Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Med Virol ; 96(9): e29902, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39228345

RESUMEN

The whole-genome sequence (WGS) analysis of Aichivirus (AiV) identified in Korea was performed in this study. Using Sanger and Nanopore sequencing, the 8228-nucleotide-long genomic sequence of AiV (OQ121963) was determined and confirmed to belong to genotype A. The full-length genome of OQ121963 consisted of a 7296 nt open reading frame (ORF) that encodes a single polyprotein, and 5' UTR (676 nt) and 3' UTR (256 nt) at 5' and 3' ends, respectively. The ORF consisted of leader protein (L), structural protein P1 (VP0, VP1, and VP3), and nonstructural protein P2 (2A, 2B, and 2C) and P3 (3A, 3B, 3C, and 3D). The secondary structure analysis of the 5' UTR identified only stem-loop C (SL-C) and not SL-A and SL-B. The variable region of the AiV genome was analyzed by MegAlign Pro and reconfirmed by SimPlot analysis using 16 AiV whole genomes known to date. Among the entire regions, structural protein region P1 showed the lowest amino acid identity (96.07%) with reference sequence AB040749 (originated in Japan; genotype A), while the highest amino acid identity (98.26%) was confirmed in the 3D region among nonstructural protein region P2 and P3. Moreover, phylogenetic analysis of the WGS of OQ121963 showed the highest homology (96.96%) with JX564249 (originated in Taiwan; genotype A) and lowest homology (90.14%) with DQ028632 (originated in Brazil; genotype B). Therefore, the complete genome characterization of OQ121963 and phylogenetic analysis of the AiV conducted in this study provide useful information allowing to improve diagnostic tools and epidemiological studies of AiVs.


Asunto(s)
Genoma Viral , Genotipo , Kobuvirus , Sistemas de Lectura Abierta , Filogenia , Secuenciación Completa del Genoma , Genoma Viral/genética , República de Corea , Humanos , Kobuvirus/genética , Kobuvirus/clasificación , Kobuvirus/aislamiento & purificación , Infecciones por Picornaviridae/virología , Infecciones por Picornaviridae/epidemiología , Regiones no Traducidas 5'/genética , Adulto , ARN Viral/genética , Regiones no Traducidas 3'/genética
2.
Food Sci Biotechnol ; 33(12): 2807-2814, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39184978

RESUMEN

Aichivirus-A (AiV-A), a member of the Kobuvirus genus of the family Picornaviridae, was first reported in stool samples of patients with non-bacterial gastroenteritis in Aichi Prefecture, Japan, in 1989. AiV has been reported from in various aquatic environments, such as surface water and sewage, can be transmitted via the fecal-oral route through contaminated water. As AiV is known to acute gastroenteritis worldwide, developing methods for AiV detection from contaminated environments and food is required. In the present study, we established an effective polymerase chain reaction (PCR) method to detect AiV. Various real-time reverse transcription (RT)-PCR and conventional PCR methods for AiV detection were compared, and the limit of detection was confirmed by comparing the sensitivity at varied primer concentrations and PCR conditions. The final detection limits were 102 copy/µL in conventional PCR, and 101 copy/µL in the real-time RT-PCR. The optimized method used in this study might aid in detecting AiV contamination.

3.
Animals (Basel) ; 14(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38929384

RESUMEN

We investigated the occurrence of eight potential zoonotic viruses in 91 exotic companion mammals from pet shops in southern Italy via real-time PCR and end-point PCR. The animals were screened for aichivirus, sapovirus, astrovirus, hepatitis A, noroviruses (GI and GII), rotavirus, circovirus, and SARS-CoV-2. Among the nine species of exotic pets studied, only one rat tested positive for aichivirus. The high sequence similarity to a murine kobuvirus-1 strain previously identified in China suggests that the virus may have been introduced into Italy through the importation of animals from Asia. Since exotic companion mammals live in close contact with humans, continuous sanitary monitoring is crucial to prevent the spread of new pathogens among domestic animals and humans. Further investigations on detecting and typing zoonotic viruses are needed to identify emerging and re-emerging viruses to safeguard public health.

4.
Virus Res ; 342: 199338, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38373599

RESUMEN

The role of aichivirus A1 (AiV-A1) in acute gastroenteritis remains controversial and in vitro data illustrating its pathogenesis in suitable human models are scarce. Here, we demonstrate that AiV-A1 isolate A846/88 replicates in ApoA1- (absorptive) and Ki-67-positive (proliferative) enterocytes in stem cell-derived human small intestinal epithelium (HIE) as well as in patient biopsy samples, but not in any of the tested human cell lines. The infection did not result in tissue damage and did not trigger type I and type III interferon (IFN) signalling, whereas the control, human coxsackievirus B3 (strain Nancy), triggered both IFNs. To investigate the tissue tropism, we infected a human tracheal/bronchial epithelium model (HTBE) with AiV-A1 isolates A846/88 and kvgh99012632/2010 and, as a control, with rhinovirus A2 (RV-A2). AiV-A1 isolate kvgh99012632/2010, but not isolate A846/88, replicated in HTBE and induced type III IFN and ISGs signalling. By using various pharmacological inhibitors, we elaborated that cellular entry of AiV-A1 depends on clathrin, dynamin, and lipid rafts and is strongly reliant on endosome acidification. Viral particles co-localised with Rab5a-positive endosomes and promoted leakage of endosomal content. Our data shed light on the early events of AiV-A1 infection and reveal that different isolates exhibit distinct tissue tropism. This supports its clinical importance as a human pathogen with the potential to evolve toward broader tissue specificity.


Asunto(s)
Bronquios , Mucosa Intestinal , Humanos , Enterocitos , Línea Celular , Clatrina
5.
Int J Environ Health Res ; 34(4): 1995-2014, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37086061

RESUMEN

In this study, the detection rates of four enteric viruses, Human Astrovirus (HAstVs), Aichivirus (AiVs), Human Adenovirus (HAdVs), and Sapovirus (SaVs) are carried out to assess the virological quality of the treated wastewater. A total of 140 samples was collected from wastewater treatment plant WWTP of Tunis-City. Real-time RT-PCR and conventional RT-PCR results showed high frequencies of detection of the four enteric viruses investigated at the entry and exit of the biological activated sludge procedure and a significant reduction in viral titers after tertiary treatment with UV-C254 irradiation. These results revealed the ineffectiveness of the biological activated sludge treatment in removing viruses and the poor quality of the treated wastewater intended for recycling, agricultural reuse, and safe discharge into the natural environment. The UV-C254 irradiation, selected while considering the non-release of known disinfection by-products because of eventual reactions with the large organic and mineral load commonly present in the wastewater.


Asunto(s)
Enterovirus , Sapovirus , Virus , Humanos , Aguas del Alcantarillado , Sapovirus/genética , Adenoviridae , Aguas Residuales
6.
Sci Total Environ ; 905: 166557, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37633393

RESUMEN

The COVID-19 pandemic possibly disrupted the circulation and seasonality of gastroenteritis viruses (e.g., Norovirus (NoV), Sapovirus (SaV), group A rotavirus (ARoV), and Aichivirus (AiV)). Despite the growing application of wastewater-based epidemiology (WBE), there remains a lack of sufficient investigations into the actual impact of the COVID-19 pandemic on the prevalence of gastroenteritis viruses. In this study, we measured NoV GI and GII, SaV, ARoV, and AiV RNA concentrations in 296 influent wastewater samples collected from three wastewater treatment plants (WWTPs) in Sapporo, Japan between October 28, 2018 and January 12, 2023 using the highly sensitive EPISENS™ method. The detection ratios of SaV and ARoV after May 2020 (SaV: 49.8 % (134/269), ARoV: 57.4 % (151/263)) were significantly lower than those before April 2020 (SaV: 93.9 % (31/33), ARoV: 97.0 % (32/33); SaV: p < 3.5×10-7, ARoV: p < 1.5×10-6). Furthermore, despite comparable detection ratios before (88.5 %, 23/26) and during (66.7 %, 80/120) the COVID-19 pandemic (p = 0.032), the concentrations of NoV GII revealed a significant decrease after the onset of the pandemic (p < 1.5×10-7, Cliff's delta = 0.72). NoV GI RNA were sporadically detected (24.7 %, 8/33) before April 2020 and after May 2020 (6.5 %, 17/263), whereas AiV was consistently (100 %, 33/33) detected from wastewater throughout the study period (95.8 %, 252/263). The WBE results demonstrated the significant influence of COVID-19 countermeasures on the circulation of gastroenteritis viruses, with variations observed in the magnitude of their impact across different types of viruses. These epidemiological findings highlight that the hygiene practices implemented to prevent COVID-19 infections may also be effective for controlling the prevalence of gastroenteritis viruses, providing invaluable insights for public health units and the development of effective disease management guidelines.


Asunto(s)
COVID-19 , Infecciones por Caliciviridae , Gastroenteritis , Norovirus , Rotavirus , Sapovirus , Humanos , Gastroenteritis/epidemiología , Aguas Residuales , Pandemias , Infecciones por Caliciviridae/epidemiología , Estudios Retrospectivos , Genotipo , COVID-19/epidemiología , Sapovirus/genética , ARN , Heces , Filogenia
7.
Vet Sci ; 10(4)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37104441

RESUMEN

Since porcine kobuvirus (PKV) was first described in 2008, researchers have speculated whether the virus is of clinical importance. This systematic literature review answers the question: Is porcine kobuvirus a cause of gastrointestinal disease in young pigs? A case-control study showed that PKV was not associated with neonatal diarrhea. A cohort study suffered from a very small sample size (n = 5), and in an experimental trial, the effect of PKV inoculation could not be separated from the effect of being inoculated with porcine epidemic diarrhea virus. In 13 poorly defined observational studies, more than 4000 young pigs had been assigned a diarrhea status and their feces analyzed for PKV. Unfortunately, the studies lacked well-characterized unbiased samples, and thus the strongest possible inference from these studies was that a very strong association between PKV and diarrhea is unlikely. PKV was commonly detected in non-diarrheic pigs, and this could indicate that PKV is not a sufficient cause in itself or that reinfection of individuals with some immunological protection due to previous infections is common. Conclusively, there is a lack of good evidence of PKV being a cause of gastrointestinal disease, but the sparse available evidence suggests that PKV is of limited clinical importance.

8.
Microbiol Spectr ; 11(3): e0009923, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37097198

RESUMEN

Aichivirus D (AiV-D) is a newly emerging Kobuvirus detected in bovine and sheep, and information is limited regarding its biological significance and prevalence. This study aimed to explore both the prevalence and characteristics of AiV-D in yaks. From May to August 2021, 117 fecal samples were collected from yaks with diarrhea in three provinces of China's Qinghai-Tibet Plateau, 15 of which were selected and pooled for metagenomic analysis. A high abundance of AiV-D sequences was obtained. Of the 117 diarrhea samples, 29 (24.8%) tested AiV-D-positive, including 33.3% (14/42) from Sichuan, 21.1% (8/38) from Qinghai, and 18.9% (7/37) from Tibet, respectively, suggesting a wide geographical distribution of the AiV-D in yaks in the Qinghai-Tibet Plateau. Furthermore, three AiV-D strains were successfully isolated using Vero cells. Significantly, the AiV-D strain could cause diarrhea, intestinal bleeding, and inflammation in yak calves via oral inoculation. The virus was distributed in the ileum, jejunum, duodenum, colon, cecum, and rectum. Based on phylogenetic analysis of the genome and capsid protein P1 (VP0, VP3, and VP1 genes), the yak AiV-D strains likely represent a novel genotype of AiV-D. On the whole, this study identified a novel genotype of AiV-D from yaks, which was successfully isolated, and confirmed that this virus is a diarrhea pathogen in yaks and has a wide geographical distribution in the Qinghai-Tibet Plateau. Our results expand the host range of AiV-D and the pathogen spectrum of yaks and have significant implications for diagnosing and controlling diarrhea in yaks. IMPORTANCE In this study, we identified and successfully isolated a novel genotype of AiV-D from yaks. Animal infection confirmed that this virus can cause diarrhea, intestinal bleeding, and inflammation in yak calves via oral inoculation. The virus was distributed in the ileum, jejunum, cecum, duodenum, colon, and rectum. All of these results have significant implications for diagnosing and controlling diarrhea in yaks. These novel AiV-D strains have a wide geographical distribution in yaks from the Qinghai-Tibet Plateau in China. In addition to expanding the host range of AiV-D and the pathogen spectrum of yaks, these findings can increase knowledge of the prevalence and diversity of AiV-D.


Asunto(s)
Kobuvirus , Chlorocebus aethiops , Bovinos , Animales , Ovinos , Filogenia , Kobuvirus/genética , Células Vero , Diarrea/epidemiología , Diarrea/veterinaria , Inflamación
9.
Microbiol Spectr ; 10(5): e0287322, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36125316

RESUMEN

Emerging infectious diseases represent a serious and ongoing threat to humans. Most emerging viruses are maintained in stable relationships with other species of animals, and their emergence within the human population results from cross-species transmission. Therefore, if we want to be prepared for the next emerging virus, we need to broadly characterize the diversity and ecology of viruses currently infecting other animals (i.e., the animal virosphere). High-throughput metagenomic sequencing has accelerated the pace of virus discovery. However, molecular assays can detect only active infections and only if virus is present within the sampled fluid or tissue at the time of collection. In contrast, serological assays measure long-lived antibody responses to infections, which can be detected within the blood, regardless of the infected tissues. Therefore, serological assays can provide a complementary approach for understanding the circulation of viruses, and while serological assays have historically been limited in scope, recent advancements allow thousands to hundreds of thousands of antigens to be assessed simultaneously using <1 µL of blood (i.e., highly multiplexed serology). The application of highly multiplexed serology for the characterization of the animal virosphere is dependent on the availability of reagents that can be used to capture or label antibodies of interest. Here, we evaluate the utility of commercial immunoglobulin-binding proteins (protein A and protein G) to enable highly multiplexed serology in 25 species of nonhuman mammals, and we describe a competitive fluorescence-linked immunosorbent assay (FLISA) that can be used as an initial screen for choosing the most appropriate capture protein for a given host species. IMPORTANCE Antibodies are generated in response to infections with viruses and other pathogens, and they help protect against future exposures. Mature antibodies are long lived, are highly specific, and can bind to their protein targets with high affinity. Thus, antibodies can also provide information about an individual's history of viral exposures, which has important applications for understanding the epidemiology and etiology of disease. In recent years, there have been large advances in the available methods for broadly characterizing antibody-binding profiles, but thus far, these have been utilized primarily with human samples only. Here, we demonstrate that commercial antibody-binding reagents can facilitate modern antibody assays for a wide variety of mammalian species, and we describe an inexpensive and fast approach for choosing the best reagent for each animal species. By studying antibody-binding profiles in captive and wild animals, we can better understand the distribution and prevalence of viruses that could spill over into humans.


Asunto(s)
Anticuerpos Antivirales , Inmunoadsorbentes , Animales , Formación de Anticuerpos , Ensayo de Inmunoadsorción Enzimática/métodos , Mamíferos
10.
Transbound Emerg Dis ; 69(5): e2268-e2275, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35502695

RESUMEN

Aichivirus C is an emerging virus in goats, but its biological significance remains unknown. In this study, 18 diarrheic and 16 non-diarrheic faecal samples of kids were collected from a farm with an on-going diarrheic outbreak in Sichuan Province, China in May 2021. Of these samples, 77.8% (14/18) of diarrheic samples were detected as Aichivirus C positive by RT-PCR, which was significantly higher than that of non-diarrheic faces (0%, p < .001); meanwhile, other common diarrhoea-causing pathogens in goats were not detected in diarrheic samples, except for two samples that were detected as caprine enterovirus positive, suggesting that Aichivirus C was associated with goat diarrhoea. Furthermore, five Aichivirus C strains were successfully isolated from positive samples using Vero cell lines and two isolates were further plaque-purified, named SWUN/F5/2021(10-6.7 TCID50 /0.1 mL) and SWUN/F6/2021(10-7 TCID50 /0.1 mL). Interestingly, Aichivirus C strain could cause systemic infection in experimental kids via oral administration, with the main clinical manifestation being severe watery diarrhoea. Histopathological changes observed in the duodenum and jejunum were characteristic, with shedding of mucosal epithelial cells. In addition, the virus was detected in tissues of diarrhoea kids naturally infected with Aichivirus C, exhibiting pathological changes similar to those of experimental infections. Overall, this study first isolated Aichivirus C and confirmed its pathogenicity in kids, with further study needed to better understand the virus pathogenicity. As Aichivirus C has been detected in South Korea, Italy and the USA and widely prevalent in southwest China, the results obtained here have significant implications for the diagnosis and control of diarrhoea in goats.


Asunto(s)
Diarrea , Enfermedades de las Cabras , Kobuvirus , Animales , Diarrea/veterinaria , Brotes de Enfermedades , Heces , Enfermedades de las Cabras/epidemiología , Cabras , Kobuvirus/genética
11.
Front Vet Sci ; 8: 679337, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34195249

RESUMEN

Since the first identification in 1989 in humans, kobuviruses (KoVs) have been identified from a wide range of animal species including carnivores, rodents, birds, ungulates, rabbits, and bats. Several studies have described the identification of genetically related KoVs in the fecal virome of domestic and wild animals suggesting a mutual exchange of viruses. By screening a total of 231 fecal samples from wild and domestic ungulates, KoVs RNA was detected in wild boars (3.2%; 2/63), chamois (4.6%; 2/43), and goats (2.6%; 2/77). On phylogenetic analysis of the partial RdRp sequence, the wild boar strains clustered within the species Aichivirus C whilst the strains identified in domestic and wild ruminants grouped into the species Aichivirus B. The complete VP1 gene was obtained for chamois and goat KoVs. Interestingly, upon phylogenetic analysis the strains grouped together with a KoV of ovine origin within a distinct genetic type (B3) of the species Aichivirus B.

12.
Virus Res ; 299: 198437, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-33901591

RESUMEN

Viruses are the primary cause of acute gastroenteritis in children all over the world. Understanding the emergence and genetic variation of these viruses may help to prevent infections. Aichivirus (AiV) is a member of the Kobuvirus genus, which currently contains six officially recognized species: Aichivirus A-F. The species AiV A contains six types including Aichivirus 1 (AiV 1) and eventually, three genotypes have been identified in the human AiV 1 (named A to C). The present study describes the identification and sequencing of the polyprotein gene of a human AiV 1 strain PAK419 via NGS in Pakistani children with acute gastroenteritis. Our study strain PAK419 was classified as AiV 1 genotype A, most commonly found in Japan and Europe, and closely related to non-Japanese and European strains on the phylogenetic tree. PAK419 showed 95-98 % nucleotide sequence identity with strains isolated from Ethiopia (ETH/2016/P4), Australia (FSS693) and China (Chshc7). On phylogenetic observation PAK419 formed a distinct cluster in the AiV 1 genotype A with the above mentioned and other human AiV strains detected around the world (Germany, Brazil, Japan, Thailand, Korea and Vietnam). The data clearly showed that Pakistani AiV strains and human strains identified from all over the world are distinct from Aichivirus strains found in bovine, swine, canine, feline, caprine, ferret, bat, and environmental samples. The distinguishing characteristics of the AiV genome showed a lower probability of inter-genotypic recombination events, which may support the lack of AiV serotypes. PAK419 also had a high content of C nucleotide (37.4 %), as found in previous studies, which could also restrict the possible genetic variation of AiV. This study demonstrate the power of NGS in uncovering unknown gastroenteric etiological agents circulating in the population.


Asunto(s)
Gastroenteritis , Kobuvirus , Infecciones por Picornaviridae , Animales , Gatos , Bovinos , Perros , Heces , Hurones , Gastroenteritis/epidemiología , Genotipo , Cabras , Humanos , Kobuvirus/genética , Pakistán/epidemiología , Filogenia , Infecciones por Picornaviridae/veterinaria , Porcinos
13.
Infect Genet Evol ; 91: 104810, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33741511

RESUMEN

A novel kobuvirus was found in diarrheal fecal samples of Tibetan sheep using a viral metagenomics approach, and a full kobuvirus genome was successfully obtained by RT-PCR from a diarrheal fecal sample. The full genomic sequence was 8485 nucleotides (nt) in length with a standard picornavirus genome organization. The novel genome shares 62.9% and 77.8% nt homology with Aichivirus D1 genotype strain 1-22-KoV, and Aichivirus D2 genotype strain 2-44-KoV, respectively. According to the species classification criteria of the International Committee on Taxonomy of Viruses (ICTV), the new kobuvirus belongs to Aichivirus species D. Interestingly, compared with 2 known Aichivirus D genotype strains, the novel Aichivirus D has unique amino acid substitutions in the 5'untranslated region (-UTR), VP0, VP3, and VP1, with a recombination event in the 2C region.These characteristics make the novel Aichivirus D cluster into an independent branch in the phylogenetic tree, suggesting that strain may represent a novel genotype in Aichivirus D. Moreover, the novel Aichivirus D was detected in 9.2% (18/195) of the sheep diarrheal fecal samples from 4 farms in 3 counties of the Qinghai Tibet Plateau in China. In addition, full-length VP0, VP3, and VP1 genes were successfully obtained from 12 samples from 4 farms, and phylogenetic analysis based on these genes revealed a unique evolutionary pattern for this novel Aichivirus D strain. This study identified a novel Aichivirus D that is circulating in sheep in Qinghai Tibet Plateau in China and these findings provide a better understanding of the epidemiologic and genetic evolution of kobuviruses.


Asunto(s)
Diarrea/virología , Genotipo , Kobuvirus/aislamiento & purificación , Infecciones por Picornaviridae/veterinaria , Enfermedades de las Ovejas/epidemiología , Animales , China/epidemiología , Heces/virología , Kobuvirus/clasificación , Filogenia , Infecciones por Picornaviridae/epidemiología , Infecciones por Picornaviridae/virología , Prevalencia , Ovinos , Enfermedades de las Ovejas/virología , Oveja Doméstica
14.
Food Environ Virol ; 12(4): 342-349, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33044663

RESUMEN

Aichivirus 1 (AiV-1) is an enteric virus that has been documented to be the causative agent of diarrhea in humans. It is transmitted by fecal-oral route, through person-to-person contact, consumption of contaminated food or water, or recreation of contaminated water. AiV-1 is highly prevalent in water samples and has been proposed as a potential indicator of fecal contamination in water reservoirs. This study aimed to investigate the prevalence and genetic diversity of AiV-1 in environmental water samples in Thailand. A total of 126 samples were collected monthly from November 2016 to July 2018 from various sources of environmental water including irrigation water, reservoir, river, and wastewater. The presence of AiV-1 was detected by RT-nested PCR of the 3CD region and further analyzed by phylogenetic analysis. The AiV-1 was detected in 28 out of 126 (22.2%) of tested samples. A high frequency of AiV-1 detection was in wastewater (52.4%). All 28 AiV-1 strains detected in this study belonged to the genotype B and were closely related to AiV strains detected previously in environmental waters and in humans worldwide. This study demonstrated, for the first time, the contamination of AiV-1 in various sources of water samples in Thailand and provided a better insight into the prevalence of AiV-1 in environmental waters and its potential risk of human health.


Asunto(s)
Kobuvirus/genética , Kobuvirus/aislamiento & purificación , Ríos/virología , Aguas Residuales/virología , Diarrea/virología , Heces/virología , Genotipo , Humanos , Kobuvirus/clasificación , Filogenia , Infecciones por Picornaviridae/virología , Prevalencia , Tailandia
15.
Access Microbiol ; 2(4): acmi000099, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33005865

RESUMEN

A novel real-time reverse transcription polymerase chain reaction (RT-rPCR) assay was developed to detect Aichivirus A (AiV-A) based on four complete genomes. The assay successfully detected AiV-A in a sample from a patient with acute gastroenteritis in January 2008. Screening of 756 samples submitted for norovirus testing during May 2008 detected a further 23 AiV-A-positive samples from 18 individual patients. Genotyping using novel primers targeting the 3C-3D junction region identified AiV-A genotype B. Further sequencing of the VP1 region supported the 3C-3D result. All three assays proved useful to support foodborne outbreak investigations. This is the first report of AiV-A detection in Australia.

16.
Virol Sin ; 35(5): 501-516, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32342286

RESUMEN

Although norovirus, rotavirus, adenovirus and Astrovirus are considered the most important viral agents transmitted by food and water, in recent years other viruses, such as Aichi virus (AiV), have emerged as responsible for gastroenteritis outbreaks associated with different foods. AiV belongs to the genus Kobuvirus of the family Picornaviridae. It is a virus with icosahedral morphology that presents a single stranded RNA genome with positive sense (8280 nucleotides) and a poly (A) chain. AiV was first detected from clinical samples and in recent years has been involved in acute gastroenteritis outbreaks from different world regions. Furthermore, several studies conducted in Japan, Germany, France, Tunisia and Spain showed a high prevalence of AiV antibodies in adults (between 80% and 99%), which is indicative of a large exposure to this virus. The aim of this review is to bring together all the discovered information about the emerging pathogen human Aichi virus (AiV), discussing the possibles routes of transmission, new detection techniques and future research. Although AiV is responsible for a low percentage of gastroenteritis outbreaks, the high seroprevalence shown by human populations indicates an evident role as an enteric agent. The low percentage of AiV detection could be explained by the fact that the pathogen is more associated to subclinical infections. Further studies will be needed to clarify the real impact of AiV in human health and its importance as a causative gastroenteritis agent worldwide.


Asunto(s)
Gastroenteritis , Infecciones por Picornaviridae , Picornaviridae , Adulto , Heces , Humanos , Kobuvirus , Estudios Seroepidemiológicos
17.
Indian J Microbiol ; 59(3): 375-378, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31388217

RESUMEN

Human Aichivirus A (AiV-A) is classified as a Kobuvirus, group IV positive sense single strand RNA viruses. The first outbreak of AiV-A was reported from Aichi Prefecture, Japan in 1989. AiV-A exists not only among clinical patients, such as diarrhea, but also in a variety of water environments, as its occurrence is reported across a wide geographical range, from developing to advanced countries. For diagnose of AiV-A from water samples, mostly polymerase chain reaction (PCR) system have been developed. However, loop-mediated isothermal amplification (LAMP) assay has not been applied. In this study, developed a LAMP method to achieve a rapid, specific and highly sensitive detection of AiV-A. The method developed in this study is aimed specifically at AiV-A. Through a specific and non-specific selection and sensitivity test process for the five prepared LAMP primer sets, one primer set and optimum reaction temperature were selected. A newly developed method was more rapid (approximately 2-8 h), specific and equivalent detection of AiV-A than with the conventional PCRs. In addition, confirm system of positive LAMP reaction was developed by using the restriction enzyme Aci I and Hae III. For evaluation and verification of developing LAMP assay, a was applied to twenty cDNA from groundwater samples. This study proved rapid and specific diagnosis of AiV-A from water samples, and it is also demanded to be applicable to other environmental, clinical and food samples.

18.
Braz J Microbiol ; 50(3): 871-874, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31140097

RESUMEN

Canine kobuvirus (CaKV) is a member of the Picornaviridae family and the Kobuvirus genus. CaKV was first described in fecal samples from diarrheic dogs in the USA in 2011, with subsequent reports in the UK, Italy, South Korea, China, Tanzania, and Japan. CaKV is frequently identified in feces of animals with or without clinical signs of gastroenteritis. The present study investigated the presence of CaKV in fecal samples from 53 diarrheic dogs from Londrina, southern Brazil. Using a RT-PCR assay, CaKV RNA was identified in three dogs, resulting in an overall occurrence rate of 5.7%. In addition, coinfection with canine parvovirus subtype 2b was detected in all CaKV-positive diarrheic fecal samples. Using a phylogenetic analysis based on the VP1 gene sequence, the Brazilian CaKV field strains were found to be very similar to a previously identified CaKV strain from Brazil that was found in the tissue of a puppy and were also found to be clustered with other CaKV strains detected worldwide and other kobuvirus strains identified in mouse, feline, and human hosts.


Asunto(s)
Diarrea/veterinaria , Enfermedades de los Perros/virología , Heces/virología , Kobuvirus/aislamiento & purificación , Infecciones por Parvoviridae/veterinaria , Parvovirus/aislamiento & purificación , Animales , Brasil , Coinfección/veterinaria , Coinfección/virología , Diarrea/virología , Perros , Kobuvirus/clasificación , Kobuvirus/genética , Infecciones por Parvoviridae/virología , Parvovirus/clasificación , Parvovirus/genética , Filogenia , ARN Viral/genética
19.
J Clin Virol ; 111: 4-11, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30580015

RESUMEN

BACKGROUND: Viruses are the leading cause of acute gastroenteritis in children worldwide. Understanding of the occurrence and genetic diversity of these viruses can help to prevent infections. OBJECTIVES: The present study describes the presence, genetic diversity and possible recombination of five enteric viruses in children with gastroenteritis in Southwestern Nigeria. STUDY DESIGN: From August 2012 to December 2013, stool samples and sociodemographic data of 103 diarrheic children <5 years were collected to detect and characterize rotavirus A, norovirus, human astrovirus, aichivirus and sapovirus using PCR techniques followed by sequencing and phylogenetic analyses. RESULTS: At least one virus was identified in 58.3% (60/103) of the stool samples. Rotavirus, norovirus and astrovirus were detected in 39.8% (41/103), 10.7% (11/103), and 6.8% (7/103) respectively. Notably, aichivirus was detected for the first time in Nigeria (1/103; 0.97%). Sapovirus was not detected in the study. Co-infections with rotavirus were observed in eight samples either with norovirus or astrovirus or aichivirus. Phylogenetic analyses of different genome regions of norovirus positive samples provided indication for recombinant norovirus strains. A novel astrovirus strain closely related to canine astrovirus was identified and further characterized for the first time. CONCLUSIONS: Viruses are the common cause of acute gastroenteritis in Nigerian infants with rotavirus as most frequently detected pathogen. New norovirus recombinants and a not yet detected zoonotic astrovirus were circulating in Southwestern Nigeria, providing new information about emerging and unusual strains of viruses causing diarrhea.


Asunto(s)
Infecciones por Astroviridae/epidemiología , Astroviridae/clasificación , Infecciones por Caliciviridae/epidemiología , Gastroenteritis/epidemiología , Kobuvirus/clasificación , Norovirus/clasificación , Animales , Astroviridae/aislamiento & purificación , Preescolar , Diarrea/virología , Heces/virología , Femenino , Gastroenteritis/virología , Variación Genética , Humanos , Lactante , Recién Nacido , Kobuvirus/aislamiento & purificación , Masculino , Nigeria/epidemiología , Norovirus/aislamiento & purificación , Filogenia , Infecciones por Picornaviridae/epidemiología , ARN Viral/genética , Virus Reordenados/clasificación , Rotavirus/genética , Rotavirus/aislamiento & purificación , Zoonosis/virología
20.
J Appl Microbiol ; 124(4): 943-957, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29094428

RESUMEN

Galicia (NW Spain) has 1490 km of coastline, and its particular topography, characterized by the presence of fiord-like inlets, called rías, with an important primary production, makes this region very favourable for shellfish growth and culture. In fact, Galicia is one of the most important mussel producers in the world. Due to its proximity to cities and villages and the anthropogenic activities in these estuaries, and despite the routine official controls on the bivalve harvesting areas, contamination with material of faecal origin is sometimes possible but, current regulation based on Escherichia coli as an indicator micro-organism has been revealed as useful for bacterial contaminants, this is not the case for enteric viruses. The aim of this review is to offer a picture on the situation of different harvesting areas in Galicia, from a virological standpoint. A recompilation of results obtained in the last 20 years is presented, including not only the data for the well-known agents norovirus (NoV) and hepatitis A virus (HAV) but also data on emerging viral hazards, including sapovirus (SaV), hepatitis E virus (HEV) and aichivirus (AiV). Epidemiological differences related to diverse characteristics of the harvesting areas, viral genotype distribution or epidemiological links between environmental and clinical strains will also be presented and discussed. The presentation of these historical data all together could be useful for future decisions by competent authorities for a better management of shellfish growing areas.


Asunto(s)
Bivalvos/virología , Enterovirus/aislamiento & purificación , Contaminación de Alimentos/estadística & datos numéricos , Enfermedades Transmitidas por los Alimentos/virología , Mariscos/virología , Animales , Enterovirus/clasificación , Enterovirus/genética , Contaminación de Alimentos/análisis , Enfermedades Transmitidas por los Alimentos/epidemiología , Humanos , Prevalencia , España/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA