Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int Microbiol ; 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581482

RESUMEN

Salt affected cotton rhizospheric soil was explored for multi-stress resistance microbes to obtain 46 rhizobacteria. Of these, seven strains strongly inhibited the growth of phytopathogenic fungus Rhizoctonia solani by virtue of antifungal compound 2,4-diacetylphloroglucinol (DAPG) production. These seven strains demonstrated an array of plant growth-promoting activities as follows: (i) production of indole-3-acetic acid, ammonia, siderophore; (ii) solubilisation of phosphate, while two isolates showed Zn solubilisation. The phenetic and 16S ribotyping revealed affiliation of all the isolates to Pseudomonas guariconensis and presence of phlD gene marker for DAPG production. Among the seven isolates, strain VDA8 showed the highest DAPG production (0.16 µg ml-1) in liquid synthetic medium under aerobic conditions at 28 °C. Furthermore, sucrose, peptone, sodium hydrogen phosphate, ZnSO4, pH 8.0, and NaCl (1%) were observed as the best carbon, nitrogen, phosphate, trace element, pH, and salt concentration, respectively for maximum production of DAPG by strain VDA8 (3.62 ± 0.04 µg ml-1). The strain VDA8 was further assessed for wheat (Triticum aestivum) growth promotion by seed biopriming under laboratory (plate assay) and field condition in alkaline saline soil with pH 8.5. The field scale (324 m2) trials demonstrated 28.6% enhanced grain production compared to control demonstrating the newly isolated Pseudomonas sp. as multi-potent bioinoculant.

2.
Plants (Basel) ; 13(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38256816

RESUMEN

Boeremia exigua var. exigua is a recurrent pathogen causing root rot in industrial chicory. Currently, there is no chemical or varietal control for this disease, and thus, management strategies need to be developed. This study determined the biocontrol effect of strains of Pseudomonas protegens bacteria with antimicrobial compounds on the fungus B. exigua var. exigua under in vitro, in vivo, and field conditions. In addition, root colonization by these bacteria was estimated by the phlD-specific PCR-based dilution end point assay. Eighteen isolates of Pseudomonas spp were evaluated, and the strains that showed the greatest in vitro inhibition of fungal mycelial growth (mm), Ca10A and ChB7, were selected. Inoculation with the strain ChB7 showed less severity (necrotic area) under in vivo conditions (root trials) compared with the control inoculated with the pathogen (p ≤ 0.05). The molecular analysis revealed that the root colonization of plants grown in pots was equal to or greater than 70%. Similar levels were observed in the field trials conducted at the Selva Negra and Canteras experimental stations (2015-2016 season), with values ranging from 85.7 to 70.5% and from 75.0 to 79.5%, respectively. Regarding yield (ton ha-1), values were higher in the treatments inoculated with strains Ca10A and ChB7 (p ≤ 0.05) at both experimental sites, while a lower incidence and severity of root rot were observed at Selva Negra. These results suggest that the Chilean strains of P. protegens are a promising tool for the control of root diseases in industrial chicory.

3.
Eur J Med Chem ; 261: 115823, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37839345

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) causes severe public health challenges throughout the world, and the multi-drug resistance (MDR) of MRSA to antibiotics necessitates the development of more effective antibiotics. Natural 2,4-diacetylphloroglucinol (DAPG), produced by Pseudomonas, displays moderate inhibitory activity against MRSA. A series of DAPG derivatives was synthesized and evaluated for their antibacterial activities, and some showed excellent activities (MRSA MIC = 0.5-2 µg/mL). Among these derivatives, 7g demonstrated strong antibacterial activity without resistance development over two months. Mechanistic studies suggest that 7g asserted its activity by targeting bacterial cell membranes. In addition, 7g exhibited significant synergistic antibacterial effects with oxacillin both in vitro and in vivo, with a tendency to eradicate MRSA biofilms. 7g is a promising lead for the treatment of MRSA.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Sinergismo Farmacológico , Antibacterianos/farmacología , Oxacilina/farmacología , Pruebas de Sensibilidad Microbiana
4.
Plant Dis ; 107(5): 1617-1619, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37170421

RESUMEN

Pseudomonas bijieensis is a newly established species with antifungal activity. Here, we report the high-quality and complete genome sequence for P. bijieensis strain SP1, created by hybrid assembly using both short reads and long reads. The length of the circular chromosome is about 6.67 Mb, with a GC content of 60.89%. Bioinformatic analyses revealed gene clusters for the biosynthesis of antimicrobial metabolites 2,4-diacetylphloroglucinol as well as bacterial secretion systems (type I to III and type V to VI). Interestingly, this strain can cause soft rot symptoms in the roots of yam bean, showing the potential to be a plant pathogen. The genomic data will be a valuable resource for exploring the virulence mechanism and antifungal activity of this strain.


Asunto(s)
Pachyrhizus , Pseudomonas , Pseudomonas/genética , Pachyrhizus/genética , Antifúngicos , Virulencia , Genoma Bacteriano/genética
5.
J Fungi (Basel) ; 8(10)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36294582

RESUMEN

The dimorphic fungus Candida albicans is one of the most important opportunistic pathogens for humankind. The use of fungicides against Candida could be associated with sub-inhibitory effects, which are referred to as fungal stress responses and are undesirable for the host. In this work, we investigated the antifungal action of 2,4-diacetylphloroglucinol (2,4-DAPG) against Candida albicans ATCC 10231 with a focus on their biofilm-forming ability. We found that 2,4-DAPG was able to reduce the ability of Candida cells to form biofilms, but complete inhibition and eradication effects were not achieved. Furthermore, C. albicans cells in the adherent state were characterized by reduced susceptibility to 2,4-DAPG compared to planktonic cells. The investigation of the mechanisms that could explain the antibiofilm action of 2,4-DAPG revealed a reduction in the cell`s surface hydrophobicity and the inhibition of the yeast-to-hyphae transition. The inhibition of the Candida cells filamentation was accompanied by an increase in the expression of the NRG1 gene, which is a negative regulator of hyphal development. In addition, we microscopically visualized the treated biofilms and revealed numerous channels that were decorated with particles and localized on the hyphae. We assumed that these hyphal structures could be associated with the secretion of aspartyl proteases (Sap). The performed assessments revealed an increase in the activity of Sap, which was accompanied by an increase in the expression of the sap2 and sap4 genes. The antifungal action of 2,4-DAPG is known to be associated with affecting the permeability of cellular structures, which leads to H+ATPase malfunction and the disruption of mitochondrial respiration. The subsequent cytosol acidification and generation of ROS trigger the inhibition of Candida filamentation and activation of Sap production. The introduction of antioxidant Trolox simultaneously with 2,4-DAPG leads to a reduction in Sap production. Collectively, the obtained data indicate new aspects of the interaction of fungal cells with 2,4-DAPG, an antimicrobial metabolite of Pseudomonas spp.

6.
Cells ; 11(16)2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-36010661

RESUMEN

There is currently no effective treatment against Alzheimer's disease (AD), although many strategies have been applied to reduce beta-amyloid (Aß) levels. Here, we investigated 2,4-diacetylphloroglucinol (DAPG) effects on Aß levels and mechanisms of action. DAPG was the most effective phloroglucinol derivative for reducing Aß levels, without being toxic, in various models including HEK293 cells overexpressing Swedish mutant amyloid precursor protein (APP) (293sw), primary astrocytes isolated from APPsw/PS1dE9 transgenic mice, and after intrahippocampal injection of DAPG in APPsw/PS1dE9 transgenic mice. DAPG-mediated Aß reduction was associated with increased soluble APPα (sAPPα) levels mediated by a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) but not ADAM17. ADAM10 inhibition in DAPG-treated cells prevented the effects on sAPPα but only partly on intracellular and secreted Aß. To identify regulators of sAPPα and Aß secretion, various inhibitors of intracellular trafficking were administered with DAPG. Brefeldin A (BFA) reversed DAPG-mediated changes in Aß secretion in 293sw cells, whereas golgicide A (GCA) and BFA were effective in primary astrocytes, indicating a cell type-specific regulation of the trafficking. Moreover, GCA or BFA effects on sAPPα, but not Aß, levels in primary astrocytes resembled those of ADAM10 inhibition, indicating at least partly independent trafficking pathways for sAPPα and Aß. In conclusion, DAPG might be a promising drug candidate against AD regulating ADAM10 and intracellular trafficking, but optimizing DAPG ability to cross the BBB will be needed.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Proteína ADAM10/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Células HEK293 , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Modelos Animales , Floroglucinol/análogos & derivados
7.
Front Microbiol ; 13: 945498, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36016777

RESUMEN

Pseudomonas protegens Pf-5 is an effective biocontrol agent that protects many crops against pathogens, including the fungal pathogen Botrytis cinerea causing gray mold disease in Cannabis sativa crops. Previous studies have demonstrated the important role of antibiotics pyoluteorin (PLT) and 2,4-diacetylphloroglucinol (DAPG) in Pf-5-mediated biocontrol. To assess the potential involvement of PLT and DAPG in the biocontrol exerted by Pf-5 against B. cinerea in the phyllosphere of C. sativa, two knockout Pf-5 mutants were generated by in-frame deletion of genes pltD or phlA, required for the synthesis of PLT or DAPG respectively, using a two-step allelic exchange method. Additionally, two complemented mutants were constructed by introducing a multicopy plasmid carrying the deleted gene into each deletion mutant. In vitro confrontation assays revealed that deletion mutant ∆pltD inhibited B. cinerea growth significantly less than wild-type Pf-5, supporting antifungal activity of PLT. However, deletion mutant ∆phlA inhibited mycelial growth significantly more than the wild-type, hypothetically due to a co-regulation of PLT and DAPG biosynthesis pathways. Both complemented mutants recovered in vitro inhibition levels similar to that of the wild-type. In subsequent growth chamber inoculation trials, characterization of gray mold disease symptoms on infected cannabis plants revealed that both ∆pltD and ∆phlA significantly lost a part of their biocontrol capabilities, achieving only 10 and 19% disease reduction respectively, compared to 40% achieved by inoculation with the wild-type. Finally, both complemented mutants recovered biocontrol capabilities in planta similar to that of the wild-type. These results indicate that intact biosynthesis pathways for production of PLT and DAPG are required for the optimal antagonistic activity of P. protegens Pf-5 against B. cinerea in the cannabis phyllosphere.

8.
J Biol Chem ; 298(6): 102027, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35568198

RESUMEN

The production of secondary metabolites is a major mechanism used by beneficial rhizobacteria to antagonize plant pathogens. These bacteria have evolved to coordinate the production of different secondary metabolites due to the heavy metabolic burden imposed by secondary metabolism. However, for most secondary metabolites produced by bacteria, it is not known how their biosynthesis is coordinated. Here, we showed that PhlH from the rhizobacterium Pseudomonas fluorescens is a TetR-family regulator coordinating the expression of enzymes related to the biosynthesis of several secondary metabolites, including 2,4-diacetylphloroglucinol (2,4-DAPG), mupirocin, and pyoverdine. We present structures of PhlH in both its apo form and 2,4-DAPG-bound form and elucidate its ligand-recognizing and allosteric switching mechanisms. Moreover, we found that dissociation of 2,4-DAPG from the ligand-binding domain of PhlH was sufficient to allosterically trigger a pendulum-like movement of the DNA-binding domains within the PhlH dimer, leading to a closed-to-open conformational transition. Finally, molecular dynamics simulations confirmed that two distinct conformational states were stabilized by specific hydrogen bonding interactions and that disruption of these hydrogen bonds had profound effects on the conformational transition. Our findings not only reveal a well-conserved route of allosteric signal transduction in TetR-family regulators but also provide novel mechanistic insights into bacterial metabolic coregulation.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Pseudomonas fluorescens , Transducción de Señal , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Enlace de Hidrógeno , Ligandos , Mupirocina/metabolismo , Oligopéptidos/metabolismo , Floroglucinol/metabolismo , Conformación Proteica , Pseudomonas fluorescens/metabolismo , Metabolismo Secundario
9.
Pathogens ; 11(4)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35456066

RESUMEN

Pseudomonas protegens (strain DSMZ 13134) is a biocontrol agent with promising antagonistic activity hinging on antibiosis against the fungal forest pathogens Heterobasidion spp. Here, by using High-Performance Liquid Chromatography coupled to Mass Spectrometry (HPLC-MS), we assessed whether monocultures of P. protegens (strain DSMZ 13134) produce the three major determinants of biocontrol activity known for the genus Pseudomonas: 2,4-diacetylphloroglucinol (2,4-DAPG), pyoluteorin (PLT), and pyrrolnitrin (PRN). At the tested culture conditions, we observed the production of PLT at concentrations ranging from 0.01 to 10.21 mg/L and 2,4-DAPG at a concentration not exceeding 0.5 mg/L. Variations of culture conditions involving culture medium, incubation temperature, and incubation period had no consistent influence on PLT production by the bacterium. Assays using culture medium amended with PLT at the same concentration of that present in cell-free filtrate of the bacterium, i.e., 3.77 mg/L, previously documented as effective against Heterobasidion spp., showed a remarkable activity of PLT against genotypes of all the four Heterobasidion species present in Europe, including the non-native invasive H. irregulare. However, such antifungal activity decreased over time, and this may be a constraint for using this molecule as a pesticide against Heterobasidion spp. When the bacterium was co-cultured in liquid medium with genotypes of the different Heterobasidion species, an increased production of PLT was observed at 4 °C, suggesting the bacterium may perform better as a PLT producer in field applications under similar environmental conditions, i.e., at low temperatures. Our results demonstrated the role of PLT in the inhibition of Heterobasidion spp., although all lines of evidence suggest that antibiosis does not rely on a single constitutively produced metabolite, but rather on a plethora of secondary metabolites. Findings presented in this study will help to optimize treatments based on Pseudomonas protegens (strain DSMZ 13134) against Heterobasidion spp.

10.
Metabolites ; 11(3)2021 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-33804595

RESUMEN

Plant-beneficial Pseudomonas spp. aggressively colonize the rhizosphere and produce numerous secondary metabolites, such as 2,4-diacetylphloroglucinol (DAPG). DAPG is a phloroglucinol derivative that contributes to disease suppression, thanks to its broad-spectrum antimicrobial activity. A famous example of this biocontrol activity has been previously described in the context of wheat monoculture where a decline in take-all disease (caused by the ascomycete Gaeumannomyces tritici) has been shown to be associated with rhizosphere colonization by DAPG-producing Pseudomonas spp. In this review, we discuss the biosynthesis and regulation of phloroglucinol derivatives in the genus Pseudomonas, as well as investigate the role played by DAPG-producing Pseudomonas spp. in natural soil suppressiveness. We also tackle the mode of action of phloroglucinol derivatives, which can act as antibiotics, signalling molecules and, in some cases, even as pathogenicity factors. Finally, we discuss the genetic and genomic diversity of DAPG-producing Pseudomonas spp. as well as its importance for improving the biocontrol of plant pathogens.

11.
Phytopathology ; 111(11): 1935-1941, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33876647

RESUMEN

Pseudomonas brassicacearum Q8r1-96 and other 2,4-diacetylphloroglucinol (DAPG)-producing pseudomonads of the P. fluorescens complex possess both biocontrol and growth-promoting properties and play an important role in suppression of take-all of wheat in the Pacific Northwest (PNW) of the United States. However, P. brassicacearum can also reduce seed germination and cause root necrosis on some wheat cultivars. We evaluated the effect of Q8r1-96 and DAPG on the germination of 69 wheat cultivars that have been or currently are grown in the PNW. Cultivars varied widely in their ability to tolerate P. brassicacearum or DAPG. The frequency of germination of the cultivars ranged from 0 to 0.87 and 0.47 to 0.90 when treated with Q8r1-96 and DAPG, respectively. There was a significant positive correlation between the frequency of germination of cultivars treated with Q8r1-96 in assays conducted in vitro and in the greenhouse. The correlation was greater for spring than for winter cultivars. In contrast, the effect of Q8r1-96 on seed germination was not correlated with that of DAPG alone, suggesting that DAPG is not the only factor responsible for the phytotoxicity of Q8r1-96. Three wheat cultivars with the greatest tolerance and three cultivars with the least tolerance to Q8r1-96 were tested for their ability to support root colonization by strain Q8r1-96. Cultivars with the greatest tolerance supported significantly greater populations of strain Q8r1-96 than those with the least tolerance to the bacteria. Our results show that wheat cultivars differ widely in their interaction with P. brassicacearum and the biocontrol antibiotic DAPG.


Asunto(s)
Pseudomonas fluorescens , Triticum , Floroglucinol/análogos & derivados , Floroglucinol/farmacología , Enfermedades de las Plantas , Raíces de Plantas , Pseudomonas
12.
Biomolecules ; 11(1)2020 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-33375656

RESUMEN

2,4-Diacetylphloroglucinol (2,4-DAPG) is a well-known bacterial secondary metabolite, however, its mechanism of inhibitory and subinhibitory action on bacterial cells is still poorly understood. The mechanism of 2,4-DAPG action on model bacterial strains was investigated using fluorescent spectroscopy and the action of the antibiotic was found to involve a rapid increase in membrane permeability that was accompanied by a reduction in its viability in nutrient-poor medium. At the same time, antibacterial action in nutrient-rich medium developed for several hours. Atomic force microscopy demonstrated time-dependent disturbances in the outer membrane of Escherichia coli when exposed to 2,4-DAPG, while Staphylococcusaureus cells have been visualized with signs of intracellular leakage. In addition, 2,4-DAPG inhibited the metabolic activity of S. aureus and E. coli bacterial cells in mature biofilms. Observed differences in the antibiofilm activity were dependent upon antibiotic concentration. The intracellular targets of the action of 2,4-DAPG were assessed using bacterial biosensors with inducible bioluminescence corresponding to DNA and protein damage. It was unable to register any positive response from either sensor. As a result, the bactericidal action of 2,4-DAPG is believed to be associated with the destruction of the bacterial barrier structures. The subinhibitory effect of 2,4-diacetylphloroglucinol was tested on quorum-sensing mediated processes in Pectobacterium carotovorum. Subinhibitory concentrations of 2,4-DAPG were found to lower the biosynthesis of acyl-homoserine lactones in P. carotovorum in a dose-dependent manner. Further investigation elucidated that 2,4-DAPG inhibits the metabolic activity of bacteria without affecting their viability.


Asunto(s)
Antibacterianos/química , Antiinfecciosos/química , Permeabilidad de la Membrana Celular/efectos de los fármacos , Floroglucinol/análogos & derivados , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Biopelículas/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/patogenicidad , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Microscopía de Fuerza Atómica , Floroglucinol/química , Floroglucinol/farmacología , Pseudomonas fluorescens/efectos de los fármacos , Pseudomonas fluorescens/patogenicidad , Percepción de Quorum/efectos de los fármacos , Metabolismo Secundario/genética , Staphylococcus aureus/efectos de los fármacos
13.
World J Microbiol Biotechnol ; 36(9): 130, 2020 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-32712706

RESUMEN

In order to produce 2,4-diacetylphloroglucinol (2,4-DAPG) in E. coli, the key synthases coding by phlACBD gene cluster from the strain Pseudomonas fluorescens CHA0 were overexpressed in E. coli BL21 (DE3). The marA, phlE and acc genes were also overexpressed to enhance 2,4-DAPG biosynthesis. Then the fermentation conditions were optimized to improve the concentration of 2,4-DAPG. The results showed that the recombinant E. coli could produce few 2,4-DAPG with only the phlACBD gene cluster. The synthetic ability of 2,4-DAPG could be increased by expressing the acc, marA and phlE genes in shake-flasks cultivation. The effects of phloroglucinol, initial pH, temperature and trace elements on 2,4-DAPG biosynthesis were also investigated. Based on the optimal fermentation conditions obtained from the shake-flasks cultivation, fed-batch fermentation of strain Z3 in a 5 L bioreactor was conducted to produce 2,4-DAPG. Finally, the concentration of 2,4-DAPG was 179 mg/L after induction for 36 h by fed-batch fermentation. To the best of our knowledge, this is the highest 2,4-DAPG production reported in E. coli. This work showed the potential application of engineered E. coli to get high production of target compounds.


Asunto(s)
Escherichia coli/genética , Escherichia coli/metabolismo , Glucosa/metabolismo , Floroglucinol/análogos & derivados , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Técnicas de Cultivo Celular por Lotes , Reactores Biológicos , Fermentación , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Floroglucinol/metabolismo
14.
Mol Plant Microbe Interact ; 33(8): 1072-1079, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32370644

RESUMEN

The compound 2,4-diacetylphloroglucinol (DAPG) is a well-known secondary metabolite produced by Pseudomonas spp. that are used as biocontrol agents. DAPG displays a remarkably broad spectrum of toxic activity against pathogens of plants. Yet high concentrations of DAPG may also have negative effect on plants, but the phytotoxicity of DAPG is not clearly understood. Here, we used genome-wide activation, tagging Arabidopsis plants as the model plant to investigate the plant response to DAPG. A total of 15 lines were selected as DAPG-tolerant plants from among 62,000 lines investigated. The DAPG-responsible genes were then identified via thermal asymmetric interlaced PCR and quantitative reverse transcription PCR, and the gene ontology analysis showed the distribution of these genes having different biological processes, cellular regulations, and molecular functional properties. Collectively, these findings suggest that plants may rely on several pathways to prevent DAPG phytotoxicity.


Asunto(s)
Arabidopsis , Floroglucinol/análogos & derivados , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Genes de Plantas , Floroglucinol/toxicidad , Pseudomonas
15.
Microbes Environ ; 35(2)2020.
Artículo en Inglés | MEDLINE | ID: mdl-32269203

RESUMEN

More than 3,000 isolates of fluorescent pseudomonads have been collected from plant roots in Japan and screened for the presence of antibiotic-synthesizing genes. In total, 927 hydrogen cyanide (HCN)-, 47 2,4-diacetylphloroglucinol (PHL)-, 6 pyoluteorin (PLT)-, 14 pyrrolnitrin (PRN)-, and 8 phenazine (PHZ)-producing isolates have been detected. A cluster analysis (≥99% identity) identified 10 operational taxonomic units (OTUs) in antibiotic biosynthesis gene-possessing pseudomonads. OTU HLR (PHL, PLT, and PRN) contained four antibiotics: HCN, PHL, PLT, and PRN, while OTU RZ (PRN and PHZ) contained three: HCN, PRN, and PHZ. OTU H1, H2, H3, H4, H5, H6, and H7 (PHL1-7) contained two antibiotics: HCN and PHL, while OTU H8 (PHL8) contained one: PHL. Isolates belonging to OTU HLR and RZ suppressed damping-off disease in cabbage seedlings caused by Rhizoctonia solani. Effective strains belonging to OTU HLR and RZ were related to Pseudomonas protegens and Pseudomonas chlororaphis, respectively. Antibiotic biosynthesis gene-possessing fluorescent pseudomonads are distributed among different geographical sites in Japan and plant species.


Asunto(s)
Antibacterianos/biosíntesis , Fluorescencia , Pseudomonas/clasificación , Rizosfera , Agentes de Control Biológico , Genes Bacterianos , Variación Genética , Japón , Raíces de Plantas/microbiología , Pseudomonas/metabolismo , Pseudomonas fluorescens/genética , ARN Ribosómico 16S/genética , Microbiología del Suelo
16.
Plant Dis ; 104(4): 1026-1031, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31994984

RESUMEN

Pseudomonas brassicacearum and related species of the P. fluorescens complex have long been studied as biocontrol and growth-promoting rhizobacteria involved in suppression of soilborne pathogens. We report here that P. brassicacearum Q8r1-96 and other 2,4-diacetylphloroglucinol (DAPG)-producing fluorescent pseudomonads involved in take-all decline of wheat in the Pacific Northwest of the United States can also be pathogenic to other plant hosts. Strain Q8r1-96 caused necrosis when injected into tomato stems and immature tomato fruits, either attached or removed from the plant, but lesion development was dose dependent, with a minimum of 106 CFU ml-1 required to cause visible tissue damage. We explored the relative contribution of several known plant-microbe interaction traits to the pathogenicity of strain Q8r1-96. Type III secretion system (T3SS) mutants of Q8r1-96, injected at a concentration of 108 CFU ml-1, were significantly less virulent, but not consistently, as compared with the wild-type strain. However, a DAPG-deficient phlD mutant of Q8r1-96 was significantly and consistently less virulent as compared with the wild type. Strain Q8r1-96acc, engineered to over express ACC deaminase, caused a similar amount of necrosis as the wild type. Cell-free culture filtrates of strain Q8r1-96 and pure DAPG also cause necrosis in tomato fruits. Our results suggest that DAPG plays a significant role in the ability of Q8r1-96 to cause necrosis of tomato tissue, but other factors also contribute to the pathogenic properties of this organism.


Asunto(s)
Pseudomonas fluorescens , Solanum lycopersicum , Noroeste de Estados Unidos , Floroglucinol , Raíces de Plantas , Pseudomonas , Virulencia
17.
Appl Microbiol Biotechnol ; 102(14): 6057-6068, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29754162

RESUMEN

The formation of C-C bonds by using CoA independent acyltransferases may have significant impact for novel methods for biotechnology. We report the identification of Pseudomonas strains with CoA-independent acyltransferase activity as well as the heterologous expression of the enzyme in E. coli. The cloning strategies and selected expression studies are discussed. The recombinant acyltransferases were characterized with regard to thermal and storage stability, pH,- and co-solvent tolerance. Moreover, the impact of bivalent metals, inhibitors, and other additives was tested. Careful selection of expression and working conditions led to obtain recombinant acyltransferase form Pseudomonas protegens with up to 11 U mL-1 activity.


Asunto(s)
Aciltransferasas/genética , Proteínas Bacterianas/genética , Pseudomonas/enzimología , Secuencia de Aminoácidos , Vías Biosintéticas , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Operón , Pseudomonas/genética
18.
Appl Microbiol Biotechnol ; 102(2): 817-831, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29151161

RESUMEN

Verticillium species represent economically important phytopathogenic fungi with bacteria as natural rhizosphere antagonists. Growth inhibition patterns of Verticillium in different media were compared to saprophytic Aspergillus strains and were significantly more pronounced in various co-cultivations with different Pseudomonas strains. The Brassica napus rhizosphere bacterium Pseudomonas fluorescens DSM8569 is able to inhibit growth of rapeseed (Verticillium longisporum) or tomato (Verticillium dahliae) pathogens without the potential for phenazine or 2,4-diacetylphloroglucinol (DAPG) mycotoxin biosynthesis. Bacterial inhibition of Verticillium growth remained even after the removal of pseudomonads from co-cultures. Fungal growth response in the presence of the bacterium is independent of the fungal control genes of secondary metabolism LAE1 and CSN5. The phenazine producer P. fluorescens 2-79 (P_phen) inhibits Verticillium growth especially on high glucose solid agar surfaces. Additional phenazine-independent mechanisms in the same strain are able to reduce fungal surface growth in the presence of pectin and amino acids. The DAPG-producing Pseudomonas protegens CHA0 (P_DAPG), which can also produce hydrogen cyanide or pyoluteorin, has an additional inhibitory potential on fungal growth, which is independent of these antifungal compounds, but which requires the bacterial GacA/GacS control system. This translational two-component system is present in many Gram-negative bacteria and coordinates the production of multiple secondary metabolites. Our data suggest that pseudomonads pursue different media-dependent strategies that inhibit fungal growth. Metabolites such as phenazines are able to completely inhibit fungal surface growth in the presence of glucose, whereas GacA/GacS controlled inhibitors provide the same fungal growth effect on pectin/amino acid agar.


Asunto(s)
Antibiosis , Proteínas Bacterianas/metabolismo , Pseudomonas fluorescens/fisiología , Verticillium/crecimiento & desarrollo , Medios de Cultivo , Regulación Bacteriana de la Expresión Génica , Solanum lycopersicum/microbiología , Control Biológico de Vectores , Fenazinas/metabolismo , Floroglucinol/análogos & derivados , Floroglucinol/metabolismo , Enfermedades de las Plantas , Metabolismo Secundario , Verticillium/patogenicidad
19.
Microbiol Res ; 206: 159-167, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29146252

RESUMEN

Pseudomonas fluorescens 2P24 produces 2,4-diacetylphloroglucinol (2,4-DAPG) as the major antibiotic compound that protects plants from soil-borne diseases. Expression of the 2,4-DAPG biosynthesis enzymes, which are encoded by the phlACBD locus, is under the control of a delicate regulatory network. In this study, we identified a novel role for the outer membrane protein gene oprF, in negatively regulating the 2,4-DAPG production by using random mini-Tn5 mutagentsis. A sigma factor gene sigX was located immediately upstream of the oprF gene and shown to be a positive regulator for oprF transcription and 2,4-DAPG production. Genetic analysis of an oprF and sigX double-mutant indicated that the 2,4-DAPG regulation by oprF was dependent on SigX. The sigX gene did not affect PhlA and PhlD expression, but positively regulated the level of malonyl-CoA, the substrate of 2,4-DAPG synthesis, by influencing the expression of acetyl-CoA carboxylases. Further investigations revealed that sigX transcription was induced under conditions of salt starvation or glycine addition. All these findings indicate that SigX is a novel regulator of substrate supplements for 2,4-DAPG production.


Asunto(s)
Antibacterianos/metabolismo , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica/genética , Proteínas de la Membrana/genética , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Factor sigma/genética , Acetil-CoA Carboxilasa/metabolismo , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Mapeo Cromosómico , ADN Bacteriano , Escherichia coli/genética , Perfilación de la Expresión Génica , Genes Bacterianos/genética , Vectores Genéticos , Proteínas de la Membrana/metabolismo , Mutación , Fenotipo , Floroglucinol/análogos & derivados , Floroglucinol/metabolismo , Biosíntesis de Proteínas , Pseudomonas fluorescens/crecimiento & desarrollo , Rhizoctonia , Factor sigma/metabolismo , Transcripción Genética , Activación Transcripcional
20.
Appl Environ Microbiol ; 83(21)2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28821548

RESUMEN

Certain strains of biocontrol bacterium Pseudomonas fluorescens produce the secondary metabolite 2,4-diacetylphloroglucinol (2,4-DAPG) to antagonize soilborne phytopathogens in the rhizosphere. The gene cluster responsible for the biosynthesis of 2,4-DAPG is named phlACBDEFGH and it is still unclear how the pathway-specific regulator phlH within this gene cluster regulates the metabolism of 2,4-DAPG. Here, we found that PhlH in Pseudomonas fluorescens strain 2P24 represses the expression of the phlG gene encoding the 2,4-DAPG hydrolase by binding to a sequence motif overlapping with the -35 site recognized by σ70 factors. Through biochemical screening of PhlH ligands we identified the end product 2,4-DAPG and its biosynthetic intermediate monoacetylphloroglucinol (MAPG), which can act as signaling molecules to modulate the binding of PhlH to the target sequence and activate the expression of phlG Comparison of 2,4-DAPG production between the ΔphlH, ΔphlG, and ΔphlHG mutants confirmed that phlH and phlG impose negative feedback regulation over 2,4-DAPG biosynthesis. It was further demonstrated that the 2,4-DAPG degradation catalyzed by PhlG plays an insignificant role in 2,4-DAPG tolerance but contributes to bacterial growth advantages under carbon/nitrogen starvation conditions. Taken together, our data suggest that by monitoring and down-tuning in situ levels of 2,4-DAPG, the phlHG genes could dynamically modulate the metabolic loads attributed to 2,4-DAPG production and potentially contribute to rhizosphere adaptation.IMPORTANCE 2,4-DAPG, which is synthesized by biocontrol pseudomonad bacteria, is a broad-spectrum antibiotic against bacteria, fungi, oomycetes, and nematodes and plays an important role in suppressing soilborne plant pathogens. Although most of the genes in the 2,4-DAPG biosynthetic gene cluster (phl) have been characterized, it is still not clear how the pathway-specific regulator phlH is involved in 2,4-DAPG metabolism. This work revealed the role of PhlH in modulating 2,4-DAPG levels by controlling the expression of 2,4-DAPG hydrolase PhlG in response to 2,4-DAPG and MAPG. Since 2,4-DAPG biosynthesis imposes a metabolic burden on biocontrol pseudomonads, it is expected that the fine regulation of phlG by PhlH offers a way to dynamically modulate the metabolic loads attributed to 2,4-DAPG production.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Floroglucinol/análogos & derivados , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Factores de Transcripción/metabolismo , Proteínas Bacterianas/genética , Vías Biosintéticas , Hidrolasas/genética , Hidrolasas/metabolismo , Floroglucinol/metabolismo , Pseudomonas fluorescens/enzimología , Factores de Transcripción/genética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA