Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 228
Filtrar
1.
Alzheimers Dement ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39258539

RESUMEN

The magnetic resonance imaging (MRI) Core has been operating since Alzheimer's Disease Neuroimaging Initiative's (ADNI) inception, providing 20 years of data including reliable, multi-platform standardized protocols, carefully curated image data, and quantitative measures provided by expert investigators. The overarching purposes of the MRI Core include: (1) optimizing and standardizing MRI acquisition methods, which have been adopted by many multicenter studies and trials worldwide and (2) providing curated images and numeric summary values from relevant MRI sequences/contrasts to the scientific community. Over time, ADNI MRI has become increasingly complex. To remain technically current, the ADNI MRI protocol has changed substantially over the past two decades. The ADNI 4 protocol contains nine different imaging types (e.g., three dimensional [3D] T1-weighted and fluid-attenuated inversion recovery [FLAIR]). Our view is that the ADNI MRI data are a greatly underutilized resource. The purpose of this paper is to educate the scientific community on ADNI MRI methods and content to promote greater awareness, accessibility, and use. HIGHLIGHTS: The MRI Core provides multi-platform standardized protocols, carefully curated image data, and quantitative analysis by expert groups. The ADNI MRI protocol has undergone major changes over the past two decades to remain technically current. As of April 25, 2024, the following numbers of image series are available: 17,141 3D T1w; 6877 FLAIR; 3140 T2/PD; 6623 GRE; 3237 dMRI; 2846 ASL; 2968 TF-fMRI; and 2861 HighResHippo (see Table 1 for abbreviations). As of April 25, 2024, the following numbers of quantitative analyses are available: FreeSurfer 10,997; BSI 6120; tensor based morphometry (TBM) and TBM-SYN 12,019; WMH 9944; dMRI 1913; ASL 925; TF-fMRI NFQ 2992; and medial temporal subregion volumes 2726 (see Table 4 for abbreviations). ADNI MRI is an underutilized resource that could be more useful to the research community.

2.
Alzheimers Dement ; 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39219209

RESUMEN

INTRODUCTION: The relationship between cerebrovascular disease (CVD) and amyloid beta (Aß) in Alzheimer's disease (AD) is understudied. We hypothesized that magnetic resonance imaging (MRI)-based CVD biomarkers-including cerebral microbleeds (CMBs), lacunar infarction, and white matter hyperintensities (WMHs)-would correlate with Aß positivity on positron emission tomography (Aß-PET). METHODS: We cross-sectionally analyzed data from the Alzheimer's Disease Neuroimaging Initiative (ADNI, N = 1352). Logistic regression was used to calculate odds ratios (ORs), with Aß-PET positivity as the standard-of-truth. RESULTS: Following adjustment, WMHs (OR = 1.25) and superficial CMBs (OR = 1.45) remained positively associated with Aß-PET positivity (p < 0.001). Deep CMBs and lacunes exhibited a varied relationship with Aß-PET in cognitive subgroups. The combined diagnostic model, which included CVD biomarkers and other accessible measures, significantly predicted Aß-PET (pseudo-R2 = 0.41). DISCUSSION: The study highlights the translational value of CVD biomarkers in diagnosing AD, and underscores the need for more research on their inclusion in diagnostic criteria. CLINICALTRIALS: gov: ADNI-2 (NCT01231971), ADNI-3 (NCT02854033). HIGHLIGHTS: Cerebrovascular biomarkers linked to amyloid beta (Aß) in Alzheimer's disease (AD). White matter hyperintensities and cerebral microbleeds reliably predict Aß-PET positivity. Relationships with Aß-PET vary by cognitive stage. Novel accessible model predicts Aß-PET status. Study supports multimodal diagnostic approaches.

3.
Alzheimers Dement ; 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39219153

RESUMEN

INTRODUCTION: We evaluated preliminary feasibility of a digital, culturally-informed approach to recruit and screen participants for the Alzheimer's Disease Neuroimaging Initiative (ADNI4). METHODS: Participants were recruited using digital advertising and completed digital surveys (e.g., demographics, medical exclusion criteria, 12-item Everyday Cognition Scale [ECog-12]), Novoic Storyteller speech-based cognitive test). Completion rates and assessment performance were compared between underrepresented populations (URPs: individuals from ethnoculturally minoritized or low education backgrounds) and non-URPs. RESULTS: Of 3099 participants who provided contact information, 654 enrolled in the cohort, and 595 completed at least one assessment. Two hundred forty-seven participants were from URPs. Of those enrolled, 465 met ADNI4 inclusion criteria and 237 evidenced possible cognitive impairment from ECog-12 or Storyteller performance. URPs had lower ECog and Storyteller completion rates. Scores varied by ethnocultural group and educational level. DISCUSSION: Preliminary results demonstrate digital recruitment and screening assessment of an older diverse cohort, including those with possible cognitive impairment, are feasible. Improving engagement and achieving educational diversity are key challenges. HIGHLIGHTS: A total of 654 participants enrolled in a digital cohort to facilitate ADNI4 recruitment. Culturally-informed digital ads aided enrollment of underrepresented populations. From those enrolled, 42% were from underrepresented ethnocultural and educational groups. Digital screening tools indicate > 50% of participants likely cognitively impaired. Completion rates and assessment performance vary by ethnocultural group and education.

4.
Alzheimers Dement ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138886

RESUMEN

INTRODUCTION: Well-chosen biomarkers have the potential to increase the efficiency of clinical trials and drug discovery and should show good precision as well as clinical validity. METHODS: We suggest measures that operationalize these criteria and describe a general approach that can be used for inference-based comparisons of biomarker performance. The methods are applied to measures obtained from structural magnetic resonance imaging (MRI) from individuals with mild dementia (n = 70) or mild cognitive impairment (MCI; n = 303) enrolled in the Alzheimer's Disease Neuroimaging Initiative. RESULTS: Ventricular volume and hippocampal volume showed the best precision in detecting change over time in both individuals with MCI and with dementia. Differences in clinical validity varied by group. DISCUSSION: The methodology presented provides a standardized framework for comparison of biomarkers across modalities and across different methods used to generate similar measures and will help in the search for the most promising biomarkers. HIGHLIGHTS: A framework for comparison of biomarkers on pre-defined criteria is presented. Criteria for comparison include precision in capturing change and clinical validity. Ventricular volume has high precision in change for both dementia and mild cognitive impairment (MCI) trials. Imaging measures' performance in clinical validity varies more for dementia than for MCI.

5.
Alzheimers Dement ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39108002

RESUMEN

 : The Alzheimer's Disease Neuroimaging Initiative (ADNI) PET Core has evolved over time, beginning with positron emission tomography (PET) imaging of a subsample of participants with [18F]fluorodeoxyglucose (FDG)-PET, adding tracers for measurement of ß-amyloid, followed by tau tracers. This review examines the evolution of the ADNI PET Core, the novel aspects of PET imaging in each stage of ADNI, and gives an accounting of PET images available in the ADNI database. The ADNI PET Core has been and continues to be a rich resource that provides quantitative PET data and preprocessed PET images to the scientific community, allowing interrogation of both basic and clinically relevant questions. By standardizing methods across different PET scanners and multiple PET tracers, the Core has demonstrated the feasibility of large-scale, multi-center PET studies. Data managed and disseminated by the PET Core has been critical to defining pathophysiological models of Alzheimer's disease (AD) and helped to drive methods used in modern therapeutic trials. HIGHLIGHTS: The ADNI PET Core began with FDG-PET and now includes three amyloid and three tau PET ligands. The PET Core has standardized acquisition and analysis of multitracer PET images. The ADNI PET Core helped to develop methods that have facilitated clinical trials in AD.

6.
Artículo en Inglés | MEDLINE | ID: mdl-39178890

RESUMEN

Alzheimer's disease (AD) is a progressive neurological disorder. It is identified by the gradual shrinkage of the brain and the loss of brain cells. This leads to cognitive decline and impaired social functioning, making it a major contributor to dementia. While there are no treatments to reverse AD's progression, spotting the disease's onset can have a significant impact in the medical field.Deep learning (DL) has revolutionized medical image classification by automating feature engineering, removing the requirement for human experts in feature extraction. DL-based solutions are highly accurate but demand a lot of training data, which poses a common challenge. Transfer learning (TL) has gained attention for its knack for handling limited data and expediting model training. This study uses TL to classify AD using T1-weighted 3D Magnetic Resonance Imaging (MRI) from the Alzheimer's Disease Neuroimaging (ADNI) database. Four modified pre-trained deep neural networks (DNN), VGG16, MobileNet, DenseNet121, and NASNetMobile, are trained and evaluated on the ADNI dataset. The 3-1-3 weight averaging technique and fine-tuning improve the performance of the classification models. The evaluated accuracies for AD classification are VGG16: 98.75%; MobileNet: 97.5%; DenseNet: 97.5%; and NASNetMobile: 96.25%. The receiver operating characteristic (ROC), precision-recall (PR), and Kolmogorov-Smirnov (KS) statistic plots validate the effectiveness of the modified pre-trained model. Modified VGG16 excels with area under the curve (AUC) values of 0.99 for ROC and 0.998 for PR curves. The proposed approach shows effective AD classification by achieving high accuracy using the 3-1-3 weight averaging technique and fine-tuning. .

7.
Exp Gerontol ; 195: 112535, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39128687

RESUMEN

Glial fibrillary acidic protein (GFAP) and neurofilament light (NfL) are putative non-amyloid biomarkers indicative of ongoing inflammatory and neurodegenerative disease processes. Hence, this study aimed to demonstrate the relationship between plasma biomarkers (GFAP and NfL) and 18F-AV-1451 tau PET images, and to explore their effects on cognitive function. Ninety-one participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database and 20 participants from the Shanghai Action of Prevention Dementia for the Elderly (SHAPE) cohort underwent plasma biomarker testing, 18F-AV-1451 tau PET scans and cognitive function assessments. Within the ADNI, there were 42 cognitively normal (CN) individuals and 49 with mild cognitive impairment (MCI). Similarly, in the SHAPE, we had 10 CN and 10 MCI participants. We calculated the standardized uptake value ratios (SUVRs) for the regions of interest (ROIs) in the 18F-AV-1451 PET scans. Using plasma biomarkers and regional SUVRs, we trained machine learning models to differentiate between MCI and CN subjects with ADNI database and validated in SHAPE. Results showed that eight selected variables (including left amygdala SUVR, right amygdala SUVR, left entorhinal cortex SUVR, age, education, plasma NfL, plasma GFAP, plasma GFAP/ NfL) identified by LASSO could differentiate between the MCI and CN individuals, with AUC ranging from 0.783 to 0.926. Additionally, cognitive function was negatively associated with the plasma biomarkers and tau deposition in amygdala and left entorhinal cortex. Increased tau deposition in amygdala and left entorhinal cortex were related to increased plasma biomarkers. Moreover, tau pathology mediated the effect of plasma biomarkers level on the cognitive decline. The present study provides valuable insights into the association among plasma markers (GFAP and NfL), regional tau deposition and cognitive function. This study reports the mediation effect of brain regions tau deposition on the plasma biomarkers level and cognitive function, indicating the significance of tau pathology in the MCI patients.


Asunto(s)
Biomarcadores , Cognición , Disfunción Cognitiva , Proteína Ácida Fibrilar de la Glía , Proteínas de Neurofilamentos , Tomografía de Emisión de Positrones , Proteínas tau , Humanos , Disfunción Cognitiva/sangre , Masculino , Proteínas tau/sangre , Femenino , Biomarcadores/sangre , Anciano , Proteínas de Neurofilamentos/sangre , Proteína Ácida Fibrilar de la Glía/sangre , Anciano de 80 o más Años , Enfermedad de Alzheimer/sangre , Persona de Mediana Edad , Pruebas Neuropsicológicas , Carbolinas
8.
Alzheimers Dement ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39077997

RESUMEN

The COVID pandemic has shown that when the research community comes together, we can conquer the most complex biomedical challenges. Collaboration and teamwork among federal agencies, private organizations, and researchers have been crucial in the development of vaccines and therapeutics against COVID. Possibly the first example of such cross-functional collaboration is the Alzheimer's Disease Neuroimaging Initiative (ADNI), the largest and longest continually monitored Alzheimer's study. ADNI was designed and operated as a public-private partnership, managed by the Foundation for the National Institutes of Health. This article shows how recent successes in the Alzheimer's field are directly a result of ADNI's open and transparent sharing of knowledge, expertise, and resources, which have allowed researchers to advance their understanding of Alzheimer's and tackle challenges in a relatively short period of time. ADNI's approach to open-source innovation also served as a model for addressing other complex diseases and led to numerous collaborative research initiatives. HIGHLIGHTS: The Alzheimer's Disease Neuroimaging Initiative (ADNI) was designed, structured, and operated as a public-private partnership, managed by the Foundation for the National Institutes of Health. The recent successes in the Alzheimer's field are directly a result of ADNI's efforts. Open and transparent sharing of knowledge, expertise, and resources allowed researchers to advance their understanding of Alzheimer's and tackle challenges in a relatively short period of time.

9.
Front Aging Neurosci ; 16: 1410844, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952479

RESUMEN

Introduction: Studying the spatiotemporal patterns of amyloid accumulation in the brain over time is crucial in understanding Alzheimer's disease (AD). Positron Emission Tomography (PET) imaging plays a pivotal role because it allows for the visualization and quantification of abnormal amyloid beta (Aß) load in the living brain, providing a powerful tool for tracking disease progression and evaluating the efficacy of anti-amyloid therapies. Generative artificial intelligence (AI) can learn complex data distributions and generate realistic synthetic images. In this study, we demonstrate for the first time the potential of Generative Adversarial Networks (GANs) to build a low-dimensional representation space that effectively describes brain amyloid load and its dynamics. Methods: Using a cohort of 1,259 subjects with AV45 PET images from the Alzheimer's Disease Neuroimaging Initiative (ADNI), we develop a 3D GAN model to project images into a latent representation space and generate back synthetic images. Then, we build a progression model on the representation space based on non-parametric ordinary differential equations to study brain amyloid evolution. Results: We found that global SUVR can be accurately predicted with a linear regression model only from the latent representation space (RMSE = 0.08 ± 0.01). We generated synthetic PET trajectories and illustrated predicted Aß change in four years compared with actual progression. Discussion: Generative AI can generate rich representations for statistical prediction and progression modeling and simulate evolution in synthetic patients, providing an invaluable tool for understanding AD, assisting in diagnosis, and designing clinical trials. The aim of this study was to illustrate the huge potential that generative AI has in brain amyloid imaging and to encourage its advancement by providing use cases and ideas for future research tracks.

10.
Artículo en Inglés | MEDLINE | ID: mdl-38824476

RESUMEN

This study aimed to investigate the cross-sectional associations between regional Alzheimer's disease (AD) biomarkers, including tau, ß-amyloid (Aß), and brain volume, within the Papez circuit, and neuropsychological functioning across the preclinical and clinical spectrum of AD. We utilized data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, including 251 Aß-positive participants. Participants were categorized into three groups based on the Clinical Dementia Rating (CDR): 73 individuals with preclinical AD (CDR = 0), 114 with prodromal AD (CDR = 0.5), and 64 with clinical AD dementia (CDR ≥ 1). Linear regression analyses, adjusted for age, gender, and education years, were employed to evaluate the associations between five regions of interest (the hippocampus, para-hippocampus, entorhinal cortex, posterior cingulate cortex, and thalamus) and five neuropsychological tests across the three imaging modalities. In the preclinical stage of AD, flortaucipir PET was associated with impaired global cognition and episodic memory (range standardized ß = 0.255-0.498, p < 0.05 corrected for multiple comparisons), while florbetapir PET and brain volume were marginally related to global cognition (range standardized ß = 0.221-0.231, p < 0.05). In the clinical stages of AD (prodromal and dementia), both increased flortaucipir uptake and decreased brain volume were significantly associated with poorer global neuropsychological and episodic memory performance (range standardized ß = 0.222-0.621, p < 0.05, most regions of interest survived correction for multiple comparisions). However, a slight relationship was observed between florbetapir uptake and poorer global cognitive function. The regions most affected by flortaucipir PET were the hippocampus, para-hippocampus, and posterior cingulate cortex. During the clinical stages, the hippocampus and entorhinal cortex exhibited the most significant volumetric changes. Tau PET and brain volume measurements within the Papez circuit are more sensitive indicators of early cognitive deficits in AD than Aß PET. Furthermore, during the clinical stages of AD, both flortaucipir PET and brain volume of the Papez circuit are closely correlated with cognitive decline. These findings underscore the importance of integrating multiple biomarkers for the comprehensive evaluation of AD pathology and its impact on cognition.

11.
Heliyon ; 10(8): e29375, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38644855

RESUMEN

In the context of Alzheimer's disease (AD), timely identification is paramount for effective management, acknowledging its chronic and irreversible nature, where medications can only impede its progression. Our study introduces a holistic solution, leveraging the hippocampus and the VGG16 model with transfer learning for early AD detection. The hippocampus, a pivotal early affected region linked to memory, plays a central role in classifying patients into three categories: cognitively normal (CN), representing individuals without cognitive impairment; mild cognitive impairment (MCI), indicative of a subtle decline in cognitive abilities; and AD, denoting Alzheimer's disease. Employing the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, our model undergoes training enriched by advanced image preprocessing techniques, achieving outstanding accuracy (testing 98.17 %, validation 97.52 %, training 99.62 %). The strategic use of transfer learning fortifies our competitive edge, incorporating the hippocampus approach and, notably, a progressive data augmentation technique. This innovative augmentation strategy gradually introduces augmentation factors during training, significantly elevating accuracy and enhancing the model's generalization ability. The study emphasizes practical application with a user-friendly website, empowering radiologists to predict class probabilities, track disease progression, and visualize patient images in both 2D and 3D formats, contributing significantly to the advancement of early AD detection.

12.
J Nucl Med Technol ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627012

RESUMEN

The Alzheimer disease (AD) continuum is a neurodegenerative disorder with cognitive decline and pathologic changes. Tau PET imaging can detect tau pathology, and 18F-flortaucipir PET imaging is expected to visualize progression through the stages of AD, for which quantitative assessment is essential. Two measurement methods, statistically defined multiblock barycentric discriminant analysis (MUBADA)/parametric estimation of reference signal intensity (PERSI) and anatomically defined tau meta-volume of interest (VOI)/cerebellar gray matter (CGM) for SUV ratio (SUVR), were compared in this study to assess their relationship to AD clinical stage using 2 open multicenter PET databases. Methods: Data were selected for 106 cases from 2 databases, AMED Preclinical AD study (AMED-PRE) (n = 15) and Alzheimer Disease Neuroimaging Initiative 3 (n = 91). The data of the participants were categorized into 4 groups based on the clinical criteria. Tau PET imaging was conducted using 18F-flortaucipir, and the 2 SUVR measurement methods, MUBADA/PERSI and tau meta-VOI/CGM, were compared among different clinical categories: amyloid-negative cognitively normal, preclinical AD, amyloid-negative mild cognitive impairment (MCI), and amyloid-positive MCI. Results: Significant differences were found between cognitively normal and preclinical AD, as well as between cognitively normal and amyloid-positive MCI and between amyloid-negative MCI and -positive MCI in SUVR derived by MUBADA/PERSI, whereas SUVR by tau meta-VOI/CGM did not provide significant differences between any pair. The tau meta-VOI/CGM method consistently provided higher SUVRs and larger individual variations than MUBADA/PERSI, with a mean SUVR difference of 0.136 for the studied databases. Conclusion: MUBADA/PERSI provided the SUVR of 18F-flortaucipir uptake with better association with the clinical severity of the AD continuum and with smaller variability. The results support the usefulness of MUBADA/PERSI as a quantitative measure of 18F-flortaucipir uptake in multicenter studies using different PET systems and scanning methods. However, limitations of the study include the small sample size and the unbalanced distribution among clinical categories in the AMED Preclinical AD study database.

13.
Eur J Neurosci ; 59(12): 3376-3388, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38654447

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that primarily affects the hippocampus. Since hippocampal studies have highlighted a differential subregional regulation along its longitudinal axis, a more detailed analysis addressing subregional changes along the longitudinal hippocampal axis has the potential to provide new relevant biomarkers. This study included structural brain MRI data of 583 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Cognitively normal (CN) subjects, mild cognitively impaired (MCI) subjects and AD patients were conveniently selected considering the age and sex match between clinical groups. Structural MRI acquisitions were pre-processed and analysed with a new longitudinal axis segmentation method, dividing the hippocampus in three subdivisions (anterior, intermediate, and posterior). When normalizing the volume of hippocampal sub-divisions to total hippocampus, the posterior hippocampus negatively correlates with age only in CN subjects (r = -.31). The longitudinal ratio of hippocampal atrophy (anterior sub-division divided by the posterior one) shows a significant increase with age only in CN (r = .25). Overall, in AD, the posterior hippocampus is predominantly atrophied early on. Consequently, the anterior/posterior hippocampal ratio is an AD differentiating metric at early disease stages with potential for diagnostic and prognostic applications.


Asunto(s)
Enfermedad de Alzheimer , Atrofia , Disfunción Cognitiva , Hipocampo , Imagen por Resonancia Magnética , Humanos , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/diagnóstico por imagen , Hipocampo/patología , Hipocampo/diagnóstico por imagen , Femenino , Masculino , Anciano , Atrofia/patología , Imagen por Resonancia Magnética/métodos , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Disfunción Cognitiva/fisiopatología , Anciano de 80 o más Años , Persona de Mediana Edad
14.
bioRxiv ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37662280

RESUMEN

Background and Objectives: Previous approaches pursuing normative modelling for analyzing heterogeneity in Alzheimer's Disease (AD) have relied on a single neuroimaging modality. However, AD is a multi-faceted disorder, with each modality providing unique and complementary info about AD. In this study, we used a deep-learning based multimodal normative model to assess the heterogeneity in regional brain patterns for ATN (amyloid-tau-neurodegeneration) biomarkers. Methods: We selected discovery (n = 665) and replication (n = 430) cohorts with simultaneous availability of ATN biomarkers: Florbetapir amyloid, Flortaucipir tau and T1-weighted MRI (magnetic resonance imaging) imaging. A multimodal variational autoencoder (conditioned on age and sex) was used as a normative model to learn the multimodal regional brain patterns of a cognitively unimpaired (CU) control group. The trained model was applied on individuals on the ADS (AD Spectrum) to estimate their deviations (Z-scores) from the normative distribution, resulting in a Z-score regional deviation map per ADS individual per modality. Regions with Z-scores < -1.96 for MRI and Z-scores > 1.96 for amyloid and tau were labelled as outliers. Hamming distance was used to quantify the dissimilarity between individual based on their outlier deviations across each modality. We also calculated a disease severity index (DSI) for each ADS individual which was estimated by averaging the deviations across all outlier regions corresponding to each modality. Results: ADS individuals with moderate or severe dementia showed higher proportion of regional outliers for each modality as well as more dissimilarity in modality-specific regional outlier patterns compared to ADS individuals with early or mild dementia. DSI was associated with the progressive stages of dementia, (ii) showed significant associations with neuropsychological composite scores and (iii) related to the longitudinal risk of CDR progression. Findings were reproducible in both discovery and replication cohorts. Discussion: Our is the first study to examine the heterogeneity in AD through the lens of multiple neuroimaging modalities (ATN), based on distinct or overlapping patterns of regional outlier deviations. Regional MRI and tau outliers were more heterogenous than regional amyloid outliers. DSI has the potential to be an individual patient metric of neurodegeneration that can help in clinical decision making and monitoring patient response for anti-amyloid treatments.

15.
Neurobiol Aging ; 134: 84-93, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38039940

RESUMEN

Although genome-wide association studies have identified multiple Alzheimer's disease (AD)-associated loci by selecting the main effects of individual single-nucleotide polymorphisms (SNPs), the interpretation of genetic variance in AD is limited. Based on the linear regression method, we performed genome-wide SNP-SNP interaction on cerebrospinal fluid Aß42 to identify potential genetic epistasis implicated in AD, with age, gender, and diagnosis as covariates. A GPU-based method was used to address the computational challenges posed by the analysis of epistasis. We found 368 SNP pairs to be statistically significant, and highly significant SNP-SNP interactions were identified between the marginal main effects of SNP pairs, which explained a relatively high variance at the Aß42 level. Our results replicated 100 previously reported AD-related genes and 5 gene-gene interaction pairs of the protein-protein interaction network. Our bioinformatics analyses provided preliminary evidence that the 5-overlapping gene-gene interaction pairs play critical roles in inducing synaptic loss and dysfunction, thereby leading to memory decline and cognitive impairment in AD-affected brains.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico , Polimorfismo de Nucleótido Simple/genética , Epistasis Genética/genética , Péptidos beta-Amiloides/líquido cefalorraquídeo , Estudio de Asociación del Genoma Completo , Proteínas tau/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Fragmentos de Péptidos/líquido cefalorraquídeo
16.
CNS Neurosci Ther ; 30(2): e14357, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37438991

RESUMEN

OBJECTIVES: The ATN's different modalities (fluids and neuroimaging) for each of the Aß (A), tau (T), and neurodegeneration (N) elements are used for the biological diagnosis of Alzheimer's disease (AD). We aim to identify which ATN category achieves the highest potential for diagnosis and predictive accuracy of longitudinal cognitive decline. METHODS: Based on the availability of plasma ATN biomarkers (plasma-derived Aß42/40 , p-tau181, NFL, respectively), CSF ATN biomarkers (CSF-derived Aß42 /Aß40 , p-tau181, NFL), and neuroimaging ATN biomarkers (18F-florbetapir (FBP) amyloid-PET, 18F-flortaucipir (FTP) tau-PET, and fluorodeoxyglucose (FDG)-PET), a total of 2340 participants were selected from ADNI. RESULTS: Our data analysis indicates that the area under curves (AUCs) of CSF-A, neuroimaging-T, and neuroimaging-N were ranked the top three ATN candidates for accurate diagnosis of AD. Moreover, neuroimaging ATN biomarkers display the best predictive ability for longitudinal cognitive decline among the three categories. To note, neuroimaging-T correlates well with cognitive performances in a negative correlation manner. Meanwhile, participants in the "N" element positive group, especially the CSF-N positive group, experience the fastest cognitive decline compared with other groups defined by ATN biomarkers. In addition, the voxel-wise analysis showed that CSF-A related to tau accumulation and FDG-PET indexes more strongly in subjects with MCI stage. According to our analysis of the data, the best three ATN candidates for a precise diagnosis of AD are CSF-A, neuroimaging-T, and neuroimaging-N. CONCLUSIONS: Collectively, our findings suggest that plasma, CSF, and neuroimaging biomarkers differ considerably within the ATN framework; the most accurate target biomarkers for diagnosing AD were the CSF-A, neuroimaging-T, and neuroimaging-N within each ATN modality. Moreover, neuroimaging-T and CSF-N both show excellent ability in the prediction of cognitive decline in two different dimensions.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Fluorodesoxiglucosa F18 , Neuroimagen , Disfunción Cognitiva/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Biomarcadores , Proteínas tau , Péptidos beta-Amiloides
17.
Neurobiol Aging ; 133: 115-124, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37948982

RESUMEN

Previous work has associated polymorphisms in the dopamine transporter gene (rs6347 in DAT1/SLC6A3) and brain derived neurotrophic factor gene (Val66Met in BDNF) with atrophy and memory decline. However, it is unclear whether these polymorphisms relate to atrophy and cognition through associations with Alzheimer's disease pathology. We tested for effects of DAT1 and BDNF polymorphisms on cross-sectional and longitudinal ß-amyloid (Aß) and tau pathology (measured with positron emission tomography (PET)), hippocampal volume, and cognition. We analyzed a sample of cognitively normal older adults (cross-sectional n = 321) from the Alzheimer's Disease Neuroimaging Initiative (ADNI). DAT1 and BDNF interacted to predict Aß-PET, tau-PET, and hippocampal atrophy. Carriers of both "non-boptimal" DAT1 C and BDNF Met alleles demonstrated greater pathology and atrophy. Our findings provide novel links between dopamine and neurotrophic factor genes and AD pathology, consistent with previous research implicating these variants in greater risk for developing AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Anciano , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Factor Neurotrófico Derivado del Encéfalo/genética , Estudios Transversales , Péptidos beta-Amiloides , Tomografía de Emisión de Positrones , Atrofia , Proteínas tau/genética , Disfunción Cognitiva/genética , Biomarcadores
18.
Cereb Circ Cogn Behav ; 5: 100184, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37811522

RESUMEN

Background: Impairments in executive function (EF) are often attributed to ischemic cerebrovascular disease (ICVD) and frontal circuit pathology. However, EF can be distinguished from general intelligence and the latter is likely to manifest in "executive" measures. We aimed to distinguish the effects of imaging biomarkers on these constructs. Methods: We tested neuroimaging biomarkers as independent predictors of observed 12 month-prospective cognitive performance by a Multiple Indicators Multiple Causes (MIMIC) model in the Alzheimer's Disease Neuroimaging Initiative (ADNI) (N ≅ 1750). Results: ICVD was associated with ''Organization" (ORG) and "Planning" (PLAN) domain scores from the test of Every Day Cognition. Left anterior cingulate (LAC) atrophy was independently associated with Trail-Making part B and Animal Naming. The MIMIC model had excellent fit and tests additional latent variables i.e., EF and dEF (a latent δ homolog derived from Spearman's general intelligence factor, g). Only dEF was associated with instrumental activities of daily living (IADL). ICVD and LAC were both associated with observed executive measures through dEF. ICVD was independently associated with those same measures through EF. Conclusions: Observed EF is independently determined by multiple factors. The effects of EF-associated MRI biomarkers can be related to disability and dementia only via their effects on g. Because g /δ are unlikely to be located within the frontal lobes, the dementia-specific variance in executive measures may have little to do with either frontal structure or function. Conversely, domain-specific variance in EF may have little to do with either IADL-impairment or dementia.

19.
Neurobiol Aging ; 131: 196-208, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37689017

RESUMEN

There is increasing evidence of different subtypes of individuals with mild cognitive impairment (MCI). An important line of research is whether neuropsychologically-defined subtypes have distinct patterns of neurodegeneration and cerebrospinal fluid (CSF) biomarker composition. In our study, we demonstrated that MCI participants of the ADNI database (N = 640) can be discriminated into 3 coherent neuropsychological subgroups. Our clustering approach revealed amnestic MCI, mixed MCI, and cluster-derived normal subgroups. Furthermore, classification modeling revealed that specific predictive features can be used to differentiate amnestic and mixed MCI from cognitively normal (CN) controls: CSF Aß142 concentration for the former and CSF Aß1-42 concentration, tau concentration as well as grey matter atrophy (especially in the temporal and occipital lobes) for the latter. In contrast, participants from the cluster-derived normal subgroup exhibited an identical profile to CN controls in terms of cognitive performance, brain structure, and CSF biomarker levels. Our comprehensive data analytics strategy provides further evidence that multimodal neuropsychological subtyping is both clinically and neurobiologically meaningful.


Asunto(s)
Disfunción Cognitiva , Sustancia Gris , Humanos , Sustancia Gris/diagnóstico por imagen , Corteza Cerebral , Encéfalo , Biomarcadores , Disfunción Cognitiva/diagnóstico
20.
Neuroimage Clin ; 40: 103508, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37717383

RESUMEN

INTRODUCTION: In clinical practice, differentiating between age-related gray matter (GM) atrophy and neurodegeneration-related atrophy at early disease stages, such as mild cognitive impairment (MCI), remains challenging. We hypothesized that fined-grained adjustment for age effects and using amyloid-negative reference subjects could increase classification accuracy. METHODS: T1-weighted magnetic resonance imaging (MRI) data of 131 cognitively normal (CN) individuals and 91 patients with MCI from the Alzheimer's disease neuroimaging initiative (ADNI) characterized concerning amyloid status, as well as 19 CN individuals and 19 MCI patients from an independent validation sample were segmented, spatially normalized and analyzed in the framework of voxel-based morphometry (VBM). For each participant, statistical maps of GM atrophy were computed as the deviation from the GM of CN reference groups at the voxel level. CN reference groups composed with different degrees of age-matching, and mixed and strictly amyloid-negative CN reference groups were examined regarding their effect on the accuracy in distinguishing between CN and MCI. Furthermore, the effects of spatial smoothing and atrophy threshold were assessed. RESULTS: Approaches with a specific reference group for each age significantly outperformed all other age-adjustment strategies with a maximum area under the curve of 1.0 in the ADNI sample and 0.985 in the validation sample. Accounting for age in a regression-based approach improved classification accuracy over that of a single CN reference group in the age range of the patient sample. Using strictly amyloid-negative reference groups improved classification accuracy only when age was not considered. CONCLUSION: Our results demonstrate that VBM can differentiate between age-related and MCI-associated atrophy with high accuracy. Crucially, age-specific reference groups significantly increased accuracy, more so than regression-based approaches and using amyloid-negative reference groups.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/patología , Imagen por Resonancia Magnética/métodos , Disfunción Cognitiva/patología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Proteínas Amiloidogénicas , Atrofia/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA