Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Br J Pharmacol ; 178(6): 1475-1491, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33443775

RESUMEN

BACKGROUND AND PURPOSE: Colorectal cancer is the third most common cancer worldwide. HER2 and HER3 are two members of human epidermal receptor family of tyrosine kinase receptors (RTKs) and associated with poor survival in colorectal cancer. They have been observed as important therapeutic targets in various types of cancer. Corosolic acid, a natural pentacyclic triterpene, has been demonstrated to have a significant anti-cancer activity. However, the target of corosolic acid has not yet been explored. This study aimed to reveal the direct targets of corosolic acid underlying its anti-cancer activities. EXPERIMENTAL APPROACH: The targets of corosolic acid were revealed by the phospho-RTK array, bio-layer interferometry, co-immunoprecipitation, and proximity ligation assay. The inhibitory action of corosolic acid on HER2/HER3 heterodimerization and related downstream signalling were investigated in HCT116 and SW480 cells. In addition, the chemo-preventive effects of corosolic acid were validated in both HCT116 xenograft model and AOM/DSS model. KEY RESULTS: Our results demonstrated that corosolic acid could prevent NRG1-induced HER2/HER3 heterodimerization and suppress the phosphorylation of both HER2 and HER3. Furthermore, HER2 and HER3 could regulate the downstream signalling pathways of RalA/RalBP1/CDK1 and PI3K/Akt/PKA, respectively, resulting in the changes in phosphorylation of Drp1 and mitochondrial dynamics. corosolic acid exhibited anti-cancer activity in both HCT116 xenograft model and AOM/DSS model. CONCLUSIONS AND IMPLICATIONS: Collectively, our results demonstrated corosolic acid directly targeted HER2 and HER3 heterodimerization and inhibited mitochondrial fission via regulating RalA/RalBP1/CDK1 and PI3K/Akt/PKA pathways, revealing a novel mechanism underlying the beneficial effects of corosolic acid on colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , Receptor ErbB-3 , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Humanos , Fosfatidilinositol 3-Quinasas , Receptor ErbB-2 , Triterpenos
2.
Virol Sin ; 27(2): 100-8, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22492001

RESUMEN

Rice stripe virus (RSV) infects rice and is transmitted in a propagative manner by the small brown planthopper. How RSV enters an insect cell to initiate the infection cycle is poorly understood. Sequence analysis revealed that the RSV NSvc2 protein was similar to the membrane glycoproteins of several members in the family Bunyaviridae and might induce cell membrane fusion. To conveniently study the membrane fusion activity of NSvc2, we constructed cell surface display vectors for expressing Nsvc2 on the insect cell surface as the membrane glycoproteins of the enveloped viruses. Our results showed that NSvc2 was successfully expressed and displayed on the surface of insect Sf9 cells. When induced by low pH, the membrane fusion was not observed in the cells that expressed NSvc2. Additionally, the membrane fusion was also not detected when co-expressing Nsvc2 and the viral capsid protein on insect cell surface. Thus, RSV NSvc2 is probably different from the phlebovirus counterparts, which could suggest different functions. RSV might enter insect cells other than by fusion with plasma or endosome membrane.


Asunto(s)
Membrana Celular/virología , Tenuivirus/fisiología , Proteínas Virales/metabolismo , Internalización del Virus , Animales , Línea Celular , Transporte de Proteínas , Spodoptera , Tenuivirus/genética , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA