Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Toxicol Rep ; 9: 1198-1203, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518459

RESUMEN

The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor thought to mediate a number of physiological roles in the body, is becoming a target of interest for the development of new therapeutics. However, previous research has demonstrated that the downstream effects of AhR ligands cannot be predicted based simply on whether a ligand acts as an agonist or antagonist and the persistence of AhR signaling is thought to be a key determining feature. The current study investigated the AhR activity of four halogenated indoles isolated from the New Zealand red alga, Rhodophyllis membranacea: 4,7-dibromo-2,3-dichloroindole (4DBDCI), 7-bromo-2,3-dichloro-6-iodoindole (BDCII), 6,7-dibromo-2,3-dichloroindole (6DBDCI) and 2,6,7-tribromo-3-chloroindole (TBCI). Their ability to activate AhR signaling, measured as CYP1A1 activity via the ethoxyresorufin O-deethylase (EROD) assay, was determined in human HepG2, mouse Hepa1c1c7 and rat H4IIE liver cancer cells. All four compounds induced CYP1A1 activity in HepG2 cells, suggesting they all acted as AhR agonizts. 4DBDCI was particularly efficacious, inducing an 11-fold increase. Hepa1c1c7 and H4IIE cells, however, were generally less responsive to the halogenated indoles. All four compounds were persistent AhR agonizts, inducing peak CYP1A1 activity after 72 h. Moreover, the 2,3,6,7-substituted BDCII, 6DBDCI and TBCI, but not 4DBDCI, competed with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) for AhR binding as observed by the inhibition of TCDD-induced CYP1A1 activity. Overall, the current study has characterized four previously untested AhR ligands, highlighting differences in species sensitivity and persistence of signaling to provide a framework for their potential future use.

2.
Acta Pharm Sin B ; 10(1): 33-41, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31993305

RESUMEN

Sepsis is an infection-induced systemic inflammatory syndrome. The immune response in sepsis is characterized by the activation of both proinflammatory and anti-inflammatory pathways. When sepsis occurs, the expression and activity of many inflammatory cytokines are markedly affected. Xenobiotic receptors are chemical-sensing transcription factors that play essential roles in the transcriptional regulation of drug-metabolizing enzymes (DMEs). Xenobiotic receptors mediate the functional crosstalk between sepsis and drug metabolism because the inflammatory cytokines released during sepsis can affect the expression and activity of xenobiotic receptors and thus impact the expression and activity of DMEs. Xenobiotic receptors in turn may affect the clinical outcomes of sepsis. This review focuses on the sepsis-induced inflammatory response and xenobiotic receptors such as pregnane X receptor (PXR), aryl hydrocarbon receptor (AHR), glucocorticoid receptor (GR), and constitutive androstane receptor (CAR), DMEs such as CYP1A, CYP2B6, CYP2C9, and CYP3A4, and drug transporters such as p-glycoprotein (P-gp), and multidrug resistance-associated protein (MRPs) that are affected by sepsis. Understanding the xenobiotic receptor-mediated effect of sepsis on drug metabolism will help to improve the safe use of drugs in sepsis patients and the development of new xenobiotic receptor-based therapeutic strategies for sepsis.

3.
Acta Pharmaceutica Sinica B ; (6): 33-41, 2020.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-781552

RESUMEN

Sepsis is an infection-induced systemic inflammatory syndrome. The immune response in sepsis is characterized by the activation of both proinflammatory and anti-inflammatory pathways. When sepsis occurs, the expression and activity of many inflammatory cytokines are markedly affected. Xenobiotic receptors are chemical-sensing transcription factors that play essential roles in the transcriptional regulation of drug-metabolizing enzymes (DMEs). Xenobiotic receptors mediate the functional crosstalk between sepsis and drug metabolism because the inflammatory cytokines released during sepsis can affect the expression and activity of xenobiotic receptors and thus impact the expression and activity of DMEs. Xenobiotic receptors in turn may affect the clinical outcomes of sepsis. This review focuses on the sepsis-induced inflammatory response and xenobiotic receptors such as pregnane X receptor (PXR), aryl hydrocarbon receptor (AHR), glucocorticoid receptor (GR), and constitutive androstane receptor (CAR), DMEs such as CYP1A, CYP2B6, CYP2C9, and CYP3A4, and drug transporters such as p-glycoprotein (P-gp), and multidrug resistance-associated protein (MRPs) that are affected by sepsis. Understanding the xenobiotic receptor-mediated effect of sepsis on drug metabolism will help to improve the safe use of drugs in sepsis patients and the development of new xenobiotic receptor-based therapeutic strategies for sepsis.

4.
Saudi Pharm J ; 28(12): 1605-1615, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33424253

RESUMEN

Multiple sclerosis (MS) is an autoimmune disease that involves demyelination of axons in the central nervous system (CNS) and affects patients worldwide. It has been demonstrated that ligand-activated aryl hydrocarbon receptor (Ahr) ameliorates experimental autoimmune encephalomyelitis (EAE), a murine model of MS, by increasing CD4+FoxP3+ T cells. Recent evidence indicates that AT-rich interactive domain-containing protein 5a (Arid5a) is required for EAE pathogenesis by stabilizing Il6 and OX40 mRNAs. However, the differential modulation of Ahr and Arid5a in autoimmunity as a therapeutic strategy is unexplored. Herein, an in silico, in vitro and in vivo approach identified Flavipin (3,4,5-trihydroxy-6-methylphthalaldehyde) as an Ahr agonist that induces the expression of Ahr downstream genes in mouse CD4+ T cells and CD11b+ macrophages. Interestingly, Flavipin inhibited the stabilizing function of Arid5a and its counteracting effects on Regnase-1 on the 3' untranslated region (3'UTR) of target mRNAs. Furthermore, it inhibited the stabilizing function of Arid5a on Il23a 3'UTR, a newly identified target mRNA. In EAE, Flavipin ameliorated disease severity, with reduced CD4+IL-17+ T cells, IL-6 and TNF-α and increased CD4+FoxP3+ T cells. Moreover, EAE amelioration was concomitant with reduced CD4+OX40+ and CD4+CD45+ T cells in the CNS. RNA interference showed that the modulatory effects of Flavipin on pro- and anti-inflammatory mediators in CD4+ T cells and macrophages were Ahr- and/or Arid5a-dependent. In conclusion, our findings reveal differential modulation of Ahr and Arid5a as a new therapeutic strategy for MS.

5.
Toxicol Rep ; 4: 335-341, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28959657

RESUMEN

The association between genetic variations in the cytochrome P450 (CYP) family genes and pathological conditions related to long-term exposure to organochlorine compounds (OCs) deserves further elucidation. OCs are persistent organic pollutants with bioaccumulative and lipophilic characteristics. They can act as endocrine disruptors and perturb cellular mechanisms. Prolonged exposure to OCs has been associated with different pathological manifestations. CYP genes are responsible for transcribing enzymes essential in xenobiotic metabolism. Therefore, polymorphisms in these genetic sequences a. alter the metabolic pathways, b. induce false cellular responses, and c. may provoke pathological conditions. The main aim of this review is to define the interaction between parameters a, b and c at a mechanistic/molecular level, with references in clinical cases.

6.
Biochim Open ; 3: 49-55, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29450131

RESUMEN

Polycyclic Aromatic Hydrocarbons (PAHs) are potent carcinogens. Among these, dimethylbenz(a)anthracene (DMBA) is well known for its capacity to induce mammary carcinomas in female Sprague-Dawley (SD) rats. Ovariectomy suppresses the susceptibility of this model to DMBA, thus suggesting that the inducible action of the carcinogen depends on ovarian hormones. The promotion of DMBA-induced adenocarcinoma is accompanied by a series of neuroendocrine disruptions of both Hypothalamo-Pituitary-Gonadal (HPG) and Hypothalamo-Pituitary-Adrenal (HPA) axes and of the secretion of melatonin during the latency period of 2 months that precedes the occurrence of the first mammary tumor. The present review analyses the various neuroendocrine disruptions that occur along the HPG and the HPA axes, and the marked inhibitory effect of the carcinogen on melatonin secretion. The possible relationships between the neuroendocrine disruptions, which essentially consist in an increased pre-ovulatory secretion of 17ß-estradiol and prolactin, associated with a marked reduction of melatonin secretion, and the decrease in gene expression of the receptors for aryl-hydrocarbons receptor (AhR) and 17ß-estradiol (ERα; ERß) are also discussed.

7.
FEBS Open Bio ; 4: 796-803, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25349783

RESUMEN

The aryl hydrocarbon receptor is a member of the nuclear receptor superfamily that associates with the molecular chaperone HSP90 in the cytoplasm. The activation mechanism of the AhR is not yet fully understood. It has been proposed that after binding of ligands such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 3methylcholanthrene (3-MC), or ß-naphthoflavone (ß-NF), the AhR dissociates from HSP90 and translocates to the nucleus. It has also been hypothesized that the AhR translocates to the nucleus and forms a complex with HSP90 and other co-chaperones. There are a few reports about the direct association or dissociation of AhR and HSP90 due to difficulties in purifying AhR. We constructed and purified the PAS domain from AhR. Binding of the AhR-PAS domain to ß-NF affinity resin suggested that it possesses ligand-binding affinity. We demonstrated that the AhR-PAS domain binds to HSP90 and the association is not affected by ligand binding. The ligand 17-DMAG inhibited binding of HSP90 to GST-PAS. In an immunoprecipitation assay, HSP90 was co-immunoprecipitated with AhR both in the presence or absence of ligand. Endogenous AhR decreased in the cytoplasm and increased in the nucleus of HeLa cells 15 min after treatment with ligand. These results suggested that the ligand-bound AhR is translocated to nucleus while in complex with HSP90. We used an in situ proximity ligation assay to confirm whether AhR was translocated to the nucleus alone or together with HSP90. HSP90 was co-localized with AhR after the nuclear translocation. It has been suggested that the ligand-bound AhR was translocated to the nucleus with HSP90. Activated AhR acts as a transcription factor, as shown by the transcription induction of the gene CYP1A1 8 h after treatment with ß-NF.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA