Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 17(8): e0272345, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36001538

RESUMEN

Following the 2010 Deepwater Horizon disaster and subsequent unusual mortality event, adverse health impacts have been reported in bottlenose dolphins in Barataria Bay, LA including impaired stress response and reproductive, pulmonary, cardiac, and immune function. These conditions were primarily diagnosed through hands-on veterinary examinations and analysis of standard diagnostic panels. In human and veterinary medicine, gene expression profiling has been used to identify molecular mechanisms underlying toxic responses and disease states. Identification of molecular markers of exposure or disease may enable earlier detection of health effects or allow for health evaluation when the use of specialized methodologies is not feasible. To date this powerful tool has not been applied to augment the veterinary data collected concurrently during dolphin health assessments. This study examined transcriptomic profiles of blood from 76 dolphins sampled in health assessments during 2013-2018 in the waters near Barataria Bay, LA and Sarasota Bay, FL. Gene expression was analyzed in conjunction with the substantial suite of health data collected using principal component analysis, differential expression testing, over-representation analysis, and weighted gene co-expression network analysis. Broadly, transcript profiles of Barataria Bay dolphins indicated a shift in immune response, cytoskeletal alterations, and mitochondrial dysfunction, most pronounced in dolphins likely exposed to Deepwater Horizon oiling. While gene expression profiles in Barataria Bay dolphins were altered compared to Sarasota Bay for all years, profiles from 2013 exhibited the greatest alteration in gene expression. Differentially expressed transcripts included genes involved in immunity, inflammation, reproductive failure, and lung or cardiac dysfunction, all of which have been documented in dolphins from Barataria Bay following the Deepwater Horizon oil spill. The genes and pathways identified in this study may, with additional research and validation, prove useful as molecular markers of exposure or disease to assist wildlife veterinarians in evaluating the health of dolphins and other cetaceans.


Asunto(s)
Delfín Mular , Delfín Común , Contaminación por Petróleo , Animales , Delfín Mular/genética , Delfín Mular/metabolismo , Perfilación de la Expresión Génica/veterinaria , Golfo de México , Humanos , Contaminación por Petróleo/efectos adversos
2.
Environ Toxicol Chem ; 40(5): 1308-1321, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33598929

RESUMEN

Health assessments were conducted on bottlenose dolphins in Barataria Bay, Louisiana, USA, during 2011 to 2018, to assess potential health effects following the Deepwater Horizon oil spill, compared to the unoiled Sarasota Bay, Florida, USA, reference dolphin population. We previously reported significant increases in T-lymphocyte proliferation, as well as lower T helper 1 (Th1) cytokines, higher Th2 cytokine IL-4, and lower T regulatory (Treg) cytokine IL-10 in Barataria Bay in 2011 compared to Sarasota Bay, consistent with Deepwater Horizon oil exposure. Although values between 2013 and 2016 were more similar to those observed in Sarasota Bay, T-cell proliferation was again elevated and cytokine balance tilted toward Th2 in Barataria Bay during 2017-2018. In 2018, Barataria Bay dolphins had significantly more circulating Treg cells than Sarasota Bay dolphins. Mice experimentally exposed to oil also had significantly increased T-lymphocyte proliferation and circulating Treg cell number, including effects in their unexposed progeny. In vitro stimulation resulted in greater Th2 responsiveness in Barataria Bay compared to Sarasota Bay dolphins, and in vitro oil exposure of Sarasota Bay dolphin cells also resulted in enhanced Th2 responsiveness. Evidence points to Treg cells as a potential target for the immunomodulatory effects of oil exposure. The immunological trends observed in Barataria Bay appeared exaggerated in dolphins born after the spill, suggesting the possibility of continued oil exposure or multigenerational health consequences of exposure to oil, as observed in mice. Environ Toxicol Chem 2021;40:1308-1321. © 2021 SETAC.


Asunto(s)
Delfín Mular , Contaminación por Petróleo , Animales , Florida , Golfo de México , Louisiana , Ratones
3.
Viruses ; 6(12): 5145-81, 2014 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-25533660

RESUMEN

We review the molecular and epidemiological characteristics of cetacean morbillivirus (CeMV) and the diagnosis and pathogenesis of associated disease, with six different strains detected in cetaceans worldwide. CeMV has caused epidemics with high mortality in odontocetes in Europe, the USA and Australia. It represents a distinct species within the Morbillivirus genus. Although most CeMV strains are phylogenetically closely related, recent data indicate that morbilliviruses recovered from Indo-Pacific bottlenose dolphins (Tursiops aduncus), from Western Australia, and a Guiana dolphin (Sotalia guianensis), from Brazil, are divergent. The signaling lymphocyte activation molecule (SLAM) cell receptor for CeMV has been characterized in cetaceans. It shares higher amino acid identity with the ruminant SLAM than with the receptors of carnivores or humans, reflecting the evolutionary history of these mammalian taxa. In Delphinidae, three amino acid substitutions may result in a higher affinity for the virus. Infection is diagnosed by histology, immunohistochemistry, virus isolation, RT-PCR, and serology. Classical CeMV-associated lesions include bronchointerstitial pneumonia, encephalitis, syncytia, and lymphoid depletion associated with immunosuppression. Cetaceans that survive the acute disease may develop fatal secondary infections and chronic encephalitis. Endemically infected, gregarious odontocetes probably serve as reservoirs and vectors. Transmission likely occurs through the inhalation of aerosolized virus but mother to fetus transmission was also reported.


Asunto(s)
Cetáceos/virología , Infecciones por Morbillivirus/veterinaria , Morbillivirus/fisiología , Animales , Morbillivirus/clasificación , Morbillivirus/genética , Morbillivirus/aislamiento & purificación , Infecciones por Morbillivirus/transmisión , Infecciones por Morbillivirus/virología , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA