Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.100
Filtrar
1.
Biomaterials ; 313: 122775, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39241549

RESUMEN

Acute Myocardial Infarction (AMI) has seen rising cases, particularly in younger people, leading to public health concerns. Standard treatments, like coronary artery recanalization, often don't fully repair the heart's microvasculature, risking heart failure. Advances show that Mesenchymal Stromal Cells (MSCs) transplantation improves cardiac function after AMI, but the harsh microenvironment post-AMI impacts cell survival and therapeutic results. MSCs aid heart repair via their membrane proteins and paracrine extracellular vesicles that carry microRNA-125b, which regulates multiple targets, preventing cardiomyocyte death, limiting fibroblast growth, and combating myocardial remodeling after AMI. This study introduces ultrasound-responsive phase-change bionic nanoparticles, leveraging MSCs' natural properties. These particles contain MSC membrane and microRNA-125b, with added macrophage membrane for stability. Using Ultrasound Targeted Microbubble Destruction (UTMD), this method targets the delivery of MSC membrane proteins and microRNA-125b to AMI's inflamed areas. This aims to enhance cardiac function recovery and provide precise, targeted AMI therapy.


Asunto(s)
Células Madre Mesenquimatosas , MicroARNs , Infarto del Miocardio , Nanopartículas , Infarto del Miocardio/terapia , Animales , Nanopartículas/química , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , MicroARNs/metabolismo , MicroARNs/genética , Masculino , Recuperación de la Función , Trasplante de Células Madre Mesenquimatosas/métodos , Humanos , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Ratones , Microburbujas , Ondas Ultrasónicas
2.
Can J Cardiol ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39245340

RESUMEN

BACKGROUND: Optical flow ratio (OFR) is a novel computational fractional flow reserve derived from optical coherence tomography (OCT). However, the impact of combining post-stenting morphology (OCT) and physiology (OFR) remains largely unknown. METHOD: OCT and OFR were analyzed at the independent core laboratory. Target lesion failure (TLF) was defined as the composite of cardiac death, target lesion myocardial infarction and target lesion revascularization. Suboptimal stent deployment was identified with at least one TLF-related OCT or OFR characteristics. RESULTS: A total of 448 ACS patients (459 vessels) were assessed. Stent expansion<80%, MSA<4.5 mm2 and stent edge lipid-rich plaque and OFR<0.90 were independent predictors of TLR (all p value<0.001). Patients with OCT-suboptimal [adjusted hazard ratio (HR): 7.88, 95% CI: 2.73-22.72, p<0.001] or OFR-suboptimal (adjusted HR: 5.78, 95% CI: 2.54-13.14, p<0.001) stent deployment showed significantly higher risk of TLF compared to those with optimal stent deployment with a significant interaction (pinteraction<0.001). OCT and OFR both-suboptimal stent deployment was confirmed as an independent predictor of TLF (adjusted HR: 9.39, 95% CI: 4.25-20.76, p<0.001). CONCLUSION: Combined OCT and OFR conferred an optimal reclassification of stent deployment, which may aid in decision-making regarding a tailored PCI strategy for optimal stent deployment.

3.
Drug Dev Res ; 85(6): e22257, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39245913

RESUMEN

Drug resistance of malignant tumor leads to disease progression be the bottleneck in clinical treatment. Antiangiogenic therapy, which aims to "starve" the tumor by inhibiting angiogenesis, is one of the key strategies in clinical oncology treatments. Recently, dozens of investigational antibody drugs and biosimilars targeting angiogenesis have obtained regulatory approval for the treatment of various malignancies. Moreover, a new generation of bispecific antibodies based on the principle of antiangiogenesis are being advanced for clinical trial to overcome antiangiogenic resistance in tumor treatment or enhance the efficacy of monotherapy. Tumors often develop resistance to antiangiogenesis therapy, presenting as refractory and sometimes even resistant to new therapies, for which there are currently no effective management strategies. Thus, a detailed understanding of the mechanisms mediating resistance to antiangiogenesis antibodies is crucial for improving drug effectiveness and achieving a durable response to antiangiogenic therapy. In this review, we provide a novel perspective on the tumor microenvironment, including antibody structure, tumor stroma, and changes within tumor cells, to analyze the multifactorial reasons underlying resistance to antiangiogenesis antibodies. The review also enumerates biomarkers that indicate resistance and potential strategies for monitoring resistance. Furthermore, based on recent clinical and preclinical studies, we summarize potential strategies and translational clinical trials aimed at overcoming resistance to antiangiogenesis antibodies. This review provides a valuable reference for researchers and clinical practitioners involved in the development of new drugs or therapeutic strategies to overcome antiangiogenesis antibodies resistance.


Asunto(s)
Inhibidores de la Angiogénesis , Resistencia a Antineoplásicos , Neoplasias , Humanos , Inhibidores de la Angiogénesis/uso terapéutico , Inhibidores de la Angiogénesis/farmacología , Neoplasias/tratamiento farmacológico , Microambiente Tumoral/efectos de los fármacos , Biomarcadores de Tumor , Animales , Neovascularización Patológica/tratamiento farmacológico , Anticuerpos Biespecíficos/uso terapéutico , Anticuerpos Biespecíficos/farmacología
4.
J Evid Based Med ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39238154

RESUMEN

OBJECTIVE: Clinical practice guidelines (CPGs) for Integrated Traditional Chinese and Western Medicine (TCM and WM) are important medical documents used to assist medical decision-making and are of great significance for standardizing clinical pathways. However, due to the constraints of text format, it is difficult for Integrated TCM and WM CPGs to play a real role in medical practice. In addition, how to standardize the structure and semantic relationships between Integrated TCM and WM CPG knowledge, and realize the construction of computable, sharable and reliable CPGs, remains an urgent issue to be addressed. Therefore, we are proposing an ontology of CPGs for Integrated TCM and WM. METHODS: We first initialized domain concepts and relationships to ensure the accuracy of the ontology knowledge structure. We then screened CPGs that meet the standards for Integrated TCM and WM, analyzed and classified the contents, and extracted the common structures. Based on the seven-step ontology construction method combined with inference-complement, referring to the representation methods and hierarchical relationships of terms and concepts in MeSH, ICD-10, SNOMED-CT, and other ontologies and terminology sets, we formed the concept structure and semantic relationship tables for the ontology. We also achieved the matching and mapping between the ontology and reference ontologies and term sets. Next, we defined the aspects and constraints of properties, selected multiple Integrated TCM and WM CPGs as instances to populate, and used ontology reasoning tools and formulated defined inference rules to reason and extend the ontology. Finally, we evaluated the performance of the ontology. RESULTS: The content of the Integrated TCM and WM CPGs is divided into nine parts: basic information, background, development method, clinical question, recommendation, evidence, conclusion, result, and reason for recommendations. The Integrated TCM and WM CPG ontology has 152 classes and defines 90 object properties and 114 data properties, with a maximum classification depth of 4 layers. The terms of disease, drug and examination item names in the ontology have been standardized. CONCLUSIONS: This study proposes an Integrated TCM and WM CPG ontology. The ontology adopts a modular design, which has both sharing and scaling ability, and can express rich guideline knowledge. It provides important support for the semantic processing and computational application of guideline documents.

5.
bioRxiv ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39282298

RESUMEN

Protein aggregates are emerging therapeutic targets in rare monogenic causes of cardiomyopathy and amyloid heart disease, but their role in more prevalent heart failure syndromes remains mechanistically unexamined. We observed mis-localization of desmin and sarcomeric proteins to aggregates in human myocardium with ischemic cardiomyopathy and in mouse hearts with post-myocardial infarction ventricular remodeling, mimicking findings of autosomal-dominant cardiomyopathy induced by R120G mutation in the cognate chaperone protein, CRYAB. In both syndromes, we demonstrate increased partitioning of CRYAB phosphorylated on serine-59 to NP40-insoluble aggregate-rich biochemical fraction. While CRYAB undergoes phase separation to form condensates, the phospho-mimetic mutation of serine-59 to aspartate (S59D) in CRYAB mimics R120G-CRYAB mutants with reduced condensate fluidity, formation of protein aggregates and increased cell death. Conversely, changing serine to alanine (phosphorylation-deficient mutation) at position 59 (S59A) restored condensate fluidity, and reduced both R120G-CRYAB aggregates and cell death. In mice, S59D CRYAB knock-in was sufficient to induce desmin mis-localization and myocardial protein aggregates, while S59A CRYAB knock-in rescued left ventricular systolic dysfunction post-myocardial infarction and preserved desmin localization with reduced myocardial protein aggregates. 25-Hydroxycholesterol attenuated CRYAB serine-59 phosphorylation and rescued post-myocardial infarction adverse remodeling. Thus, targeting CRYAB phosphorylation-induced condensatopathy is an attractive strategy to counter ischemic cardiomyopathy.

6.
J Neurosurg Spine ; : 1-11, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39241259

RESUMEN

OBJECTIVE: Robot guidance (RG) and computer-assisted navigation (CAN) have been increasingly utilized for posterior cervical screw placement in cervical spine surgery, and cervical screw malposition may contribute to catastrophic complications. However, the superiority of the navigation using RG or CAN compared with conventional freehand (FH) techniques remains controversial, and no meta-analysis comparing the two methods in cervical spine surgery has been performed. METHODS: The PubMed, Embase, Web of Science, Cochrane, China National Knowledge Infrastructure, and Wanfang databases were searched for eligible literature. Studies reporting the primary outcomes of the accuracy of cervical screw placement using RG or CAN compared with FH techniques were included. Bias was evaluated using the Cochrane risk of bias criteria and the Newcastle-Ottawa Scale. The outcomes were evaluated in terms of odds ratio or standardized mean difference and corresponding 95% confidence interval. RESULTS: One randomized controlled trial and 18 comparative cohort studies published between 2012 and 2023 consisting of 946 patients and 4163 cervical screws were included in this meta-analysis. The RG and CAN techniques were associated with a substantially higher rate of optimal and clinically acceptable cervical screw accuracy than FH techniques. Furthermore, compared with the FH group, the navigation group showed fewer postoperative adverse events, less blood loss, shorter hospital lengths of stay, and lower postoperative Neck Disability Index scores. However, the navigation and FH groups had equivalent intraoperative times and postoperative visual analog scale and Japanese Orthopaedic Association scores at the final follow-up. CONCLUSIONS: Both RG and CAN are superior to FH techniques in terms of the accuracy of cervical screw placement. Navigation techniques, including RG and CAN methods, are accurate, safe, and feasible in cervical spine surgery.

7.
Diagn Microbiol Infect Dis ; 110(4): 116534, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39276718

RESUMEN

This study investigated the diagnostic potential of targeted next-generation sequencing (tNGS) for pulmonary infections. The positivity rate of tNGS was significantly higher than that of traditional microbial culture (92.6 % vs 25.2 %, χ2 = 378.272, P < 0.001). The proportion of two or more species of pathogens detected using tNGS exceeded that detected using microbial culture (χ2 = 337.283, P < 0.001). There were inconsistencies between the results of the tNGS antibiotic resistance gene and the drug susceptibility test resistance phenotype. The tNGS technique demonstrates rapid and effective capabilities in identifying bacteria, fungi, viruses, and specific pathogens, with a detection sensitivity that surpasses that of conventional culture methodologies. Microbial drug resistance genotypes detected by tNGS cannot accurately predict drug resistance phenotypes and require further improvement or integration with traditional microbial culture to establish a foundation for effective clinical treatment.

8.
Pestic Biochem Physiol ; 204: 106109, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39277414

RESUMEN

Isoxazoline insecticides have shown broad-spectrum insecticidal activity against a variety of insect pests. However, the high toxicity of isoxazoline compounds towards honeybees restricts their application in crop protection. To mitigate this issue, a series of isoxazoline derivatives containing 2-phenyloxazoline were designed and synthesized. Bioassays revealed that several compounds exhibited promising insecticidal activities against Plutella xylostella, with G28 showing particularly excellent insecticidal activity, reflected by an LC50 value of 0.675 mg/L, which is comparable to that of fluxametamide (LC50 = 0.593 mg/L). Furthermore, G28 also exhibited effective insecticidal activity against Solenopsis invicta. Importantly, bee toxicity experiments indicated that G28 had significantly lower acute oral toxicity (LD50 = 2.866 µg/adult) compared to fluxametamide (LD50 = 1.083 µg/adult) and fluralaner (LD50 = 0.022 µg/adult), positioning it as a promising candidate with reduced toxicity to bees. Theoretical simulation further elucidated the reasons for the selective differences in the ability of isoxazoline to achieve higher insecticidal activity while maintaining lower bee toxicity. This research suggests that isoxazoline compounds containing 2-phenyloxazoline group hold potential as new insecticide candidates and offers insights into the development of novel isoxazoline insecticides with both high efficacy and environmental safety.


Asunto(s)
Diseño de Fármacos , Insecticidas , Isoxazoles , Mariposas Nocturnas , Oxazoles , Insecticidas/síntesis química , Insecticidas/química , Insecticidas/farmacología , Insecticidas/toxicidad , Animales , Oxazoles/química , Oxazoles/toxicidad , Isoxazoles/farmacología , Isoxazoles/química , Mariposas Nocturnas/efectos de los fármacos , Abejas/efectos de los fármacos , Relación Estructura-Actividad
9.
Artículo en Inglés | MEDLINE | ID: mdl-39269916

RESUMEN

Organometal halide perovskite single crystals (SCs) are the most promising candidates for the next generation of radiation detection materials. However, surface defects severely affect their detection performance and limit further applications. Here, we identified the surface defect types of FAPbBr3 SCs and employed phenethylammonium iodide (PEAI) solution to treat the crystal surface and to investigate their effects on ion migration, photoelectric performance, and X-ray detection performance. Our experimental results demonstrated that the surface defects, such as the metallic Pb and Br vacancies, can be effectively passivated by both the PEAI and the two-dimensional (2D) PEA2PbI4 layers. The PEAI layer can elongate the carrier lifetime, lower the trap density, and suppress ion migration in FAPbBr3 SCs. The 2D PEA2PbI4 layer can form a dense and full surface coverage, suppress ion migration, and lower the dark current of the SCs. The X-ray sensitivity of the PEAI-passivated FAPbBr3 SC detectors is 227.93 µCGyair-1 cm-2, which is an order of magnitude higher than that of the pristine FAPbBr3 SC detectors. This work demonstrates that surface treatment plays a critical role in the crystal quality and the X-ray detection performance of SCs.

10.
Chem Biol Interact ; 403: 111224, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39233265

RESUMEN

Parkinson's disease (PD) poses a formidable challenge in neurology, marked by progressive neuronal loss in the substantia nigra. Despite extensive investigations, understanding PD's pathophysiology remains elusive, with no effective therapeutic intervention identified to alter its course. Oxyphylla A (OPA), a natural compound extracted from Alpinia oxyphylla, exhibits promise in experimental models of various neurodegenerative disorders (ND), notably through novel mechanisms like α-synuclein degradation. The purpose of this investigation was to explore the neuroprotective potential of OPA on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in PD models, with a focus on mitochondrial functions. Additionally, potential OPA targets for neuroprotection were explored. PC12 cells and C57BL/6 mice were lesioned with 6-OHDA as PD models. Impaired mitochondrial membrane potential (Δψm) was assessed using JC-1 staining. The oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were also detected to evaluate mitochondrial function and glucose metabolism in PC12 cells. Behavioral analysis and immunohistochemistry were performed to evaluate pathological lesions in the mouse brain. Moreover, bioinformatics tools predicted OPA targets. OPA restored cellular energy metabolism and mitochondrial biogenesis, preserving Δψm in 6-OHDA-induced neuronal damage. Pre-treatment mitigated loss of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra and striatal dopaminergic fibers, restoring dopamine levels and ameliorating motor deficits in PD mice. Mechanistically, OPA may activate PKA/Akt/GSK-3ß and CREB/PGC-1α/NRF-1/TFAM signaling cascades. Bioinformatics analysis identified potential OPA targets, including CTNNB1, ESR1, MAPK1, MAPK14, and SRC. OPA, derived from Alpinia oxyphylla, exhibited promising neuroprotective activity against PD through addressing mitochondrial dysfunction, suggesting its potential as a multi-targeted therapeutic for PD.

11.
Water Res ; 266: 122406, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39260199

RESUMEN

Urban composite non-point source (UCNPS) has an increasing degree of influence on the urban receiving waters. However, there remains a dearth of precise techniques to characterize and evaluate the contribution of UCNPS. Therefore, this study developed a source analytical methodology system based fluorescence excitation-emission matrices spectroscopy (EEMs) and Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS).Specifically, it utilized parallel factor analysis (PARAFAC), two-dimensional correlation spectroscopy (2D-COS), end-member mixing analysis (EMMA), and non-metric multidimensional scaling (NMDS) to analysis UCNPS pollution characteristics and quantify its contributions to river DOM. The results of its application in typical hilly and plain urban within the Yangtze River Basin, China revealed that road and roof runoff exhibited high aromaticity and humic-like content, and the characteristics of pipe sediment was similar with domestic sewage. The component of Rivers had sequences of changes under rainfall perturbations. But terrestrial humic-like represented the initial input in all cases, and it can provide some indication of UCNPS input. The results of EMMA showed that the contribution of road runoff, roof runoff, pipeline sediment and domestic sewage to river DOM was 9.0 %-36.0 %, 2.6 %-19.1 %, 2.3 %-28.8 % and 5.9 %-25.9 %, respectively, and the specific contribution was mainly affected by rainfall level, regional terrain and drainage system. The methodology system of this study can provide technical support for the traceability and precise control of UCNPS pollution.

12.
Int J Surg ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39236099

RESUMEN

Preoperative diagnosis of periprosthetic joint infection (PJI) is critical to guide treatment options and improve patient outcomes. In this letter, we discuss results from our experiences with a novel nomogram diagnosis model based on serum and synovial fluid indicators for the preoperative diagnosis of PJI. The results showed that the novel nomogram diagnosis model can distinguish PJI from aseptic loosening before the operation. And it is also a useful candidate for the selection of the timing of current secondary revision.

13.
J Hazard Mater ; 479: 135694, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39217944

RESUMEN

Mercury ion (Hg2+) is considered a harmful neurotoxin, and real-time monitoring of Hg2+ concentrations in environmental and biological samples is critical. Fluorescent probes are a rapidly emerging visualization tool owing to their simple design and good selectivity. Herein, a novel fluorescence (FL) probe 2-(4-((6-((quinolin-8-yloxy)methyl)pyridin-2-yl)methyl)piperazin-1-yl)anthracene-9,10-dione (QPPA) is designed using piperazine as a linker between the anthraquinone group, which serves as a fluorophore, and N4O as the Hg2+ ligand. The probe exhibits FL "turn-on" sensing of Hg2+ because the complex inhibits the photo-induced electron transfer (PET) process. Moreover, QPPA can overcome the invasion by other possible cations, resulting in a clear color change from orange to colorless with the addition Hg2+. The chelation of QPPA with Hg2+ in a 1:1 ratio. Subsequently, the theoretically determined binding sites of the ligand to Hg2+ are validated through 1H NMR titration. The in situQPPA-Hg2+ complex can be subjected to Hg2+ extraction following the introduction of S2- owing to its robust binding capacity. The exceptional limit of detection values for Hg2+ and S2- are obtained as 63.0 and 79.1 nM (S/N = 3), respectively. Moreover, QPPA can display bright red FL in the presence of Hg2+ in different biological specimens such as HeLa cells, zebrafish, onion root tip tissues, and water flea Daphnia carinata, further providing an effective strategy for environmental monitoring and bioimaging of Hg2+ in living organisms.

14.
Artículo en Inglés | MEDLINE | ID: mdl-39196741

RESUMEN

Through phase-amplitude analysis, this study investigated how low-frequency postural fluctuations interact with high-frequency scalp electroencephalography (EEG) amplitudes, shedding light on age-related mechanic differences in balance control during uneven surface navigation. Twenty young ( 24.1 ± 1.9 years) and twenty older adults ( 66.2 ± 2.7 years) stood on a training stabilometer with visual guidance, while their scalp EEG and stabilometer plate movements were monitored. In addition to analyzing the dynamics of the postural fluctuation phase, phase-amplitude coupling (PAC) for postural fluctuations below 2 Hz and within EEG sub-bands (theta: 4-7 Hz, alpha: 8-12 Hz, beta: 13-35 Hz) was calculated. The results indicated that older adults exhibited significantly larger postural fluctuation amplitudes(p <0.001) and lower mean frequencies of the postural fluctuation phase ( p = 0.005 ) than young adults. The PAC between postural fluctuation and theta EEG (FCz and bilateral temporal-parietal-occipital area), as well as that between postural fluctuation and alpha EEG oscillation, was lower in older adults than in young adults (p <0.05). In contrast, the PAC between the phase of postural fluctuation and beta EEG oscillation, particularly in C3 ( p=0.006 ), was higher in older adults than in young adults. In summary, the postural fluctuation phase and phase-amplitude coupling between postural fluctuation and EEG are sensitive indicators of the age-related decline in postural adjustments, reflecting less flexible motor state transitions and adaptive changes in error monitoring and visuospatial attention.


Asunto(s)
Envejecimiento , Electroencefalografía , Equilibrio Postural , Cuero Cabelludo , Humanos , Masculino , Equilibrio Postural/fisiología , Femenino , Anciano , Adulto Joven , Adulto , Envejecimiento/fisiología , Cuero Cabelludo/fisiología , Postura/fisiología , Algoritmos , Persona de Mediana Edad
15.
Pharmaceuticals (Basel) ; 17(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39204119

RESUMEN

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a metabolic syndrome characterized by chronic inflammation, insulin resistance, and islet cell damage. The prevention of T2DM and its associated complications is an urgent public health issue that affects hundreds of millions of people globally. Numerous studies suggest that disturbances in gut metabolites are important driving forces for the pathogenesis of diabetes. However, the functions and mechanisms of action of most commensal bacteria in T2DM remain largely unknown. METHODS: The quantification of bile acids (BAs) in fecal samples was performed using ultra-performance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS). The anti-diabetic effects of Bacteroides uniformis (B. uniformis) and its metabolites cholic acid (CA) and chenodeoxycholic acid (CDCA) were assessed in T2DM mice induced by streptozocin (STZ) plus high-fat diet (HFD). RESULTS: We found that the abundance of B. uniformis in the feces and the contents of CA and CDCA were significantly downregulated in T2DM mice. B. uniformis was diminished in diabetic individuals and this bacterium was sufficient to promote the production of BAs. Colonization of B. uniformis and intragastric gavage of CA and CDCA effectively improved the disorder of glucose and lipid metabolism in T2DM mice by inhibiting gluconeogenesis and lipolysis in the liver. CA and CDCA improved hepatic glucose and lipid metabolism by acting on the Takeda G protein-coupled receptor 5 (TGR5)/adenosine monophosphate-activated protein kinase (AMPK) signaling pathway since knockdown of TGR5 minimized the benefit of CA and CDCA. Furthermore, we screened a natural product-vaccarin (VAC)-that exhibited anti-diabetic effects by promoting the growth of B. uniformis in vitro and in vivo. Gut microbiota pre-depletion abolished the favorable effects of VAC in diabetic mice. CONCLUSIONS: These data suggest that supplementation of B. uniformis may be a promising avenue to ameliorate T2DM by linking the gut and liver.

16.
Artículo en Inglés | MEDLINE | ID: mdl-39190518

RESUMEN

Self-supervised learning (SSL) is a challenging task in sleep stage classification (SSC) that is capable of mining valuable representations from unlabeled data. However, traditional SSL methods typically focus on single-view learning and do not fully exploit the interactions among information across multiple views. In this study, we focused on a multi-domain view of the same EEG signal and developed a self-supervised multi-view representation learning framework via time series and time-frequency contrasting (MV-TTFC). In the MV-TTFC framework, we built-in a cross-domain view contrastive learning prediction task to establish connections between the temporal view and time-frequency (TF) view, thereby enhancing the information exchange between multiple views. In addition, to improve the quality of the TF view inputs, we introduced an enhanced multisynchrosqueezing transform, which can create high energy concentration TF image views to compensate for the inaccurate representations in traditional TF processing techniques. Finally, integrating temporal, TF, and fusion space contrastive learning effectively captured the latent features in EEG signals. We evaluated MV-TTFC based on two real-world SSC datasets (SleepEDF-78 and SHHS) and compared it with baseline methods in downstream tasks. Our method exhibited state-of-the-art performance, achieving accuracies of 78.64% and 81.45% with SleepEDF-78 and SHHS, respectively, and macro F1-scores of 70.39% with SleepEDF-78 and 70.47% with SHHS.

17.
Nat Commun ; 15(1): 7342, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39187496

RESUMEN

Acetylcholine regulates various cognitive functions through broad cholinergic innervation. However, specific cholinergic subpopulations, circuits and molecular mechanisms underlying recognition memory remain largely unknown. Here we show that Ngfr+ cholinergic neurons in the substantia innominate (SI)/nucleus basalis of Meynert (nBM)-medial prefrontal cortex (mPFC) circuit selectively underlies recency judgements. Loss of nerve growth factor receptor (Ngfr-/- mice) reduced the excitability of cholinergic neurons in the SI/nBM-mPFC circuit but not in the medial septum (MS)-hippocampus pathway, and impaired temporal order memory but not novel object and object location recognition. Expression of Ngfr in Ngfr-/- SI/nBM restored defected temporal order memory. Fiber photometry revealed that acetylcholine release in mPFC not only predicted object encounters but also mediated recency judgments of objects, and such acetylcholine release was absent in Ngfr-/- mPFC. Chemogenetic and optogenetic inhibition of SI/nBM projection to mPFC in ChAT-Cre mice diminished mPFC acetylcholine release and deteriorated temporal order recognition. Impaired cholinergic activity led to a depolarizing shift of GABAergic inputs to mPFC pyramidal neurons, due to disturbed KCC2-mediated chloride gradients. Finally, potentiation of acetylcholine signaling upregulated KCC2 levels, restored GABAergic driving force and rescued temporal order recognition deficits in Ngfr-/- mice. Thus, NGFR-dependent SI/nBM-mPFC cholinergic circuit underlies temporal order recognition memory.


Asunto(s)
Acetilcolina , Neuronas Colinérgicas , Corteza Prefrontal , Animales , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiología , Neuronas Colinérgicas/metabolismo , Neuronas Colinérgicas/fisiología , Acetilcolina/metabolismo , Ratones , Masculino , Ratones Noqueados , Reconocimiento en Psicología/fisiología , Núcleo Basal de Meynert/metabolismo , Núcleo Basal de Meynert/fisiología , Ratones Endogámicos C57BL , Células Piramidales/metabolismo , Células Piramidales/fisiología , Hipocampo/metabolismo , Receptores de Factor de Crecimiento Nervioso
18.
Phytomedicine ; 133: 155927, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39096543

RESUMEN

BACKGROUND: Moxibustion, a traditional Chinese medicine practice, employs Moxa Wool, derived from Artemisia argyi. Flavonoids, the key pharmacological constituents in Moxa Wool, are known for their anti-inflammatory and analgesic properties. The purity of Moxa Wool, particularly its flavonoid content, directly influences the efficacy of moxibustion treatments. However, quantifying these bioactive flavonoids accurately and non-destructively has been a challenge. PURPOSE: This study introduces terahertz spectroscopy as a non-destructive optical detection method for qualitative detection and quantitative analysis of flavonoids in Moxa Wool. By establishing a mathematical model between spectral signals and clinical efficacy, a reliable correlation between flavonoid concentration and the therapeutic effect of moxibustion can be established, providing a potential predictive model for the treatment outcomes of rheumatoid arthritis. STUDY DESIGN: We adopted terahertz spectroscopy technology and combined it with terahertz metamaterial biosensors to achieve rapid, efficient, and non-destructive testing of the quality of Moxa Wool. This method reduces the detection time from hours to minutes while lowering the sample detection limit, overcoming the limitations of traditional detection methods in pharmacological research. METHODS: Through terahertz metamaterial biosensors, rapid detection of the purity of Moxa Wool has been achieved. A combination of molecular simulation and terahertz spectroscopy was used to quantitatively analyze the flavonoid content in different purities of Moxa Wool. To ensure accuracy, the quantitative results of flavonoids obtained by terahertz spectroscopy were validated using high-performance liquid chromatography (HPLC). In addition, moxibustion treatment was performed on rats with rheumatoid arthritis using Moxa Wool, and medical indicator information was recorded. A mathematical analysis model was established to evaluate the correlation between flavonoid content and analgesic and anti-inflammatory effects. RESULTS: Terahertz spectroscopy analysis shows that there is a direct correlation between the flavonoid content in moxibustion and the absorption peak intensity. The maximum R2 in the model analysis is 0.98, indicating a high accuracy in predicting the purity of Moxa Wool. These results were also validated by HPLC. In a rat model, the purity of 30:1 Moxa Wool samples showed a 50 % decrease in TNF-α, IL-1ß, and IL-6 levels during treatment compared to low-purity samples, significantly reducing inflammation markers and pain symptoms. Meanwhile, The PLS prediction model established a correlation between terahertz-detected flavonoid levels and treatment outcomes (PWL and IL-1ß). The maximum R2 in the model is 0.91, indicating a high correlation between flavonoid levels and the anti-inflammatory and analgesic effects of moxibustion treatment. CONCLUSION: This study not only demonstrates the effectiveness of terahertz spectroscopy in the pharmacological quantification of bioactive compounds but also establishes a novel predictive model for the efficacy of moxibustion in rheumatoid arthritis treatment. It underscores the potential of integrating traditional medicine insights with advanced technology to enhance therapeutic strategies in pharmacology.


Asunto(s)
Artritis Reumatoide , Flavonoides , Moxibustión , Espectroscopía de Terahertz , Flavonoides/análisis , Animales , Moxibustión/métodos , Artritis Reumatoide/terapia , Artritis Reumatoide/tratamiento farmacológico , Espectroscopía de Terahertz/métodos , Ratas , Artemisia/química , Ratas Sprague-Dawley , Resultado del Tratamiento , Masculino , Artritis Experimental/terapia , Antiinflamatorios/química , Medicina Tradicional China , Lana/química
19.
Heliyon ; 10(14): e34391, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39113991

RESUMEN

Purpose: To evaluate the performance of four large language models (LLMs)-GPT-4, PaLM 2, Qwen, and Baichuan 2-in generating responses to inquiries from Chinese patients about dry eye disease (DED). Design: Two-phase study, including a cross-sectional test in the first phase and a real-world clinical assessment in the second phase. Subjects: Eight board-certified ophthalmologists and 46 patients with DED. Methods: The chatbots' responses to Chinese patients' inquiries about DED were assessed by the evaluation. In the first phase, six senior ophthalmologists subjectively rated the chatbots' responses using a 5-point Likert scale across five domains: correctness, completeness, readability, helpfulness, and safety. Objective readability analysis was performed using a Chinese readability analysis platform. In the second phase, 46 representative patients with DED asked the two language models (GPT-4 and Baichuan 2) that performed best in the in the first phase questions and then rated the answers for satisfaction and readability. Two senior ophthalmologists then assessed the responses across the five domains. Main outcome measures: Subjective scores for the five domains and objective readability scores in the first phase. The patient satisfaction, readability scores, and subjective scores for the five-domains in the second phase. Results: In the first phase, GPT-4 exhibited superior performance across the five domains (correctness: 4.47; completeness: 4.39; readability: 4.47; helpfulness: 4.49; safety: 4.47, p < 0.05). However, the readability analysis revealed that GPT-4's responses were highly complex, with an average score of 12.86 (p < 0.05) compared to scores of 10.87, 11.53, and 11.26 for Qwen, Baichuan 2, and PaLM 2, respectively. In the second phase, as shown by the scores for the five domains, both GPT-4 and Baichuan 2 were adept in answering questions posed by patients with DED. However, the completeness of Baichuan 2's responses was relatively poor (4.04 vs. 4.48 for GPT-4, p < 0.05). Nevertheless, Baichuan 2's recommendations more comprehensible than those of GPT-4 (patient readability: 3.91 vs. 4.61, p < 0.05; ophthalmologist readability: 2.67 vs. 4.33). Conclusions: The findings underscore the potential of LLMs, particularly that of GPT-4 and Baichuan 2, in delivering accurate and comprehensive responses to questions from Chinese patients about DED.

20.
Artículo en Inglés | MEDLINE | ID: mdl-39129158

RESUMEN

BACKGROUND: Oral Mucositis (OM) is a common and highly symptomatic complication of cancer therapy that affects patient function and quality of life. Jingzhi Niuhuangjiedu Tablet (JNT) is derived from the famous Chinese herbal formulas Huanglian Jiedu and Fangfeng Tongsheng decoctions, which have been widely used to treat heat toxin syndrome diseases, such as acute pharyngitis, periodontitis, oral ulcers, and oral mucositis (OM), but the underlying mechanism remains unclear. OBJECTIVES: This study validated the efficacy and explored the potential mechanisms of JNT in the treatment of OM by integrating network pharmacological analyses and experimental verification. METHODS: Network pharmacology and molecular docking techniques were used to predict the active components, key targets, and potential mechanisms of action of JNT against OM. The rat OM model was established by administering 5-Fluorouracil (5-FU) and acetic acid to the rat oral mucosa. Lipopolysaccharide (LPS)-treated human gingival fibroblasts (HGFs) were used as an inflammatory cell model. The GFP-NFκB HEK293T cell line was transfected to evaluate the anti-NFκB activity of JNT. RESULTS: A total of 236 Chinese herbal components and 201 corresponding targets were predicted for OM treatment using JNT. Bicuculine, luteolin, wogonin, and naringenin were identified as the important active compounds, while AKT1, ALB, IL6, MAPK3, and VEGFA were considered to be the major targets. Molecular docking revealed that these active compounds exhibited strong binding interactions with their targets. In vivo and in vitro experiments demonstrated that the anti-OM effect of JNT might be closely related to AKT1, NFκB, caspase-1, and NLRP3, as well as biological processes, such as inflammatory response and oxidative stress. CONCLUSION: Network pharmacological and experimental evidence indicates that JNT has a potential therapeutic effect on OM by regulating the Akt/NFκB/NLRP3 pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA