which, inactivation of the cell cycle regulator p70S6K and downregulation of the antiapoptotic protein survivin was observed. Additionally, we found that RCE-induced autophagy preceded apoptosis. Further, we confirmed the anticancer effect of RCE in a chick embryo xenograft model and found that RCE inhibited the growth of pancreatic cancer xenografts without affecting embryo survival. Conclusion: Collectively, our findings demonstrate that Rhus coriaria exerts potent anti-pancreatic cancer activity though cell cycle impairment, autophagy, and apoptosis, and is hence a promising source of anticancer phytochemicals.

20.
Front Med (Lausanne) ; 11: 1442071, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39211336

RESUMEN

Objective: This experimental study investigated the protective function of quercetin on the liver, spleen, and kidneys of Goto-Kakizaki (GK) rats and explores its mechanism of action on autophagy-related factors and pathways. Materials and methods: GK rats were randomly divided into three groups: DM, DM + L-Que, and DM + H-Que, with age-matched Wistar rats serving as the control group. The control and DM groups were gavaged with saline, and the quercetin-treated group was gavaged with quercetin for 8 weeks each. Weekly blood glucose levels were monitored. Upon conclusion of the experiment, blood samples were gathered for lipid and hepatic and renal function analyses. The histopathologic morphology and lipid deposition in rats were examined. Disease-related targets were identified using molecular docking methods and network pharmacology analysis. Subsequently, immunohistochemical analysis was performed, followed by Western blotting to evaluate the levels of autophagy-related proteins and proteins in the AKT/PI3K/mTOR pathway, as well as their phosphorylation levels. Results: The results showed that, compared with the control group, the DM group exhibited significant increases in blood glucose, serum liver and kidney markers, liver fat vacuoles, and inflammatory cell infiltration. Immunohistochemistry (IHC) results indicated that quercetin reduced the extensive expression of AKT, P62, and mTOR in the liver and spleen of diabetic rats. The expression of autophagy and pathway-related proteins, such as P62, PI3K, P-PI3K, Akt, P-AKT, mTOR, and P-mTOR, was upregulated, while the expression of LC3A/LC3B, Beclin-1, Pink-1, and Parkin was downregulated. Conversely, the quercetin group showed a reduction in liver and kidney injury serum markers by decreasing lipid deposition and cell necrosis, indicating that quercetin has protective effects on the liver, spleen, and kidneys of GK rats. Additionally, in the quercetin group, the expression of autophagy and pathway-related proteins such as LC3A/LC3B, Beclin-1, Pink-1, and Parkin was upregulated, while the expression of P62, PI3K, P-PI3K, Akt, P-AKT, mTOR, and P-mTOR was downregulated, with statistically significant correlations. Conclusion: Quercetin markedly ameliorates liver, spleen, and kidney damage in GK rats, potentially through the inhibition of the PI3K/Akt/mTOR pathway, promoting autophagy. This research offers a rationale to the therapeutic potential of quercetin in mitigating organ damage associated with diabetes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA