Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Front Cell Dev Biol ; 12: 1336392, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737127

RESUMEN

Human-induced airway basal cells (hiBCs) derived from human-induced pluripotent stem cells (hiPSCs) offer a promising cell model for studying lung diseases, regenerative medicine, and developing new gene therapy methods. We analyzed existing differentiation protocols and proposed our own protocol for obtaining hiBCs, which involves step-by-step differentiation of hiPSCs into definitive endoderm, anterior foregut endoderm, NKX2.1+ lung progenitors, and cultivation on basal cell medium with subsequent cell sorting using the surface marker CD271 (NGFR). We derived hiBCs from two healthy cell lines and three cell lines with cystic fibrosis (CF). The obtained hiBCs, expressing basal cell markers (NGFR, KRT5, and TP63), could differentiate into lung organoids (LOs). We demonstrated that LOs derived from hiBCs can assess cystic fibrosis transmembrane conductance regulator (CFTR) channel function using the forskolin-induced swelling (FIS) assay. We also carried out non-viral (electroporation) and viral (recombinant adeno-associated virus (rAAV)) serotypes 6 and 9 and recombinant adenovirus (rAdV) serotype 5 transgene delivery to hiBCs and showed that rAAV serotype 6 is most effective against hiBCs, potentially applicable for gene therapy research.

3.
Cardiovasc Diabetol ; 23(1): 50, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302978

RESUMEN

BACKGROUND: Diabetes mellitus is a chronic disease which is detrimental to cardiovascular health, often leading to secondary microvascular complications, with huge global health implications. Therapeutic interventions that can be applied to multiple vascular beds are urgently needed. Diabetic retinopathy (DR) and diabetic kidney disease (DKD) are characterised by early microvascular permeability changes which, if left untreated, lead to visual impairment and renal failure, respectively. The heparan sulphate cleaving enzyme, heparanase, has previously been shown to contribute to diabetic microvascular complications, but the common underlying mechanism which results in microvascular dysfunction in conditions such as DR and DKD has not been determined. METHODS: In this study, two mouse models of heparan sulphate depletion (enzymatic removal and genetic ablation by endothelial specific Exotosin-1 knock down) were utilized to investigate the impact of endothelial cell surface (i.e., endothelial glycocalyx) heparan sulphate loss on microvascular barrier function. Endothelial glycocalyx changes were measured using fluorescence microscopy or transmission electron microscopy. To measure the impact on barrier function, we used sodium fluorescein angiography in the eye and a glomerular albumin permeability assay in the kidney. A type 2 diabetic (T2D, db/db) mouse model was used to determine the therapeutic potential of preventing heparan sulphate damage using treatment with a novel heparanase inhibitor, OVZ/HS-1638. Endothelial glycocalyx changes were measured as above, and microvascular barrier function assessed by albumin extravasation in the eye and a glomerular permeability assay in the kidney. RESULTS: In both models of heparan sulphate depletion, endothelial glycocalyx depth was reduced and retinal solute flux and glomerular albumin permeability was increased. T2D mice treated with OVZ/HS-1638 had improved endothelial glycocalyx measurements compared to vehicle treated T2D mice and were simultaneously protected from microvascular permeability changes associated with DR and DKD. CONCLUSION: We demonstrate that endothelial glycocalyx heparan sulphate plays a common mechanistic role in microvascular barrier function in the eye and kidney. Protecting the endothelial glycocalyx damage in diabetes, using the novel heparanase inhibitor OVZ/HS-1638, effectively prevents microvascular permeability changes associated with DR and DKD, demonstrating a novel systemic approach to address diabetic microvascular complications.


Asunto(s)
Diabetes Mellitus Tipo 2 , Angiopatías Diabéticas , Nefropatías Diabéticas , Glucuronidasa , Animales , Ratones , Glicocálix/metabolismo , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/prevención & control , Heparitina Sulfato/metabolismo , Heparitina Sulfato/farmacología , Albúminas/farmacología , Angiopatías Diabéticas/etiología , Angiopatías Diabéticas/prevención & control , Angiopatías Diabéticas/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo
4.
Angew Chem Int Ed Engl ; 63(13): e202316791, 2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38308859

RESUMEN

Heparin and heparan sulfate (HS) are naturally occurring mammalian glycosaminoglycans, and their synthetic and semi-synthetic mimetics have attracted significant interest as potential therapeutics. However, understanding the mechanism of action by which HS, heparin, and HS mimetics have a biological effect is difficult due to their highly charged nature, broad protein interactomes, and variable structures. To address this, a library of novel single-entity dendritic mimetics conjugated to BODIPY, Fluorine-19 (19 F), and biotin was synthesized for imaging and localization studies. The novel dendritic scaffold allowed for the conjugation of labeling moieties without reducing the number of sulfated capping groups, thereby better mimicking the multivalent nature of HS-protein interactions. The 19 F labeled mimetics were assessed in phantom studies and were detected at concentrations as low as 5 mM. Flow cytometric studies using a fluorescently labeled mimetic showed that the compound associated with immune cells from tumors more readily than splenic counterparts and was directed to endosomal-lysosomal compartments within immune cells and cancer cells. Furthermore, the fluorescently labeled mimetic entered the central nervous system and was detectable in brain-infiltrating immune cells 24 hours after treatment. Here, we report the enabling methodology for rapidly preparing various labeled HS mimetics and molecular probes with diverse potential therapeutic applications.


Asunto(s)
Biotina , Compuestos de Boro , Heparitina Sulfato , Animales , Heparitina Sulfato/química , Glicosaminoglicanos/metabolismo , Heparina/metabolismo , Mamíferos/metabolismo
5.
J Neuroinflammation ; 20(1): 251, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37915090

RESUMEN

BACKGROUND: Disruption of the extracellular matrix at the blood-brain barrier (BBB) underpins neuroinflammation in multiple sclerosis (MS). The degradation of extracellular matrix components, such as heparan sulfate (HS) proteoglycans, can be prevented by treatment with HS-mimetics through their ability to inhibit the enzyme heparanase. The heparanase-inhibiting ability of our small dendrimer HS-mimetics has been investigated in various cancers but their efficacy in neuroinflammatory models has not been evaluated. This study investigates the use of a novel HS-mimetic, Tet-29, in an animal model of MS. METHODS: Neuroinflammation was induced in mice by experimental autoimmune encephalomyelitis, a murine model of MS. In addition, the BBB and choroid plexus were modelled in vitro using transmigration assays, and migration of immune cells in vivo and in vitro was quantified by flow cytometry. RESULTS: We found that Tet-29 significantly reduced lymphocyte accumulation in the central nervous system which, in turn, decreased disease severity in experimental autoimmune encephalomyelitis. The disease-modifying effect of Tet-29 was associated with a rescue of BBB integrity, as well as inhibition of activated lymphocyte migration across the BBB and choroid plexus in transwell models. In contrast, Tet-29 did not significantly impair in vivo or in vitro steady state-trafficking under homeostatic conditions. CONCLUSIONS: Together these results suggest that Tet-29 modulates, rather than abolishes, trafficking across central nervous system barriers.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Ratones , Animales , Encefalomielitis Autoinmune Experimental/metabolismo , Enfermedades Neuroinflamatorias , Sistema Nervioso Central/metabolismo , Barrera Hematoencefálica/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Ratones Endogámicos C57BL
6.
Front Immunol ; 14: 1228461, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37600800

RESUMEN

To protect young individuals against SARS-CoV-2 infection, we conducted an open-label, prospective, non-randomised dose-escalation Phase 1/2 clinical trial to evaluate the immunogenicity and safety of the prime-boost "Sputnik V" vaccine administered at 1/10 and 1/5 doses to adolescents aged 12-17 years. The study began with the vaccination of the older cohort (15-to-17-year-old participants) with the lower (1/10) dose of vaccine and then expanded to the whole group (12-to-17-year-old participants). Next, 1/5 dose was used according to the same scheme. Both doses were well tolerated by all age groups. No serious or severe adverse events were detected. Most of the solicited adverse reactions were mild. No significant differences in total frequencies of adverse events were registered between low and high doses in age-pooled groups (69.6% versus 66.7%). In contrast, the 1/5 dose induced significantly higher humoral and T cell-mediated immune responses than the 1/10 dose. The 1/5 vaccine dose elicited higher antigen-binding (both S and RBD-specific) as well as virus-neutralising antibody titres at the maximum of response (day 42), also resulting in a statistically significant difference at a distanced timepoint (day 180) compared to the 1/10 vaccine dose. Higher dose resulted in increased cross-neutralization of Delta and Omicron variants. Clinical Trial Registration: ClinicalTrials.gov, NCT04954092, LP-007632.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Adolescente , Niño , Humanos , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Estudios Prospectivos , SARS-CoV-2
7.
Front Immunol ; 13: 1023164, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466896

RESUMEN

WHO has declared the outbreak of monkeypox as a public health emergency of international concern. In less than three months, monkeypox was detected in more than 30 000 people and spread to more than 80 countries around the world. It is believed that the immunity formed to smallpox vaccine can protect from monkeypox infection with high efficiency. The widespread use of Vaccinia virus has not been carried out since the 1980s, which raises the question of the level of residual immunity among the population and the identification of groups requiring priority vaccination. We conducted a cross-sectional serological study of remaining immunity among Moscow residents. To do this, a collection of blood serum samples of age group over 30 years old was formed, an in-house ELISA test system was developed, and a virus neutralization protocol was set up. Serum samples were examined for the presence of IgG antibodies against Vaccinia virus (n=2908), as well as for the ability to neutralize plaque formation with a Vaccinia virus MNIIVP-10 strain (n=299). The results indicate the presence of neutralizing antibody titer of 1/20 or more in 33.3 to 53.2% of people older than 45 years. Among people 30-45 years old who probably have not been vaccinated, the proportion with virus neutralizing antibodies ranged from 3.2 to 6.7%. Despite the higher level of antibodies in age group older than 66 years, the proportion of positive samples in this group was slightly lower than in people aged 46-65 years. The results indicate the priority of vaccination in groups younger than 45, and possibly older than 66 years to ensure the protection of the population in case of spread of monkeypox among Moscow residents. The herd immunity level needed to stop the circulation of the virus should be at least 50.25 - 65.28%.


Asunto(s)
Enfermedades Transmisibles , Mpox , Orthopoxvirus , Humanos , Adulto , Persona de Mediana Edad , Monkeypox virus , Estudios Transversales , Moscú/epidemiología , Virus Vaccinia , Anticuerpos Neutralizantes
8.
Viruses ; 14(11)2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36366583

RESUMEN

The continued evolution of influenza viruses reduces the effectiveness of vaccination and antiviral drugs. The identification of novel and universal agents for influenza prophylaxis and treatment is an urgent need. We have previously described two potent single-domain antibodies (VHH), G2.3 and H1.2, which bind to the stem domain of hemagglutinin and efficiently neutralize H1N1 and H5N2 influenza viruses in vivo. In this study, we modified these VHHs with Fc-fragment to enhance their antiviral activity. Reformatting of G2.3 into bivalent Fc-fusion molecule increased its in vitro neutralizing activity against H1N1 and H2N3 viruses up to 80-fold and, moreover, resulted in obtaining the ability to neutralize H5N2 and H9N2 subtypes. We demonstrated that a dose as low as 0.6 mg/kg of G2.3-Fc or H1.2-Fc administered systemically or locally before infection could protect mice from lethal challenges with both H1N1 and H5N2 viruses. Furthermore, G2.3-Fc reduced the lung viral load to an undetectable level. Both VHH-Fc antibodies showed in vivo therapeutic efficacy when delivered via systemic or local route. The findings support G2.3-Fc as a potential therapeutic agent for both prophylaxis and therapy of Group 1 influenza A infection.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Subtipo H5N2 del Virus de la Influenza A , Subtipo H9N2 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Anticuerpos de Dominio Único , Ratones , Animales , Humanos , Gripe Humana/prevención & control , Hemaglutininas , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Antivirales/uso terapéutico , Glicoproteínas Hemaglutininas del Virus de la Influenza
9.
Emerg Microbes Infect ; 11(1): 2229-2247, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36031930

RESUMEN

Although unprecedented efforts aiming to stop the COVID-19 pandemic have been made over the past two years, SARSCoV-2 virus still continues to cause intolerable health and economical losses. Vaccines are considered the most effective way to prevent infectious diseases, which has been reaffirmed for COVID-19. However, in the context of the continuing virus spread because of insufficient vaccination coverage and emergence of new variants of concern, there is a high demand for vaccination strategy amendment. The ability to elicit protective immunity at the entry gates of infection provided by mucosal vaccination is key to block virus infection and transmission. Therefore, these mucosal vaccines are believed to be a "silver bullet" that could bring the pandemic to an end. Here, we demonstrate that the intranasally delivered Gam-COVID-Vac (Sputnik V) vaccine induced a robust (no less than 180 days) systemic and local immune response in mice. High immunogenic properties of the vaccine were verified in non-human primates (common marmosets) by marked IgG and neutralizing antibody (NtAb) production in blood serum, antigen-specific Tcell proliferation and cytokine release of peripheral blood mononuclear cells accompanied by formation of IgA antibodies in the nasal mucosa. We also demonstrate that Sputnik V vaccine can provide sterilizing immunity in K18-hACE2 transgenic mice exposed to experimental lethal SARS-CoV-2 infection protecting them against severe lung immunopathology and mortality. We believe that intranasal Sputnik V vaccine is a promising novel needle-free mucosal vaccine candidate for primary immunization as well as for revaccination and is worth further clinical investigation.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Citocinas , Humanos , Inmunogenicidad Vacunal , Inmunoglobulina A , Inmunoglobulina G , Leucocitos Mononucleares , Ratones , Pandemias/prevención & control , Primates , SARS-CoV-2/genética
10.
Materials (Basel) ; 15(12)2022 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-35744394

RESUMEN

The article is devoted to the study of the influence of residual sulfuric and phosphoric acids on the process of processing large-tonnage phosphogypsum (PG) waste into calcium carbonate. In the Russian Federation, about 10 percent of existing phosphogypsum waste is processed into construction materials. Acidic impurities (phosphoric and sulfuric acids) in their composition are an obstacle to the use of phosphogypsum for the production of binders. This study finds that impurities also reduce the chemical activity of phosphogypsum. At the same time, the paper focuses on the potential of phosphogypsum for the production of calcium carbonate. This article investigated the amount of impurities in phosphogypsum. The results show that during automatic washing of phosphogypsum, losses are approximately 30-35 wt. %. It was also found that phosphogypsum by 22% consists of impurities of phosphoric and sulfuric acid. These acids are characteristic waste products of extraction phosphoric acid (EPA) production. By ASTM C471M-20ae1, the content of calcium sulfate dehydrate and hemihydrate before and after washing was determined. A thermodynamic calculation of the proposed interaction of phosphogypsum with carbonates showed that the characteristic reaction is possible. The conversion process of phosphogypsum to get the corresponding calcium carbonate was carried out at 70 °C. Data on the chemical composition of the reaction products, obtained by X-ray fluorescence analysis on a Shimadzu EDX-7000 spectrometer, showed that some reactions proceed incompletely and need the selection of optimal conditions. The potential commercial benefits of processing phosphogypsum by carbonization were defined for products such as calcium carbonate or its derivatives.

11.
Int J Mol Sci ; 23(9)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35563207

RESUMEN

Stroke-induced cognitive impairments remain of significant concern, with very few treatment options available. The involvement of glycosaminoglycans in neuroregenerative processes is becoming better understood and recent advancements in technology have allowed for cost-effective synthesis of novel glycomimetics. The current study evaluated the therapeutic potential of two novel glycomimetics, compound A and G, when administered systemically five-days post-photothrombotic stroke to the PFC. As glycosaminoglycans are thought to facilitate growth factor function, we also investigated the combination of our glycomimetics with intracerebral, recombinant human brain-derived neurotrophic factor (rhBDNF). C56BL/6J mice received sham or stroke surgery and experimental treatment (day-5), before undergoing the object location recognition task (OLRT). Four-weeks post-surgery, animals received prelimbic injections of the retrograde tracer cholera toxin B (CTB), before tissue was collected for quantification of thalamo-PFC connectivity and reactive astrogliosis. Compound A or G treatment alone modulated a degree of reactive astrogliosis yet did not influence spatial memory performance. Contrastingly, compound G+rhBDNF treatment significantly improved spatial memory, dampened reactive astrogliosis and limited stroke-induced loss of connectivity between the PFC and midline thalamus. As rhBDNF treatment had negligible effects, these findings support compound A acted synergistically to enhance rhBDNF to restrict secondary degeneration and facilitate functional recovery after PFC stroke.


Asunto(s)
Memoria Espacial , Accidente Cerebrovascular , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Gliosis/complicaciones , Glicosaminoglicanos , Ratones , Accidente Cerebrovascular/complicaciones
12.
Vaccines (Basel) ; 10(5)2022 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-35632574

RESUMEN

The new Omicron variant of SARS-CoV-2, first identified in November 2021, is rapidly spreading all around the world. Omicron has become the dominant variant of SARS-CoV-2. There are many ongoing studies evaluating the effectiveness of existing vaccines. Studies on the neutralizing activity of vaccinated sera against the Omicron variant are currently being carried out in many laboratories. In this study, we have shown the neutralizing activity of sera against the SARS-CoV-2 Omicron variant compared to the reference Wuhan D614G variant in individuals vaccinated with two doses of Sputnik V up to 6 months after vaccination and in individuals who experienced SARS-CoV-2 infection either before or after vaccination. As a control to our study we also measured neutralizing antibody titers in individuals vaccinated with two doses of BNT162b2. The decrease in NtAb titers to the Omicron variant was 8.1-fold for the group of Sputnik V-vaccinated individuals. When the samples were stratified for the time period after vaccination, a 7.6-fold or 8.8-fold decrease in NtAb titers was noticed after up to 3 and 3-to-6 months after vaccination. We observed a 6.7- and 5-fold decrease in Sputnik V-vaccinated individuals experiencing asymptomatic or symptomatic infection, respectively. These results highlight the observation that the decrease in NtAb to the SARS-CoV-2 Omicron variant compared to the Wuhan variant occurs for different COVID-19 vaccines in use, with some showing no neutralization at all, confirming the necessity of a third booster vaccination.

13.
Chem Asian J ; 17(12): e202200228, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35427432

RESUMEN

Heparan sulfate (HS) is a highly sulfated natural carbohydrate that plays crucial roles in cancer, inflammation, and angiogenesis. Heparanase (HPSE) is the sole HS degrading endoglycosidase that cleaves HS at structure-dependent sites along the polysaccharide chain. Overexpression of HPSE by cancer cells correlates with increased tumor size and enhanced metastasis. Previously we have shown that a tetramer HS mimetic is a potent HPSE inhibitor displaying remarkable anticancer activity in vivo. Building on that work, we report the synthesis and testing of a novel library of single entity trimer glycolipid mimetics that effectively inhibit HPSE at low nanomolar concentrations. A lipophilic arm was introduced to assess whether an improvement of pharmacokinetics and plasma residence time would offset the reduction in charge and multivalency. Preclinical tests in a mouse syngeneic model showed effective tumor growth inhibition by the tetramer but not the trimer glycomimetic.


Asunto(s)
Neoplasias Colorrectales , Glucolípidos , Animales , Neoplasias Colorrectales/tratamiento farmacológico , Glucolípidos/farmacología , Heparitina Sulfato/farmacología , Ratones , Neovascularización Patológica
14.
Front Immunol ; 13: 822159, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35281053

RESUMEN

Virus-neutralizing antibodies are one of the few treatment options for COVID-19. The evolution of SARS-CoV-2 virus has led to the emergence of virus variants with reduced sensitivity to some antibody-based therapies. The development of potent antibodies with a broad spectrum of neutralizing activity is urgently needed. Here we isolated a panel of single-domain antibodies that specifically bind to the receptor-binding domain of SARS-CoV-2 S glycoprotein. Three of the selected antibodies exhibiting most robust neutralization potency were used to generate dimeric molecules. We observed that these modifications resulted in up to a 200-fold increase in neutralizing activity. The most potent heterodimeric molecule efficiently neutralized each of SARS-CoV-2 variant of concern, including Alpha, Beta, Gamma, Delta and Omicron variants. This heterodimeric molecule could be a promising drug candidate for a treatment for COVID-19 caused by virus variants of concern.


Asunto(s)
Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , COVID-19/inmunología , SARS-CoV-2/fisiología , Anticuerpos de Dominio Único/metabolismo , Epítopos/inmunología , Humanos , Pruebas de Neutralización , Anticuerpos de Dominio Único/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
15.
J Vis Exp ; (178)2021 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-34958079

RESUMEN

The iPSC-derived brain organoid is a promising technology for in vitro modeling the pathologies of the nervous system and drug screening. This technology has emerged recently. It is still in its infancy and has some limitations unsolved yet. The current protocols do not allow obtaining organoids to be consistent enough for drug discovery and preclinical studies. The maturation of organoids can take up to a year, pushing the researchers to launch multiple differentiation processes simultaneously. It imposes additional costs for the laboratory in terms of space and equipment. In addition, brain organoids often have a necrotic zone in the center, which suffers from nutrient and oxygen deficiency. Hence, most current protocols use a circulating system for culture medium to improve nutrition. Meanwhile, there are no inexpensive dynamic systems or bioreactors for organoid cultivation. This paper describes a protocol for producing brain organoids in compact and inexpensive home-made mini bioreactors. This protocol allows obtaining high quality organoids in large quantities.


Asunto(s)
Células Madre Pluripotentes Inducidas , Organoides , Reactores Biológicos , Encéfalo , Diferenciación Celular
16.
Lancet Reg Health Eur ; 11: 100241, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34746910

RESUMEN

BACKGROUND: While the world is experiencing another wave of COVID-19 pandemic, global vaccination program is hampered by an evident shortage in the supply of licensed vaccines. In an effort to satisfy vaccine demands we developed a new single-dose vaccine based on recombinant adenovirus type 26 (rAd26) vector carrying the gene for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) glycoprotein - "Sputnik Light". METHODS: We conducted an open label, prospective, non-randomised phase 1/2 trial aimed to assess safety, tolerability, and immunogenicity of "Sputnik Light" vaccine in a single center in Russia. Primary outcome measures were antigen-specific humoral immunity (Anti-RBD-SARS-CoV-2 antibodies measured by ELISA on days 1, 10, 28, and 42) and safety (number of participants with adverse events monitored throughout the study). Secondary outcome measures were antigen-specific cellular immunity (measured by antigen-dependent CD4+ and CD8+ T-cell proliferation, number of antigen-specific interferon-γ-producing cells as well as interferon-γ concentration upon antigen restimulation) and change in neutralizing antibodies (measured in SARS-CoV-2 neutralization assay). FINDINGS: Most of the solicited adverse reactions were mild (66·4% from all vaccinees), few were moderate (5·5%). No serious adverse events were detected. Assessment of Anti-RBD-SARS-CoV-2 antibodies revealed a group with pre-existing immunity to SARS-CoV-2. Upon this finding we separated all safety and immunogenicity data based on pre-existing immunity to SARS-CoV-2. There were notable differences in the vaccine effects on immunogenicity by the groups. Vaccination of seropositive (N=14) volunteers rapidly boosted RBD-specific IgGs from reciprocal geometric mean titer (​GMT) 594·4 at a baseline up to 26899 comparing to 29·09 in seronegative group (N=96) by day 10. By day 42 seroconversion rate reached 100% (93/93) in seronegative group with GMT 1648. At the same time, in the seropositive group, seroconversion rate by day 42 was 92·9% (13/14) with GMT 19986. Analysis of neutralizing antibodies to SARS-CoV-2 showed 81·7% (76/93) and 92·9% (13/14) seroconversion rates by day 42 with median reciprocal GMT 15·18 and 579·7 in the seronegative and seropositive groups, respectively. Antigen-specific T cell proliferation, formation of IFNy-producing cells, and IFNy secretion were observed in 96·7% (26/27), 96% (24/25), and 96% (24/25) of the seronegative group respectively and in 100% (3/3), 100% (5/5), and 100% (5/5) of the seropositive vaccinees, respectively. INTERPRETATION: The single-dose rAd26 vector-based COVID-19 vaccine "Sputnik Light" has a good safety profile and induces a strong humoral and cellular immune responses both in seronegative and seropositive participants. FUNDING: Russian Direct Investment Fund.

17.
ACS Med Chem Lett ; 12(9): 1486-1492, 2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34531957

RESUMEN

A significant proportion of genetic disease cases arise from truncation of proteins caused by premature termination codons. In eukaryotic cells some aminoglycosides cause readthrough of premature termination codons during protein translation. Inducing readthrough of these codons can potentially be of therapeutic value in the treatment of numerous genetic diseases. A significant drawback to the repeated use of aminoglycosides as treatments is the lack of balance between their readthrough efficacy and toxicity. The synthesis and biological testing of designer aminoglycoside compounds is documented herein. We disclose the implementation of a strategy to reduce cellular toxicity and maintain readthrough activity of a library of compounds by modification of the overall cationic charge of the aminoglycoside scaffold through ring I modifications.

18.
Vaccines (Basel) ; 9(7)2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-34358195

RESUMEN

Since the beginning of the 2021 year, all the main six vaccines against COVID-19 have been used in mass vaccination companies around the world. Virus neutralization and epidemiological efficacy drop obtained for several vaccines against the B.1.1.7, B.1.351 P.1, and B.1.617 genotypes are of concern. There is a growing number of reports on mutations in receptor-binding domain (RBD) increasing the transmissibility of the virus and escaping the neutralizing effect of antibodies. The Sputnik V vaccine is currently approved for use in more than 66 countries but its activity against variants of concern (VOC) is not extensively studied yet. Virus-neutralizing activity (VNA) of sera obtained from people vaccinated with Sputnik V in relation to internationally relevant genetic lineages B.1.1.7, B.1.351, P.1, B.1.617.2, B.1.617.3 and Moscow endemic variants B.1.1.141 (T385I) and B.1.1.317 (S477N, A522S) with mutations in the RBD domain has been assessed. The data obtained indicate no significant differences in VNA against B.1.1.7, B.1.617.3 and local genetic lineages B.1.1.141 (T385I), B.1.1.317 (S477N, A522S) with RBD mutations. For the B.1.351, P.1, and B.1.617.2 statistically significant 3.1-, 2.8-, and 2.5-fold, respectively, VNA reduction was observed. Notably, this decrease is lower than that reported in publications for other vaccines. However, a direct comparative study is necessary for a conclusion. Thus, sera from "Sputnik V"-vaccinated retain neutralizing activity against VOC B.1.1.7, B.1.351, P.1, B.1.617.2, B.1.617.3 as well as local genetic lineages B.1.1.141 and B.1.1.317 circulating in Moscow.

19.
Biochimie ; 191: 27-32, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34389380

RESUMEN

In the search for anti-SARS-CoV-2 drugs, much attention is given to safe and widely available native compounds. The green tea component epigallocatechin 3 gallate (EGCG) is particularly promising because it reportedly inhibits viral replication and viral entry in vitro. However, conclusive evidence for its predominant activity is needed. We tested EGCG effects on the native virus isolated from COVID-19 patients in two independent series of experiments using VERO cells and two different treatment schemes in each series. The results confirmed modest cytotoxicity of EGCG and its substantial antiviral activity. The preincubation scheme aimed at infection prevention has proven particularly beneficial. We complemented that finding with a detailed investigation of EGCG interactions with viral S-protein subunits, including S2, RBD, and the RBD mutant harboring the N501Y mutation. Molecular modeling experiments revealed N501Y-specific stacking interactions in the RBD-ACE2 complex and provided insight into EGCG interference with the complex formation. Together, these findings provide a molecular basis for the observed EGCG effects and reinforce its prospects in COVID-19 prevention therapy.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Catequina/análogos & derivados , Mutación , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , Animales , Catequina/farmacología , Chlorocebus aethiops , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , SARS-CoV-2/química , Células Vero , Proteínas Virales/química , Proteínas Virales/metabolismo , Internalización del Virus/efectos de los fármacos
20.
Lancet ; 397(10275): 671-681, 2021 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-33545094

RESUMEN

BACKGROUND: A heterologous recombinant adenovirus (rAd)-based vaccine, Gam-COVID-Vac (Sputnik V), showed a good safety profile and induced strong humoral and cellular immune responses in participants in phase 1/2 clinical trials. Here, we report preliminary results on the efficacy and safety of Gam-COVID-Vac from the interim analysis of this phase 3 trial. METHODS: We did a randomised, double-blind, placebo-controlled, phase 3 trial at 25 hospitals and polyclinics in Moscow, Russia. We included participants aged at least 18 years, with negative SARS-CoV-2 PCR and IgG and IgM tests, no infectious diseases in the 14 days before enrolment, and no other vaccinations in the 30 days before enrolment. Participants were randomly assigned (3:1) to receive vaccine or placebo, with stratification by age group. Investigators, participants, and all study staff were masked to group assignment. The vaccine was administered (0·5 mL/dose) intramuscularly in a prime-boost regimen: a 21-day interval between the first dose (rAd26) and the second dose (rAd5), both vectors carrying the gene for the full-length SARS-CoV-2 glycoprotein S. The primary outcome was the proportion of participants with PCR-confirmed COVID-19 from day 21 after receiving the first dose. All analyses excluded participants with protocol violations: the primary outcome was assessed in participants who had received two doses of vaccine or placebo, serious adverse events were assessed in all participants who had received at least one dose at the time of database lock, and rare adverse events were assessed in all participants who had received two doses and for whom all available data were verified in the case report form at the time of database lock. The trial is registered at ClinicalTrials.gov (NCT04530396). FINDINGS: Between Sept 7 and Nov 24, 2020, 21 977 adults were randomly assigned to the vaccine group (n=16 501) or the placebo group (n=5476). 19 866 received two doses of vaccine or placebo and were included in the primary outcome analysis. From 21 days after the first dose of vaccine (the day of dose 2), 16 (0·1%) of 14 964 participants in the vaccine group and 62 (1·3%) of 4902 in the placebo group were confirmed to have COVID-19; vaccine efficacy was 91·6% (95% CI 85·6-95·2). Most reported adverse events were grade 1 (7485 [94·0%] of 7966 total events). 45 (0·3%) of 16 427 participants in the vaccine group and 23 (0·4%) of 5435 participants in the placebo group had serious adverse events; none were considered associated with vaccination, with confirmation from the independent data monitoring committee. Four deaths were reported during the study (three [<0·1%] of 16 427 participants in the vaccine group and one [<0·1%] of 5435 participants in the placebo group), none of which were considered related to the vaccine. INTERPRETATION: This interim analysis of the phase 3 trial of Gam-COVID-Vac showed 91·6% efficacy against COVID-19 and was well tolerated in a large cohort. FUNDING: Moscow City Health Department, Russian Direct Investment Fund, and Sberbank.


Asunto(s)
Vacunas contra la COVID-19/efectos adversos , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Vacunas Sintéticas/efectos adversos , Vacunas Sintéticas/inmunología , Adulto , Anticuerpos Antivirales/sangre , COVID-19/inmunología , Método Doble Ciego , Femenino , Humanos , Inmunización Secundaria , Inyecciones Intramusculares , Masculino , Persona de Mediana Edad , Moscú , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA