Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38172332

RESUMEN

Post-acute sequelae of COVID-19 can present as multi-organ pathology, with neuropsychiatric symptoms being the most common symptom complex, characterizing long COVID as a syndrome with a significant disease burden for affected individuals. Several typical symptoms of long COVID, such as fatigue, depressive symptoms and cognitive impairment, are also key features of other psychiatric disorders such as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and major depressive disorder (MDD). However, clinically successful treatment strategies are still lacking and are often inspired by treatment options for diseases with similar clinical presentations, such as ME/CFS. Acetylcarnitine, the shortest metabolite of a class of fatty acid metabolites called acylcarnitines and one of the most abundant blood metabolites in humans can be used as a dietary/nutritional supplement with proven clinical efficacy in the treatment of MDD, ME/CFS and other neuropsychiatric disorders. Basic research in recent decades has established acylcarnitines in general, and acetylcarnitine in particular, as important regulators and indicators of mitochondrial function and other physiological processes such as neuroinflammation and energy production pathways. In this review, we will compare the clinical basis of neuropsychiatric long COVID with other fatigue-associated diseases. We will also review common molecular disease mechanisms associated with altered acetylcarnitine metabolism and the potential of acetylcarnitine to interfere with these as a therapeutic agent. Finally, we will review the current evidence for acetylcarnitine as a supplement in the treatment of fatigue-associated diseases and propose future research strategies to investigate the potential of acetylcarnitine as a treatment option for long COVID.

2.
Expert Opin Pharmacother ; 24(18): 2035-2040, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37787056

RESUMEN

INTRODUCTION: Longer treatment times, more comorbidity, more severe impairments in social, psychological, and emotional functioning, increased healthcare use, and more hospitalizations are all factors that are related to dysthymia. Given the significant prevalence of dysthymia (including persistent depressive disorder) worldwide, its comorbidity with several mental disorders, and the detrimental effects of these comorbidities, it is important to conduct a systematic review to compare the effects of pharmacological acute and maintenance treatments for dysthymia with placebo and standard care in the last 10 years, based on the publication of DSM5. AREAS COVERED: This systematic review was performed according to PRISMA guidelines. Databases, including PubMed and Cochrane Central Register of Controlled Trials, were searched to assess the effects of pharmacological acute and maintenance treatments for dysthymia in comparison with placebo and treatment as usual. EXPERT OPINION: Our review shows that SSRIs and SNRIs present efficacy for dysthymia treatment, and L-Acetylcarnitine should be investigated further for this condition in elderly patients. The comparison of antidepressant medication versus placebo showed coherent results based on three studies favoring pharmacotherapy as an effective treatment for participants with dysthymia. However, the scarcity of research on continuation and maintenance therapy in people with dysthymia highlights the need for more primary research.


Asunto(s)
Trastorno Depresivo , Trastorno Distímico , Anciano , Humanos , Antidepresivos/uso terapéutico , Comorbilidad , Trastorno Depresivo/tratamiento farmacológico , Trastorno Distímico/tratamiento farmacológico , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico , Inhibidores de Captación de Serotonina y Norepinefrina/uso terapéutico
3.
Neurochem Res ; 48(11): 3316-3326, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37495838

RESUMEN

Excessive consumption of nutrients, as well as obesity, leads to an inflammatory process, especially in adipose tissue. This inflammation reaches the systemic level and, subsequently, the central nervous system (CNS), which can lead to oxidative stress and mitochondrial dysfunction, resulting in brain damage. Thus, adequate treatment for obesity is necessary, including lifestyle changes (diet adequation and physical activity) and pharmacotherapy. However, these drugs can adversely affect the individual's health. In this sense, searching for new therapeutic alternatives for reestablishing metabolic homeostasis is necessary. L-carnitine (LC) and acetyl-L-carnitine (LAC) have neuroprotective effects against oxidative stress and mitochondrial dysfunction in several conditions, including obesity. Therefore, this study aimed to conduct a narrative review of the literature on the effect of LC and LAC on brain damage caused by obesity, in particular, on mitochondrial dysfunction and oxidative stress. Overall, these findings highlight that LC and LAC may be a promising treatment for recovering REDOX status and mitochondrial dysfunction in the CNS in obesity. Future work should focus on better elucidating the molecular mechanisms behind this treatment.


Asunto(s)
Acetilcarnitina , Carnitina , Humanos , Acetilcarnitina/uso terapéutico , Acetilcarnitina/farmacología , Carnitina/uso terapéutico , Carnitina/farmacología , Sistema Nervioso Central , Estrés Oxidativo , Obesidad/tratamiento farmacológico
4.
Cancers (Basel) ; 15(12)2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37370852

RESUMEN

BACKGROUND: Pancreatic cancer is the most common pancreatic solid malignancy with an aggressive clinical course and low survival rate. There are a limited number of reliable prognostic biomarkers and a need to understand the pathogenesis of pancreatic tumors; neuroendocrine (PNET) and pancreatic ductal adenocarcinomas (PDAC) encouraged us to analyze the serum metabolome of pancreatic tumors and disturbances in the metabolism of PDAC and PNET. METHODS: Using the AbsoluteIDQ® p180 kit (Biocrates Life Sciences AG, Innsbruck, Austria) with liquid chromatography-mass spectrometry (LC-MS), we identified changes in metabolite profiles and disrupted metabolic pathways serum of NET and PDAC patients. RESULTS: The concentration of six metabolites showed statistically significant differences between the control group and PDAC patients (p.adj < 0.05). Glutamine (Gln), acetylcarnitine (C2), and citrulline (Cit) presented a lower concentration in the serum of PDAC patients, while phosphatidylcholine aa C32:0 (PC aa C32:0), sphingomyelin C26:1 (SM C26:1), and glutamic acid (Glu) achieved higher concentrations compared to serum samples from healthy individuals. Five of the tested metabolites: C2 (FC = 8.67), and serotonin (FC = 2.68) reached higher concentration values in the PNET serum samples compared to PDAC, while phosphatidylcholine aa C34:1 (PC aa C34:1) (FC = -1.46 (0.68)) had a higher concentration in the PDAC samples. The area under the curves (AUC) of the receiver operating characteristic (ROC) curves presented diagnostic power to discriminate pancreatic tumor patients, which were highest for acylcarnitines: C2 with AUC = 0.93, serotonin with AUC = 0.85, and PC aa C34:1 with AUC = 0.86. CONCLUSIONS: The observations presented provide better insight into the metabolism of pancreatic tumors, and improve the diagnosis and classification of tumors. Serum-circulating metabolites can be easily monitored without invasive procedures and show the present clinical patients' condition, helping with pharmacological treatment or dietary strategies.

5.
Metabolites ; 13(5)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37233713

RESUMEN

Mitochondrial health declines with age, and older patients can demonstrate dysfunction in mitochondrial-rich tissues, such as cardiac and skeletal muscle. Aged mitochondria may make older adults more susceptible to adverse drug reactions (ADRs). We assessed mitochondrial metabolic function by measuring two metabolites, l-carnitine and acetylcarnitine, to determine their effectiveness as candidate clinical biomarkers for age-related, drug-induced alterations in mitochondrial metabolism. To study age- and medication-related changes in mitochondrial metabolism, we administered the FDA-approved mitochondriotropic drug, clofazimine (CFZ), or vehicle for 8 weeks to young (4-week-old) and old (61-week-old) male C57BL/6J mice. At the end of treatment, whole blood and cardiac and skeletal muscle were analyzed for l-carnitine, acetylcarnitine, and CFZ levels; muscle function was measured via a treadmill test. No differences were found in blood or cardiac carnitine levels of CFZ-treated mice, but CFZ-treated mice displayed lost body mass and alterations in endurance and levels of skeletal muscle mitochondrial metabolites. These findings demonstrate the age-related susceptibility of the skeletal muscle to mitochondria drug toxicity. Since drug-induced alterations in mitochondrial metabolism in skeletal muscle were not reflected in the blood by l-carnitine or acetylcarnitine levels, drug-induced catabolism and changes in muscle function appear more relevant to stratifying individuals at increased risk for ADRs.

6.
J Biol Chem ; 299(2): 102848, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36587768

RESUMEN

In eukaryotes, carnitine is best known for its ability to shuttle esterified fatty acids across mitochondrial membranes for ß-oxidation. It also returns to the cytoplasm, in the form of acetyl-L-carnitine (LAC), some of the resulting acetyl groups for posttranslational protein modification and lipid biosynthesis. While dietary LAC supplementation has been clinically investigated, its effects on cellular metabolism are not well understood. To explain how exogenous LAC influences mammalian cell metabolism, we synthesized isotope-labeled forms of LAC and its analogs. In cultures of glucose-limited U87MG glioma cells, exogenous LAC contributed more robustly to intracellular acetyl-CoA pools than did ß-hydroxybutyrate, the predominant circulating ketone body in mammals. The fact that most LAC-derived acetyl-CoA is cytosolic is evident from strong labeling of fatty acids in U87MG cells by exogenous 13C2-acetyl-L-carnitine. We found that the addition of d3-acetyl-L-carnitine increases the supply of acetyl-CoA for cytosolic posttranslational modifications due to its strong kinetic isotope effect on acetyl-CoA carboxylase, the first committed step in fatty acid biosynthesis. Surprisingly, whereas cytosolic carnitine acetyltransferase is believed to catalyze acetyl group transfer from LAC to coenzyme A, CRAT-/- U87MG cells were unimpaired in their ability to assimilate exogenous LAC into acetyl-CoA. We identified carnitine octanoyltransferase as the key enzyme in this process, implicating a role for peroxisomes in efficient LAC utilization. Our work has opened the door to further biochemical investigations of a new pathway for supplying acetyl-CoA to certain glucose-starved cells.


Asunto(s)
Acetilcoenzima A , Acetilcarnitina , Carnitina Aciltransferasas , Carnitina , Acetilcoenzima A/metabolismo , Acetilcarnitina/farmacología , Carnitina/metabolismo , Carnitina Aciltransferasas/metabolismo , Carnitina O-Acetiltransferasa/genética , Carnitina O-Acetiltransferasa/metabolismo , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Oxidación-Reducción , Humanos , Línea Celular Tumoral
7.
Magn Reson Med ; 89(4): 1314-1322, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36573435

RESUMEN

PURPOSE: Acetylcarnitine can be assessed in vivo using proton MRS (1 H-MRS) with long TEs and this has been previously applied successfully in muscle. The aim of this study was to evaluate a 1 H-MRS technique for liver acetylcarnitine quantification in healthy humans before and after l-carnitine supplementation. METHOD: Baseline acetylcarnitine levels were quantified using a STEAM sequence with prolonged TE in 15 healthy adults. Using STEAM with four different TEs was evaluated in phantoms. To assess reproducibility of the measurements, five of the participants had repeated 1 H-MRS without receiving l-carnitine supplementation. To determine if liver acetylcarnitine could be changed after l-carnitine supplementation, acetylcarnitine was quantified 2 h after intravenous l-carnitine supplementation (50 mg/kg body weight) in the other 10 participants. Hepatic lipids were also quantified from the 1 H-MRS spectra. RESULTS: There was good separation between the acetylcarnitine and fat in the phantoms using TE = 100 ms. Hepatic acetylcarnitine levels were reproducible (coefficient of reproducibility = 0.049%) and there was a significant (p < 0.001) increase in the relative abundance after a single supplementation of l-carnitine. Hepatic allylic, methyl, and methylene peaks were not altered by l-carnitine supplementation in healthy volunteers. CONCLUSION: Our results demonstrate that our 1 H-MRS technique could be used to measure acetylcarnitine in the liver and detect changes following intravenous supplementation in healthy adults despite the presence of lipids. Our techniques should be explored further in the study of fatty liver disease, where acetylcarnitine is suggested to be altered due to hepatic inflexibilities.


Asunto(s)
Acetilcarnitina , Carnitina , Adulto , Humanos , Reproducibilidad de los Resultados , Músculo Esquelético , Hígado/diagnóstico por imagen , Suplementos Dietéticos , Lípidos
8.
J Biol Chem ; 299(2): 102845, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36586435

RESUMEN

Obesity and diabetes normally cause mitochondrial dysfunction and hepatic lipid accumulation, while fatty acid synthesis is suppressed and malonyl-CoA is depleted in the liver of severe obese or diabetic animals. Therefore, a negative regulatory mechanism might work for the control of mitochondrial fatty acid metabolism that is independent of malonyl-CoA in the diabetic animals. As mitochondrial ß-oxidation is controlled by the acetyl-CoA/CoA ratio, and the acetyl-CoA generated in peroxisomal ß-oxidation could be transported into mitochondria via carnitine shuttles, we hypothesize that peroxisomal ß-oxidation might play a role in regulating mitochondrial fatty acid oxidation and inducing hepatic steatosis under the condition of obesity or diabetes. This study reveals a novel mechanism by which peroxisomal ß-oxidation controls mitochondrial fatty acid oxidation in diabetic animals. We determined that excessive oxidation of fatty acids by peroxisomes generates considerable acetyl-carnitine in the liver of diabetic mice, which significantly elevates the mitochondrial acetyl-CoA/CoA ratio and causes feedback suppression of mitochondrial ß-oxidation. Additionally, we found that specific suppression of peroxisomal ß-oxidation enhances mitochondrial fatty acid oxidation by reducing acetyl-carnitine formation in the liver of obese mice. In conclusion, we suggest that induction of peroxisomal fatty acid oxidation serves as a mechanism for diabetes-induced hepatic lipid accumulation. Targeting peroxisomal ß-oxidation might be a promising pathway in improving hepatic steatosis and insulin resistance as induced by obesity or diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Hígado Graso , Resistencia a la Insulina , Animales , Ratones , Acetilcoenzima A/metabolismo , Diabetes Mellitus Experimental/metabolismo , Ácidos Grasos/metabolismo , Hígado Graso/metabolismo , Hígado/metabolismo , Malonil Coenzima A/metabolismo , Ratones Obesos , Obesidad/metabolismo , Oxidación-Reducción , Acetilcarnitina/metabolismo
9.
Front Psychiatry ; 13: 1002828, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36458116

RESUMEN

Major depressive disorder (MDD) is one of the most common psychiatric disorders that accompany psychophysiological and mood changes. However, the pathophysiology-based disease mechanism of MDD is not yet fully understood, and diagnosis is also conducted through interviews with clinicians and patients. Diagnosis and treatment of MDD are limited due to the absence of biomarkers underlying the pathophysiological mechanisms of MDD. Although various attempts have been made to discover metabolite biomarkers for the diagnosis and treatment response of MDD, problems with sample size and consistency of results have limited clinical application. In addition, it was reported that future biomarker studies must consider exposure to antidepressants, which is the main cause of heterogeneity in depression subgroups. Therefore, the purpose of this study is to discover and validate biomarkers for the diagnosis of depression in consideration of exposure to drug treatment including antidepressants that contribute to the heterogeneity of the MDD subgroup. In the biomarker discovery and validation set, the disease group consisted of a mixture of patients exposed and unexposed to drug treatment including antidepressants for the treatment of MDD. The serum metabolites that differed between the MDD patients and the control group were profiled using mass spectrometry. The validation set including the remission group was used to verify the effectiveness as a biomarker for the diagnosis of depression and determination of remission status. The presence of different metabolites between the two groups was confirmed through serum metabolite profiling between the MDD patient group and the control group. Finally, Acetylcarnitine was selected as a biomarker. In validation, acetylcarnitine was significantly decreased in MDD and was distinguished from remission status. This study confirmed that the discovered acetylcarnitine has potential as a biomarker for diagnosing depression and determining remission status, regardless of exposure to drug treatment including antidepressants.

10.
Artículo en Ruso | MEDLINE | ID: mdl-36537638

RESUMEN

OBJECTIVE: Evaluation of the antiasthenic effect of sequential therapy with levocarnitine (LC) and acetylcarnitine (ALC) in patients with arterial hypertension and/or ischemic heart disease (CHD) with asthenic syndrome (AS). MATERIAL AND METHODS: An open comparative study included 120 patients aged 54-67 years in patients with arterial hypertension and/or coronary artery disease with AS. Patients of group1 (n=60), in addition to basic therapy for the underlying disease, received LC (Elcar solution for intravenous and intramuscular injection of 100 mg/ml, the company PIQ-PHARMA) intravenously for 10 days at a dose of 1000 mg/day, followed by a transition to oral administration of ALC (Carnicetine, the company PIQ-PHARMA) 500 mg (2 capsules) 2 times a day for 2 months. Group2 patients (n=60) received only basic therapy for major diseases. The duration of observation was 70 days. The severity of AS was assessed using the MFI-20 questionnaire (MultidiMensional Fatigue Inventory) and the visual analog scale VAS-A (Visual Analog Scale Measuring fatigue). RESULTS: In patients of group1, a statistically significant decrease in various manifestations of AS was noted. The differences were significant both in comparison with the baseline level and in comparison with the 2nd group. The endothelium-protective effect of LC and ALC has been established. CONCLUSION: The results obtained indicate that in such comorbid patients, the use of LC and ALC reduces the severity of AS manifestations, and the established endotheliotropic properties of the drugs allow them to be recommended as part of the complex personalized therapy of patients with cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Hipertensión , Humanos , Acetilcarnitina/uso terapéutico , Carnitina , Enfermedades Cardiovasculares/inducido químicamente , Astenia/tratamiento farmacológico , Síndrome , Hipertensión/tratamiento farmacológico
11.
J Pers Med ; 12(7)2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35887550

RESUMEN

The effectiveness of l-carnitine in chronic liver disease remains controversial. We conducted this meta-analysis to assess the efficacy of various forms of l-carnitine in the treatment of chronic liver disease. METHODS: We searched the Cochrane Library, EMBASE, KMBASE, and Medline databases for all relevant studies published until April 2022 that examined the ability of l-carnitine or its derivatives to normalize liver enzymes in patients with chronic liver disease. We performed meta-analyses of the proportion of patients with alanine aminotransferase (ALT) normalization and post-treatment serum aspartate aminotransferase (AST) and ALT levels. A random effects model was used for meta-analyses. RESULTS: Fourteen randomized controlled trials (1217 patients) were included in this meta-analysis. The proportion of patients in whom ALT normalized was higher in the carnitine-orotate treatment group than in the control group (pooled odds ratio (OR), 95% confidence interval (CI) = 4.61 (1.48-14.39)). The proportion of patients in whom ALT normalized was also higher among those who received the carnitine-orotate complex, a combination of carnitine-orotate, biphenyl dimethyl dicarboxylate, and other minor supplementary compounds than in those who did not without significant heterogeneity (pooled OR (95% CI) = 18.88 (7.70-46.27); df = 1; p = 0.51; I2 = 0%). l-carnitine supplementation effectively lowered serum ALT levels compared to controls (pooled mean difference (95% CI) = -11.99 (-22.48 to -1.49)). CONCLUSIONS: l-carnitine supplementation significantly lowered ALT and AST levels and normalized ALT levels in patients with chronic liver disease.

12.
Front Pharmacol ; 13: 913210, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35721218

RESUMEN

The epigenetic agents, L-acetylcarnitine (LAC) and L-methylfolate (MF) are putative candidates as add-on drugs in depression. We evaluated the effect of a combined treatment with LAC and MF in two different paradigms of chronic stress in mice and in human inducible pluripotent stem cells (hiPSCs) differentiated into dopaminergic neurons. Two groups of mice were exposed to chronic unpredictable stress (CUS) for 28 days or chronic restraint stress (CRS) for 21 day, and LAC (30 or 100 mg/kg) and/or MF (0.75 or 3 mg/kg) were administered i.p. once a day for 14 days, starting from the last week of stress. In both stress paradigms, LAC and MF acted synergistically in reducing the immobility time in the forced swim test and enhancing BDNF protein levels in the frontal cortex and hippocampus. In addition, LAC and MF acted synergistically in enhancing type-2 metabotropic glutamate receptor (mGlu2) protein levels in the hippocampus of mice exposed to CRS. Interestingly, CRS mice treated with MF showed an up-regulation of NFκB p65, which is a substrate for LAC-induced acetylation. We could also demonstrate a synergism between LAC and MF in cultured hiPSCs differentiated into dopamine neurons, by measuring dendrite length and number, and area of the cell soma after 3 days of drug exposure. These findings support the combined use of LAC and MF in the treatment of MDD and other stress-related disorders.

13.
Sleep Sci ; 15(Spec 1): 278-284, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35273778

RESUMEN

Introduction: Studies have shown that narcolepsy patients may present with low serum acylcarnitine levels, demonstrating a dysfunctional beta fatty acid oxidation pathway in these patients. Objective: Evaluate the therapeutic efficacy of L-carnitine as a treatment for narcolepsy patients. Methods: This study runned in form of systematic review. The terms used for the search: ("narcolepsy"[MeSH Terms] OR "narcolepsy"[All Fields]) AND ("carnitine"[MeSH Terms] OR "carnitine"[All Fields] OR "l carnitine"[All Fields]). Were included all surveys published until January 2021, with the diagnosis of narcolepsy, that performed drug treatment with I-carnitine. The clinical endpoints of interest were: excessive daytime sleepiness, dissociative REM sleep manifestations: cataplexy, sleep paralysis, hypnagogic hallucinations, and early REM sleep (REM sleep naps, SOREMP). Results: L-carnitine was found to be well-tolerated and without side effects in all surveys, at dosages ranging from 500 to 510 mg/day. Newborns did not present complications during delivery. Conclusion: This study corroborates the efficacy and good tolerability of L-carnitine therapy as a treatment for patients with narcolepsy, including during pregnancy.

14.
J Clin Med ; 11(3)2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35160078

RESUMEN

Sepsis-induced metabolic dysfunction is associated with mortality, but the signatures that differentiate variable clinical outcomes among survivors are unknown. Our aim was to determine the relationship between host metabolism and chronic critical illness (CCI) in patients with septic shock. We analyzed metabolomics data from mechanically ventilated patients with vasopressor-dependent septic shock from the placebo arm of a recently completed clinical trial. Baseline serum metabolites were measured by liquid chromatography-mass spectrometry and 1H-nuclear magnetic resonance. We conducted a time-to-event analysis censored at 28 days. Specifically, we determined the relationship between metabolites and time to extubation and freedom from vasopressors using a competing risk survival model, with death as a competing risk. We also compared metabolite concentrations between CCI patients, defined as intensive care unit level of care ≥ 14 days, and those with rapid recovery. Elevations in two acylcarnitines and four amino acids were related to the freedom from organ support (subdistributional hazard ratio < 1 and false discovery rate < 0.05). Proline, glycine, glutamine, and methionine were also elevated in patients who developed CCI. Our work highlights the need for further testing of metabolomics to identify patients at risk of CCI and to elucidate potential mechanisms that contribute to its etiology.

15.
J Complement Integr Med ; 19(3): 691-696, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33964190

RESUMEN

OBJECTIVES: H-89 (a protein kinase AII [PKA II] inhibitor) impairs the spatial memory in the Morris water maze task in rats. In the present study, we aimed to study the protective effects of nicotine and O-acetyl-L-carnitine against H-89-induced spatial memory deficits. METHODS: Spatial memory impairment was induced by the bilateral intrahippocampal administration of 10 µM H-89 (dissolved in dimethyl sulfoxide, DMSO) to rats. The rats then received bilateral administrations of either nicotine (1 µg/µL, dissolved in saline) or O-acetyl-L-carnitine (100 µM/side, dissolved in deionized water) alone and in combination. Control groups received either saline, deionized water, or DMSO. RESULTS: The H-89-treated animals showed significant increases in the time and distance travelled to find hidden platforms, and there was also a significant decrease in the time spent in the target quadrant compared to DMSO-treated animals. Nicotine and O-acetyl-L-carnitine had no significant effects on H-89-induced spatial learning impairments alone, but the bilateral intrahippocampal co-administration of nicotine and O-acetyl-L-carnitine prevented H-89-induced spatial learning deficits and increased the time spent in the target quadrant in comparison with H-89-treated animals. CONCLUSIONS: Our results indicated the potential synergistic effects of nicotine and O-acetyl-L-carnitine in preventing protein kinase AII inhibitor (H-89)-induced spatial learning impairments.


Asunto(s)
Acetilcarnitina , Nicotina , Acetilcarnitina/metabolismo , Acetilcarnitina/farmacología , Animales , Dimetilsulfóxido/metabolismo , Dimetilsulfóxido/farmacología , Hipocampo/metabolismo , Isoquinolinas , Aprendizaje por Laberinto , Prueba del Laberinto Acuático de Morris , Nicotina/metabolismo , Nicotina/farmacología , Proteínas Quinasas/metabolismo , Proteínas Quinasas/farmacología , Ratas , Ratas Wistar , Aprendizaje Espacial , Sulfonamidas
16.
J Mass Spectrom Adv Clin Lab ; 20: 1-10, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34820666

RESUMEN

Inborn errors of propionate, cobalamin and methionine metabolism are targets for Newborn Screening (NBS) in most programs world-wide, and are primarily screened by analyzing for propionyl carnitine (C3) and methionine in dried blood spot (DBS) cards using tandem mass spectrometry (MS/MS). Single-tier NBS approaches using C3 and methionine alone lack specificity, which can lead to an increased false-positive rate if conservative cut-offs are applied to minimize the risk of missing cases. Implementation of liquid chromatography tandem mass spectrometry (LC-MS/MS) second-tier testing for 2-methylcitric acid (MCA), methylmalonic acid (MMA), and homocysteine (HCY) from the same DBS card can improve disease screening performance by reducing the false-positive rate and eliminating the need for repeat specimen collection. However, DBS analysis of MCA, MMA, and HCY by LC-MS/MS is challenging due to limited specimen size and analyte characteristics leading to a combination of low MS/MS sensitivity and poor reverse-phase chromatographic retention. Sufficient MS response and analytical performance can be achieved for MCA by amidation using DAABD-AE and by butylation for MMA and HCY. Herein we describe the validation of a second-tier dual derivatization LC-MS/MS approach to detect elevated MCA, MMA, and HCY in DBS cards for NBS. Clinical utility was demonstrated by retrospective analysis of specimens, an interlaboratory method comparison, and assessment of external proficiency samples. Imprecision was <10.8% CV, with analyte recoveries between 90.2 and 109.4%. Workflows and analytical performance characteristics of this second-tier LC-MS/MS approach are amenable to implementation in the NBS laboratory.

17.
Neurobiol Stress ; 15: 100407, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34815985

RESUMEN

Major depressive disorder (MDD) is a primary psychiatric illness worldwide; there is a dearth of new mechanistic models for the development of better therapeutic strategies. Although we continue to discover individual biological factors, a major challenge is the identification of integrated, multidimensional traits underlying the complex heterogeneity of depression and treatment outcomes. Here, we set out to ascertain the emergence of the novel mitochondrial mediator of epigenetic function acetyl-L-carnitine (LAC) in relation to previously described individual predictors of antidepressant responses to the insulin-sensitizing agent pioglitazone. Herein, we report that i) subjects with MDD and shorter leukocyte telomere length (LTL) show decreased levels of LAC, increased BMI, and a history of specific types of childhood trauma; and that ii) these multidimensional factors spanning mitochondrial metabolism, cellular aging, metabolic function, and childhood trauma provide more detailed signatures to predict longitudinal changes in depression severity in response to pioglitazone than individual factors. The findings of multidimensional signatures involved in the pathophysiology of depression and their role in predicting treatment outcomes provide a starting point for the development of a mechanistic framework linking biological networks and environmental factors to clinical outcomes in pursuit of personalized medicine strategies to effectively treat MDD.

18.
Artículo en Ruso | MEDLINE | ID: mdl-34184477

RESUMEN

OBJECTIVE: To evaluate the effectiveness of sequential therapy with levocarnitine and acetylcarnitine in patients with cardiovascular pathology (arterial hypertension and/or coronary heart disease) and moderate cognitive deficits. MATERIAL AND METHODS: The study included 120 patients aged 54-67 years. The main group of patients (n=60) in addition to the basic treatment of the underlying disease received l-carnitine (Elkar solution for intravenous and intramuscular injection of 100 mg/ml, the company «PIK-FARMA¼)/jet during 10 days in a dose of 1000 mg/day, with following transition to oral administration of acetyl-l-carnitine (Carnitin, the company «PIK-FARMA¼), 500 mg (2 cap Sula) 2 times a day for 2 months. The comparison group (n=60) received basic therapy for major diseases. The total duration of follow-up was 70 days. RESULTS: The results obtained indicate that in such comorbid patients, the use of levocarnitine and acetylcarnitine reduces the severity of cognitive deficits. An important aspect of their pathogenetic effect on the severity of cognitive deficits may be the possibility of correcting endothelial dysfunction. The use of levocarnitine and acetylcarnitine in patients with cardiovascular pathology has demonstrated good tolerability and safety.


Asunto(s)
Enfermedades Cardiovasculares , Hipertensión , Acetilcarnitina/uso terapéutico , Enfermedades Cardiovasculares/complicaciones , Carnitina , Cognición , Humanos , Hipertensión/complicaciones , Hipertensión/tratamiento farmacológico
19.
Nutrients ; 13(3)2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33652997

RESUMEN

This narrative review was conducted using searches of the PubMed/Medline and Google Scholar databases from inception to November 2019. Clinical trials and relevant articles were identified by cross-referencing major depressive disorder (and/or variants) with the following terms: folate, homocysteine, S-adenosylmethionine (SAMe), L-acetylcarnitine, alpha-lipoic acid, N-acetylcysteine, L-tryptophan, zinc, magnesium, vitamin D, omega-3 fatty acids, coenzyme Q10, and inositol. Manual reviews of references were also performed using article reference lists. Abnormal levels of folate, homocysteine, and SAMe have been shown to be associated with a higher risk of depression. Numerous studies have demonstrated antidepressant activity with L-methylfolate and SAMe supplementation in individuals with depression. Additionally, the amino acids L-acetylcarnitine, alpha-lipoic acid, N-acetylcysteine, and L-tryptophan have been implicated in the development of depression and shown to exert antidepressant effects. Other agents with evidence for improving depressive symptoms include zinc, magnesium, omega-3 fatty acids, and coenzyme Q10. Potential biases and differences in study designs within and amongst the studies and reviews selected may confound results. Augmentation of antidepressant medications with various supplements targeting nutritional and physiological factors can potentiate antidepressant effects. Medical foods, particularly L-methylfolate, and other supplements may play a role in managing depression in patients with inadequate response to antidepressant therapies.


Asunto(s)
Suplementos Dietéticos , Trastornos del Humor/terapia , Terapia Nutricional/métodos , Oligoelementos/uso terapéutico , Vitaminas/uso terapéutico , Adulto , Antidepresivos/uso terapéutico , Terapia Combinada , Trastorno Depresivo Mayor/terapia , Femenino , Humanos , Masculino , Ensayos Clínicos Controlados Aleatorios como Asunto
20.
Pediatr Neonatol ; 61(6): 620-628, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32771364

RESUMEN

BACKGROUND: Free carnitine (C0) and short chain acylcarnitine (SCA) blood concentrations play a significant role in fatty acid oxidation process during the first days of life. The aim of this study was to demonstrate C0 and SCA concentrations in Dried Blood Spots (DBS) of full term breastfed infants in relation to their birth weight (BW) perinatally. METHODS: Breastfed full term infants (n = 12,000, 6000 males, 6000 females) with BW 2000-4000 g were divided into 4 equal groups: Group A, 2000-2500 g, B 2500-3000 g, C 3000-3500 g and D 3500-4000 g. Blood samples in the form of DBS were collected on the 3rd day of life and analyzed via a liquid chromatography tandem mass spectrometry (LC-MS/MS) protocol. RESULTS: BW-related C0 and SCAs were found as follows: C0 was determined to be statistically significantly higher in group A (BW 2000-2500 g) in both males and females. Lower acetylcarnitine (C2) and hydroxybutyrylcarnitine (C4OH) blood concentrations were detected in group A of both sexes, whereas butyrylcarnitine (C4) concentrations were found to be lower in the same group of males only. Furthermore, high concentrations of C2 and C4OH were shown in group D (BW 3500-4000 g) in both sexes. SCA sum of means ± SD values in males and females of group A were statistically significantly lower as compared to other study groups. CONCLUSION: Due to the number of the samples, data from this study could be applied as neonatal screening reference values for full term breastfed newborns in relation to their birth weight.


Asunto(s)
Peso al Nacer , Lactancia Materna , Carnitina/análogos & derivados , Carnitina/sangre , Biomarcadores/sangre , Cromatografía Liquida/métodos , Ácidos Grasos/metabolismo , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Tamizaje Neonatal/métodos , Valores de Referencia , Espectrometría de Masas en Tándem/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA