Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 341
Filtrar
1.
Acta Pharmacol Sin ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223367

RESUMEN

PANoptosis is an emerging form of regulated cell death (RCD) characterized by simultaneous activation of pyroptotic, apoptotic, and necroptotic signaling that not only participates in pathologies of inflammatory diseases but also has a critical role against pathogenic infections. Targeting PANoptosis represents a promising therapeutic strategy for related inflammatory diseases, but identification of inhibitors for PANoptosis remains an unmet demand. Baicalin () is an active flavonoid isolated from Scutellaria baicalensis Georgi (Huangqin), a traditional Chinese medicinal herb used for heat-clearing and detoxifying. Numerous studies suggest that baicalin possesses inhibitory activities on various forms of RCD including apoptosis/secondary necrosis, pyroptosis, and necroptosis, thereby mitigating inflammatory responses. In this study we investigated the effects of baicalin on PANoptosis in macrophage cellular models. Primary macrophages (BMDMs) or J774A.1 macrophage cells were treated with 5Z-7-oxozeaenol (OXO, an inhibitor for TAK1) in combination with TNF-α or LPS. We showed that OXO plus TNF-α or LPS induced robust lytic cell death, which was dose-dependently inhibited by baicalin (50-200 µM). We demonstrated that PANoptosis induction was accompanied by overt mitochondrial injury, mitochondrial DNA (mtDNA) release and Z-DNA formation. Z-DNA was formed from cytosolic oxidized mtDNA. Both oxidized mtDNA and mitochondrial Z-DNA puncta were co-localized with the PANoptosome (including ZBP1, RIPK3, ASC, and caspase-8), a platform for mediating PANoptosis. Intriguingly, baicalin not only prevented mitochondrial injury but also blocked mtDNA release, Z-DNA formation and PANoptosome assembly. Knockdown of ZBP1 markedly decreased PANoptotic cell death. In a mouse model of hemophagocytic lymphohistiocytosis (HLH), administration of baicalin (200 mg/kg, i.g., for 4 times) significantly mitigated lung and liver injury and reduced levels of serum TNF-α and IFN-γ, concomitant with decreased levels of PANoptosis hallmarks in these organs. Baicalin also abrogated the hallmarks of PANoptosis in liver-resident macrophages (Kupffer cells) in HLH mice. Collectively, our results demonstrate that baicalin inhibits PANoptosis in macrophages by blocking mitochondrial Z-DNA formation and ZBP1-PANoptosome assembly, thus conferring protection against inflammatory diseases. PANoptosis is a form of regulated cell death displaying simultaneous activation of pyroptotic, apoptotic, and necroptotic signaling. This study shows that induction of PANoptosis is linked to mitochondrial dysfunction and mitochondrial Z-DNA formation. Baicalin inhibits PANoptosis in macrophages in vitro via blocking mitochondrial dysfunction and the mitochondrial Z-DNA formation and thereby impeding the assembly of ZBP1-associated PANoptosome. In a mouse model of hemophagocytic lymphohistiocytosis (HLH), baicalin inhibits the activation of PANoptotic signaling in liver-resident macrophages (Kupffer cells) in vivo, thus mitigating systemic inflammation and multiple organ injury in mice.

2.
Oncogene ; 43(38): 2868-2884, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39154122

RESUMEN

The dysregulation of long non-coding RNAs (lncRNAs) are involved in regulating tumor progression in multiple manner. However, little is known about whether lncRNA is involved in the translation regulation of proteins. Here, we identified that the suppressor of inflammatory macrophage apoptosis lncRNA (SIMALR) was highly expressed in nasopharyngeal carcinoma (NPC) tissues by analyzing the lncRNA microarray. Clinically, the high expression of SIMALR served as an independent predictor for inferior prognosis in NPC patients. SIMALR functioned as an oncogenic lncRNA that promoted the proliferation and metastasis of NPC cells in vitro and in vivo. Mechanistically, SIMALR served as a critical accelerator of protein synthesis by binding to eEF1A2 (eukaryotic translation elongation factor 1 alpha 2), one of the most crucial regulators in the translation machinery of the eukaryotic cells, and enhancing its endogenous GTPase activity. Furthermore, SIMALR mediated the activation of eEF1A2 phosphorylation to accelerate the translation of ITGB4/ITGA6, ultimately promoting the malignant phenotype of NPC cells. In addition, N-acetyltransferase 10 (NAT10) enhanced the stability of SIMALR and caused its overexpression in NPC through the N4-acetylcytidine (ac4C) modification. In sum, our results illustrate SIMALR functions as an accelerator for protein translation and highlight the oncogenic role of NAT10-SIMALR-eEF1A2-ITGB4/6 axis in NPC.


Asunto(s)
Proliferación Celular , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Factor 1 de Elongación Peptídica , ARN Largo no Codificante , Humanos , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patología , Carcinoma Nasofaríngeo/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factor 1 de Elongación Peptídica/genética , Factor 1 de Elongación Peptídica/metabolismo , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patología , Neoplasias Nasofaríngeas/metabolismo , Animales , Ratones , Proliferación Celular/genética , Línea Celular Tumoral , Biosíntesis de Proteínas , Femenino , Masculino , Pronóstico , Ratones Desnudos
3.
Neuro Oncol ; 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39215663

RESUMEN

BACKGROUND: Dysregulated deubiquitinating enzymes (DUBs) execute as intrinsic oncogenes or tumor suppressors and are involved in chemoresistance in cancers. However, the functions and exact molecular mechanisms remain largely unclear in neuroblastoma. METHODS: Here, a R2 screening strategy based on the standard deviation values was used to identify the most important DUB, USP44, in neuroblastoma with stage 4. We validated the role of USP44 regulation upon cisplatin treatment in vitro and in vivo experiments, revealing the molecular mechanisms associated with USP44 regulation and cisplatin sensitivity in neuroblastoma. RESULTS: We found that low USP44 expression was associated with an inferior prognosis in neuroblastoma patients. Overexpression of USP44 enhanced neuroblastoma cell sensitivity to cisplatin in vitro and in vivo. Mechanistically, USP44 recruited and stabilized the E3 ubiquitin ligase STUB1 by removing its K48-linked polyubiquitin chains at Lys30, and STUB1 further reinforced the K48-linked polyubiquitination of LRPPRC at Lys453 and promoted its protein degradation, thus enhancing the accumulation of mitochondrial reactive oxygen species (mROS), in turn facilitating neuroblastoma cell apoptosis and cisplatin sensitivity. Additionally, overexpression of LRPPRC reversed the promoting effect of USP44 on cell apoptosis in cisplatin-treated neuroblastoma cells. CONCLUSIONS: Our findings demonstrate that the USP44-STUB1-LRPPRC axis plays a pivotal role in neuroblastoma chemoresistance and provides potential targets for neuroblastoma therapy and prognostication.

4.
EClinicalMedicine ; 74: 102736, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39091669

RESUMEN

Background: Masked hypertension is associated with target organ damage (TOD) and adverse health outcomes, but whether antihypertensive treatment improves TOD in patients with masked hypertension is unproven. Methods: In this multicentre, randomised, double-blind, placebo-controlled trial at 15 Chinese hospitals, untreated outpatients aged 30-70 years with an office blood pressure (BP) of <140/<90 mm Hg and 24-h, daytime or nighttime ambulatory BP of ≥130/≥80, ≥135/≥85, or ≥120/≥70 mm Hg were enrolled. Patients had ≥1 sign of TOD: electrocardiographic left ventricular hypertrophy (LVH), brachial-ankle pulse wave velocity (baPWV) ≥1400 cm/s, or urinary albumin-to-creatinine ratio (ACR) ≥3.5 mg/mmol in women and ≥2.5 mg/mmol in men. Exclusion criteria included secondary hypertension, diabetic nephropathy, serum creatinine ≥176.8 µmol/L, and cardiovascular disease within 6 months of screening. After stratification for centre, sex and the presence of nighttime hypertension, eligible patients were randomly assigned (1:1) to receive antihypertensive treatment or placebo. Patients and investigators were masked to group assignment. Active treatment consisted of allisartan starting at 80 mg/day, to be increased to 160 mg/day at month 2, and to be combined with amlodipine 2.5 mg/day at month 4, if the ambulatory BP remained uncontrolled. Matching placebos were used likewise in the control group. The primary endpoint was the improvement of TOD, defined as normalisation of baPWV, ACR or LVH or a ≥20% reduction in baPWV or ACR over the 48-week follow-up. The intention-to-treat analysis included all randomised patients, the per-protocol analysis patients who fully adhered to the protocol, and the safety analysis all patients who received at least one dose of the study medication. This study is registered with ClinicalTrials.gov, NCT02893358. Findings: Between February 14, 2017, and October 31, 2020, 320 patients (43.1% women; mean age ± SD 53.7 ± 9.7 years) were enrolled. Baseline office and 24-h BP averaged 130 ± 6.0/81 ± 5.9 mm Hg and 136 ± 8.6/84 ± 6.1 mm Hg, and the prevalence of elevated baPWV, ACR and LVH were 97.5%, 12.5%, and 7.8%, respectively. The 24-h BP decreased on average (±SE) by 10.1 ± 0.9/6.4 ± 0.5 mm Hg in 153 patients on active treatment and by 1.3 ± 0.9/1.0 ± 0.5 mm Hg in 167 patients on placebo. Improvement of TOD occurred in 79 patients randomised to active treatment and in 49 patients on placebo: 51.6% (95% CI 43.7%, 59.5%) versus 29.3% (22.1, 36.5%; p < 0.0001). Per-protocol and subgroup analyses were confirmatory. Adverse events were generally mild and occurred in 38 (25.3%) and 43 (26.4%) patients randomised to active treatment and placebo, respectively (p = 0.83). Interpretation: Our results suggest that antihypertensive treatment improves TOD in patients with masked hypertension, highlighting the need of treatment. However, the long-term benefit in preventing cardiovascular complications still needs to be established. Funding: Salubris China.

5.
Sensors (Basel) ; 24(16)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39204944

RESUMEN

In recent years, the increasing frequency of climate change and extreme weather events has significantly elevated the risk of levee breaches, potentially triggering large-scale floods that threaten surrounding environments and public safety. Rapid and accurate measurement of river surface velocities is crucial for developing effective emergency response plans. Video image velocimetry has emerged as a powerful new approach due to its non-invasive nature, ease of operation, and low cost. This paper introduces the Dynamic Feature Point Pyramid Lucas-Kanade (DFP-P-LK) optical flow algorithm, which employs a feature point dynamic update fusion strategy. The algorithm ensures accurate feature point extraction and reliable tracking through feature point fusion detection and dynamic update mechanisms, enhancing the robustness of optical flow estimation. Based on the DFP-P-LK, we propose a river surface velocity measurement model for rapid levee breach emergency response. This model converts acquired optical flow motion to actual flow velocities using an optical flow-velocity conversion model, providing critical data support for levee breach emergency response. Experimental results show that the method achieves an average measurement error below 15% within the velocity range of 0.43 m/s to 2.06 m/s, demonstrating high practical value and reliability.

6.
Biomed Environ Sci ; 37(6): 639-646, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38988114

RESUMEN

Objective: To develop a highly sensitive and rapid nucleic acid detection method for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Methods: We designed, developed, and manufactured an integrated disposable device for SARS-CoV-2 nucleic acid extraction and detection. The precision of the liquid transfer and temperature control was tested. A comparison between our device and a commercial kit for SARS-Cov-2 nucleic acid extraction was performed using real-time fluorescence reverse transcription polymerase chain reaction (RT-PCR). The entire process, from SARS-CoV-2 nucleic acid extraction to amplification, was evaluated. Results: The precision of the syringe transfer volume was 19.2 ± 1.9 µL (set value was 20), 32.2 ± 1.6 (set value was 30), and 57.2 ± 3.5 (set value was 60). Temperature control in the amplification tube was measured at 60.0 ± 0.0 °C (set value was 60) and 95.1 ± 0.2 °C (set value was 95) respectively. SARS-Cov-2 nucleic acid extraction yield through the device was 7.10 × 10 6 copies/mL, while a commercial kit yielded 2.98 × 10 6 copies/mL. The mean time to complete the entire assay, from SARS-CoV-2 nucleic acid extraction to amplification detection, was 36 min and 45 s. The detection limit for SARS-CoV-2 nucleic acid was 250 copies/mL. Conclusion: The integrated disposable devices may be used for SARS-CoV-2 Point-of-Care test (POCT).


Asunto(s)
COVID-19 , Equipos Desechables , ARN Viral , SARS-CoV-2 , SARS-CoV-2/aislamiento & purificación , COVID-19/diagnóstico , COVID-19/virología , Humanos , ARN Viral/aislamiento & purificación , ARN Viral/análisis , Prueba de Ácido Nucleico para COVID-19/instrumentación , Prueba de Ácido Nucleico para COVID-19/métodos , Técnicas de Amplificación de Ácido Nucleico/instrumentación , Técnicas de Amplificación de Ácido Nucleico/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/instrumentación
7.
Nat Commun ; 15(1): 5300, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38906860

RESUMEN

Chemoresistance is a main reason for treatment failure in patients with nasopharyngeal carcinoma, but the exact regulatory mechanism underlying chemoresistance in nasopharyngeal carcinoma remains to be elucidated. Here, we identify PJA1 as a key E3 ubiquitin ligase involved in nasopharyngeal carcinoma chemoresistance that is highly expressed in nasopharyngeal carcinoma patients with nonresponse to docetaxel-cisplatin-5-fluorouracil induction chemotherapy. We find that PJA1 facilitates docetaxel resistance by inhibiting GSDME-mediated pyroptosis in nasopharyngeal carcinoma cells. Mechanistically, PJA1 promotes the degradation of the mitochondrial protein PGAM5 by increasing its K48-linked ubiquitination at K88, which further facilitates DRP1 phosphorylation at S637 and reduced mitochondrial reactive oxygen species production, resulting in suppression of GSDME-mediated pyroptosis and the antitumour immune response. PGAM5 knockdown fully restores the docetaxel sensitization effect of PJA1 knockdown. Moreover, pharmacological targeting of PJA1 with the small molecule inhibitor RTA402 enhances the docetaxel sensitivity of nasopharyngeal carcinoma in vitro and in vivo. Clinically, high PJA1 expression indicates inferior survival and poor clinical efficacy of TPF IC in nasopharyngeal carcinoma patients. Our study emphasizes the essential role of E3 ligases in regulating chemoresistance and provides therapeutic strategies for nasopharyngeal carcinoma based on targeting the ubiquitin-proteasome system.


Asunto(s)
Docetaxel , Resistencia a Antineoplásicos , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Piroptosis , Ubiquitina-Proteína Ligasas , Ubiquitinación , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Cisplatino/farmacología , Cisplatino/uso terapéutico , Docetaxel/farmacología , Docetaxel/uso terapéutico , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Dinaminas/metabolismo , Dinaminas/genética , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Gasderminas , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ratones Endogámicos BALB C , Ratones Desnudos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Carcinoma Nasofaríngeo/tratamiento farmacológico , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patología , Fosfoproteínas Fosfatasas/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosforilación/efectos de los fármacos , Piroptosis/efectos de los fármacos , Piroptosis/genética , Especies Reactivas de Oxígeno/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Lancet ; 403(10445): 2720-2731, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38824941

RESUMEN

BACKGROUND: Anti-PD-1 therapy and chemotherapy is a recommended first-line treatment for recurrent or metastatic nasopharyngeal carcinoma, but the role of PD-1 blockade remains unknown in patients with locoregionally advanced nasopharyngeal carcinoma. We assessed the addition of sintilimab, a PD-1 inhibitor, to standard chemoradiotherapy in this patient population. METHODS: This multicentre, open-label, parallel-group, randomised, controlled, phase 3 trial was conducted at nine hospitals in China. Adults aged 18-65 years with newly diagnosed high-risk non-metastatic stage III-IVa locoregionally advanced nasopharyngeal carcinoma (excluding T3-4N0 and T3N1) were eligible. Patients were randomly assigned (1:1) using blocks of four to receive gemcitabine and cisplatin induction chemotherapy followed by concurrent cisplatin radiotherapy (standard therapy group) or standard therapy with 200 mg sintilimab intravenously once every 3 weeks for 12 cycles (comprising three induction, three concurrent, and six adjuvant cycles to radiotherapy; sintilimab group). The primary endpoint was event-free survival from randomisation to disease recurrence (locoregional or distant) or death from any cause in the intention-to-treat population. Secondary endpoints included adverse events. This trial is registered with ClinicalTrials.gov (NCT03700476) and is now completed; follow-up is ongoing. FINDINGS: Between Dec 21, 2018, and March 31, 2020, 425 patients were enrolled and randomly assigned to the sintilimab (n=210) or standard therapy groups (n=215). At median follow-up of 41·9 months (IQR 38·0-44·8; 389 alive at primary data cutoff [Feb 28, 2023] and 366 [94%] had at least 36 months of follow-up), event-free survival was higher in the sintilimab group compared with the standard therapy group (36-month rates 86% [95% CI 81-90] vs 76% [70-81]; stratified hazard ratio 0·59 [0·38-0·92]; p=0·019). Grade 3-4 adverse events occurred in 155 (74%) in the sintilimab group versus 140 (65%) in the standard therapy group, with the most common being stomatitis (68 [33%] vs 64 [30%]), leukopenia (54 [26%] vs 48 [22%]), and neutropenia (50 [24%] vs 46 [21%]). Two (1%) patients died in the sintilimab group (both considered to be immune-related) and one (<1%) in the standard therapy group. Grade 3-4 immune-related adverse events occurred in 20 (10%) patients in the sintilimab group. INTERPRETATION: Addition of sintilimab to chemoradiotherapy improved event-free survival, albeit with higher but manageable adverse events. Longer follow-up is necessary to determine whether this regimen can be considered as the standard of care for patients with high-risk locoregionally advanced nasopharyngeal carcinoma. FUNDING: National Natural Science Foundation of China, Key-Area Research and Development Program of Guangdong Province, Natural Science Foundation of Guangdong Province, Overseas Expertise Introduction Project for Discipline Innovation, Guangzhou Municipal Health Commission, and Cancer Innovative Research Program of Sun Yat-sen University Cancer Center. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Quimioradioterapia , Quimioterapia de Inducción , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Humanos , Persona de Mediana Edad , Masculino , Femenino , Carcinoma Nasofaríngeo/terapia , Carcinoma Nasofaríngeo/tratamiento farmacológico , Adulto , China/epidemiología , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/terapia , Quimioradioterapia/métodos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/efectos adversos , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anciano , Cisplatino/uso terapéutico , Cisplatino/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Gemcitabina , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapéutico , Desoxicitidina/administración & dosificación , Adulto Joven , Adolescente , Supervivencia sin Progresión
9.
Biochem Biophys Res Commun ; 716: 150011, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704890

RESUMEN

Methionine adenosyltransferase 2 A (MAT2A) mediates the synthesis of methyl donor S-Adenosylmethionine (SAM), providing raw materials for methylation reactions in cells. MAT2A inhibitors are currently used for the treatment of tumors with methylthioadenosine phosphorylase (MTAP) deficiency in clinical research. Methyltransferase like 3 (METTL3) catalyzes N6-methyladenosine (m6A) modification of mRNA in mammalian cells using SAM as the substrate which has been shown to affect the tumorigenesis of non-small cell lung cancer (NSCLC) from multiple perspectives. MAT2A-induced SAM depletion may have the potential to inhibit the methyl transfer function of METTL3. Therefore, in order to expand the applicability of inhibitors, improve anti-tumor effects and reduce toxicity, the combinational effect of MAT2A inhibitor AG-270 and METTL3 inhibitor STM2457 was evaluated in NSCLC. The results showed that this combination induced cell apoptosis rather than cell cycle arrest, which was non-tissue-specific and was independent of MTAP expression status, resulting in a significant synergistic anti-tumor effect. We further elucidated that the combination-induced enhanced apoptosis was associated with the decreased m6A level, leading to downregulation of PI3K/AKT protein, ultimately activating the apoptosis-related proteins. Unexpectedly, although combination therapy resulted in metabolic recombination, no significant change in methionine metabolic metabolites was found. More importantly, the combination also exerted synergistic effects in vivo. In summary, the combination of MAT2A inhibitor and METTL3 inhibitor showed synergistic effects both in vivo and in vitro, which laid a theoretical foundation for expanding the clinical application research of the two types of drugs.


Asunto(s)
Apoptosis , Carcinoma de Pulmón de Células no Pequeñas , Sinergismo Farmacológico , Neoplasias Pulmonares , Metionina Adenosiltransferasa , Metiltransferasas , Animales , Humanos , Ratones , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Inhibidores Enzimáticos/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Metionina Adenosiltransferasa/metabolismo , Metionina Adenosiltransferasa/antagonistas & inhibidores , Metionina Adenosiltransferasa/genética , Metiltransferasas/metabolismo , Metiltransferasas/antagonistas & inhibidores , Ratones Endogámicos BALB C , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Biochem Pharmacol ; 223: 116198, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38588830

RESUMEN

Agents that inhibit bromodomain and extra-terminal domain (BET) proteins have been actively tested in the clinic as potential anticancer drugs. NEDD8-activating enzyme (NAE) inhibitors, represented by MLN4924, target the only activation enzyme in the neddylation pathway that has been identified as an attractive target for cancer therapy. In this study, we focus on the combination of BET inhibitors (BETis) and NAE inhibitors (NAEis) as a cancer therapeutic strategy and investigate its underlying mechanisms to explore and expand the application scope of both types of drugs. The results showed that this combination synergistically inhibited the proliferative activity of tumor cells from different tissues. Compared to a single drug, combination therapy had a weak effect on cycle arrest but significantly enhanced cell apoptosis. Furthermore, the growth of NCI-H1975 xenografts in nude mice was significantly inhibited by the combination without obvious body weight loss. Research on the synergistic mechanism demonstrated that combination therapy significantly increased the mRNA and protein levels of the proapoptotic gene BIM. The inhibition and knockout of BIM significantly attenuated the apoptosis induced by the combination, whereas the re-expression of BIM restored the synergistic effects, indicating that BIM induction plays a critical role in mediating the enhanced apoptosis induced by the co-inhibition of BET and NAE. Together, the enhanced transcription mediated by miR-17-92 cluster inhibition and reduced degradation promoted the increase in BIM levels, resulting in a synergistic effect. Collectively, these findings highlight the need for further clinical investigation into the combination of BETi and NAEi as a promising strategy for cancer therapy.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Humanos , Ratones , Antineoplásicos/farmacología , Apoptosis , Línea Celular Tumoral , Ciclopentanos/farmacología , Ratones Desnudos , Proteína 11 Similar a Bcl2/metabolismo
11.
Anal Chem ; 96(15): 5931-5939, 2024 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-38573171

RESUMEN

Cuproptosis is a novel copper-dependent form of programmed cell death, displaying important regulatory functions in many human diseases, including cancer. However, the relationship between the changes in mitochondrial viscosity, a key factor associated with cellular malfunction, and cuproptosis is still unclear. Herein, we prepared a phosphorescent iridium (Ir) complex probe for precisely monitoring the changes of mitochondrial viscosity during cuprotosis via phosphorescence lifetime imaging. The Ir complex probe possessed microsecond lifetimes (up to 1 µs), which could be easily distinguished from cellular autofluorescence to improve the imaging contrast and sensitivity. Benefiting from the long phosphorescence lifetime, excellent viscosity selectivity, and mitochondrial targeting abilities, the Ir complex probe could monitor the increase in the mitochondrial viscosity during cuproptosis (from 46.8 to 68.9 cP) in a quantitative manner. Moreover, through in situ fluorescence imaging, the Ir complex probe successfully monitored the increase in viscosity in zebrafish treated with lipopolysaccharides or elescolomol-Cu2+, which were well-known cuproptosis inducers. We anticipate that this new Ir complex probe will be a useful tool for in-depth understanding of the biological effects of mitochondrial viscosity during cuproptosis.


Asunto(s)
Iridio , Pez Cebra , Animales , Humanos , Viscosidad , Pez Cebra/metabolismo , Línea Celular Tumoral , Células HeLa
12.
Sci Rep ; 14(1): 5879, 2024 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467774

RESUMEN

Traditional vision screenings in schools are limited to simple visual tasks, yet students in their daily learning face more complex visual environments. Binocular rivalry tasks can partially simulate the visual challenges of real visual environments and activate advanced visual processing mechanisms that simple visual tasks cannot. Therefore, by superimposing binocular rivalry-state tasks onto simple visual tasks, we have developed an innovative vision screening program to rapidly and extensively assess students' visual performance in complex environments. This is a cross-sectional study in which we investigated the performance of 1126 grade 1-6 students from a primary school in Wuxi, China, in rivalry-state stereoscopic vision tasks. The correlation between the screening results of 1044 students and their academic achievements was also statistically analyzed. The study results revealed pass rates of 53.5-60.5% across various visual tests. Specifically, for first-grade students, there was a statistically significant difference in standardized Chinese scores between the group that failed and the group that passed the rivalry-state stereoscopic vision test (- 0.49 ± 3.42 vs. 0.22 ± 0.58, t = - 2.081, P = 0.04). This result underscores the importance of focusing on the visual adaptability of first graders in complex environments.Trail registration: Ethics Committee of Affiliated Children's Hospital of Jiangnan University-Certificate number: WXCH2022-04-027.


Asunto(s)
Éxito Académico , Estudiantes , Niño , Humanos , Estudios Transversales , Percepción Visual/fisiología , Instituciones Académicas , Visión Binocular/fisiología
13.
Int Immunopharmacol ; 130: 111680, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38368772

RESUMEN

Fulminant hepatitis (FH) is a severe clinical syndrome leading to hepatic failure and even mortality. D-galactosamine (D-GalN) plus lipopolysaccharide (LPS) challenge is commonly used to establish an FH mouse model, but the mechanism underlying D-GalN/LPS-induced liver injury is incompletely understood. Previously, it has been reported that extracellular ATP that can be released under cytotoxic and inflammatory stresses serves as a damage signal to induce potassium ion efflux and trigger the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome activation through binding to P2X7 receptor. In this study, we tried to investigate whether it contributed to the fulminant hepatitis (FH) induced by D-GalN plus LPS. In an in vitro cellular model, D-GalN plus extracellular ATP, instead of D-GalN alone, induced pyroptosis and apoptosis, accompanied by mitochondrial reactive oxygen species (ROS) burst, and the oligomerization of Drp1, Bcl-2, and Bak, as well as the loss of mitochondrial membrane potential in LPS-primed macrophages, well reproducing the events induced by D-GalN and LPS in vivo. Moreover, these events in the cellular model were markedly suppressed by both A-804598 (an ATP receptor P2X7R inhibitor) and glibenclamide (an ATP-sensitive potassium ion channel inhibitor); in the FH mouse model, administration of A-804598 significantly mitigated D-GalN/LPS-induced hepatic injury, mitochondrial damage, and the activation of apoptosis and pyroptosis signaling, corroborating the contribution of extracellular ATP to the cell death. Collectively, our data suggest that extracellular ATP acts as an autologous damage-associated molecular pattern to augment mitochondrial damage, hepatic cell death, and liver injury in D-GalN/LPS-induced FH mouse model.


Asunto(s)
Guanidinas , Lipopolisacáridos , Necrosis Hepática Masiva , Quinolinas , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Lipopolisacáridos/farmacología , Galactosamina/farmacología , Hígado/metabolismo , Apoptosis , Adenosina Trifosfato/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
14.
Heliyon ; 10(2): e24867, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38312576

RESUMEN

Background: Immunosuppressive treatment in heart transplant (HTx) recipient causes osteoporosis. The urinary proteomic profile (UPP) includes peptide fragments derived from the bone extracellular matrix. Study aims were to develop and validate a multidimensional UPP biomarker for osteoporosis in HTx patients from single sequenced urinary peptides identifying the parent proteins. Methods: A single-center HTx cohort was analyzed. Urine samples were measured by capillary electrophoresis coupled with mass spectrometry. Cases with osteoporosis and matching controls were randomly selected from all available 389 patients. In derivation case-control dataset, 1576 sequenced peptides detectable in ≥30 % of patients. Applying statistical analysis on these, an 18-peptide multidimensional osteoporosis UPP biomarker (OSTEO18) was generated by support vector modeling. The 2 replication datasets included 118 and 94 patients. For further validation, the whole cohort was analyzed. Statistical methods included logistic regression and receiver operating characteristic curve (ROC) analysis. Results: In derivation dataset, the AUC, sensitivity and specificity of OSTEO18 were 0.83 (95 % CI: 0.76-0.90), 74.3 % and 87.1 %, respectively. In replication datasets, results were confirmatory. In the whole cohort (154 osteoporotic patients [39.6 %]), the ORs for osteoporosis increased (p < 0.0001) across OSTEO18 quartiles from 0.39 (95 % CI: 0.25-0.61) to 3.14 (2.08-4.75). With full adjustment for known osteoporosis risk factors, OSTEO18 improved AUC from 0.708 to 0.786 (p = 0.0003) for OSTEO18 categorized (optimized threshold: 0.095) and to 0.784 (p = 0.0004) for OSTEO18 as continuously distributed classifier. Conclusion: OSTEO18 is a clinically meaningful novel biomarker indicative of osteoporosis in HTx recipients and is being certified as in-vitro diagnostic.

15.
J Exp Clin Cancer Res ; 43(1): 14, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38191501

RESUMEN

BACKGROUND: Metastasis has emerged as the major reason of treatment failure and mortality in patients with nasopharyngeal carcinoma (NPC). Growing evidence links abnormal DNA methylation to the initiation and progression of NPC. However, the precise regulatory mechanism behind these processes remains poorly understood. METHODS: Bisulfite pyrosequencing, RT-qPCR, western blot, and immunohistochemistry were used to test the methylation and expression level of NEURL3 and its clinical significance. The biological function of NEURL3 was examined both in vitro and in vivo. Mass spectrometry, co-immunohistochemistry, immunofluorescence staining, and ubiquitin assays were performed to explore the regulatory mechanism of NEURL3. RESULTS: The promoter region of NEURL3, encoding an E3 ubiquitin ligase, was obviously hypermethylated, leading to its downregulated expression in NPC. Clinically, NPC patients with a low NEURL3 expression indicated an unfavorable prognosis and were prone to develop distant metastasis. Overexpression of NEURL3 could suppress the epithelial mesenchymal transition and metastasis of NPC cells in vitro and in vivo. Mechanistically, NEURL3 promoted Vimentin degradation by increasing its K48-linked polyubiquitination at lysine 97. Specifically, the restoration of Vimentin expression could fully reverse the tumor suppressive effect of NEURL3 overexpression in NPC cells. CONCLUSIONS: Collectively, our study uncovers a novel mechanism by which NEURL3 inhibits NPC metastasis, thereby providing a promising therapeutic target for NPC treatment.


Asunto(s)
Neoplasias Nasofaríngeas , Ubiquitina-Proteína Ligasas , Humanos , Carcinoma Nasofaríngeo/genética , Ubiquitina-Proteína Ligasas/genética , Vimentina/genética , Transición Epitelial-Mesenquimal , Neoplasias Nasofaríngeas/genética
16.
Anal Chim Acta ; 1288: 342153, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38220287

RESUMEN

Transition metal carbonyl compound of CO releasing molecules (CORMs) are widely used to treat arthritis, tumor and immune. They play a physiological role by directly acting on target tissues to release CO for disease treatment without matrix metabolism after dissolution. It is important to track the level and diffusion process of CORMs in vivo to control CO dose and distribution, facilitating to understand the roles of CORMs in disease treatment. Herein, we designed two red ring Ir1/2 complexes with a large stokes shift. Both Ir1 and Ir2 complexes probes can sensitively and selectively respond to CORM-2. The probe Ir1 exhibits rapid reaction with CORM-2 in Phosphate Buffered Saline within 1 min, showing a detection limitation of 0.13 µM and manifesting a linear relationship with the CORM-2 concentration from 0 to 70 µM at λem = 618 nm. Due to low toxicity even after 12 h exposure and fluorescence stability, this probe has been successfully used for continuous tracking the diffusion process of CORM-2 in living cells for up to 60 min and visualizing CORM-2 distribution in zebrafish. Additionally, this probe showed a good capacity for deep penetration (126 µm), suggesting the potential in detecting CORM-2 in living tissues.


Asunto(s)
Neoplasias , Compuestos Organometálicos , Animales , Pez Cebra , Iridio , Compuestos Organometálicos/toxicidad
17.
Inflammation ; 47(1): 285-306, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37759136

RESUMEN

Itaconate is an unsaturated dicarboxylic acid that is derived from the decarboxylation of the Krebs cycle intermediate cis-aconitate and has been shown to exhibit anti-inflammatory and anti-bacterial/viral properties. But the mechanisms underlying itaconate's anti-inflammatory activities are not fully understood. Necroptosis, a lytic form of regulated cell death (RCD), is mediated by receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like protein (MLKL) signaling. It has been involved in the pathogenesis of organ injury in many inflammatory diseases. In this study, we aimed to explore whether itaconate and its derivatives can inhibit necroptosis in murine macrophages, a mouse MPC-5 cell line and a human HT-29 cell line in response to different necroptotic activators. Our results showed that itaconate and its derivatives dose-dependently inhibited necroptosis, among which dimethyl itaconate (DMI) was the most effective one. Mechanistically, itaconate and its derivatives inhibited necroptosis by suppressing the RIPK1/RIPK3/MLKL signaling and the oligomerization of MLKL. Furthermore, DMI promoted the nuclear translocation of Nrf2 that is a critical regulator of intracellular redox homeostasis, and reduced the levels of intracellular reactive oxygen species (ROS) and mitochondrial superoxide (mtROS) that were induced by necroptotic activators. Consistently, DMI prevented the loss of mitochondrial membrane potential induced by the necroptotic activators. In addition, DMI mitigated caerulein-induced acute pancreatitis in mice accompanied by reduced activation of the necroptotic signaling in vivo. Collectively, our study demonstrates that itaconate and its derivatives can inhibit necroptosis by suppressing the RIPK1/RIPK3/MLKL signaling, highlighting their potential applications for treating necroptosis-associated diseases.


Asunto(s)
Pancreatitis , Proteínas Quinasas , Succinatos , Ratones , Humanos , Animales , Proteínas Quinasas/metabolismo , Enfermedad Aguda , Antiinflamatorios , Apoptosis
18.
Qual Life Res ; 33(3): 745-752, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38064016

RESUMEN

OBJECTIVE: This study aimed to translate and culturally adapt the standardized outcomes in nephrology-hemodialysis fatigue (SONG-HD fatigue) scale and to assess the psychometric properties of the Chinese version of the SONG-HD fatigue (C-SONG-HD fatigue) scale. METHODS: Forward and back translations were used to translate the SONG-HD fatigue scale into Chinese. We used the C-SONG-HD fatigue scale to survey Chinese patients undergoing hemodialysis (HD) in China. We examined the distribution of responses and floor and ceiling effects. Cronbach's alpha and McDonald's omega coefficient, intraclass coefficients, and Spearman correlations were used to assess internal consistency reliability, test-retest reliability, and convergent validity, respectively. Responsiveness was also evaluated. RESULTS: In total, 489 participants across southeast China, northwest China, and central China completed the study. The C-SONG-HD fatigue scale had good internal consistency (Cronbach's alpha coefficient 0.861, omega coefficient 0.916), test-retest reliability (intraclass correlation coefficient 0.695), and convergent validity (Spearman correlation 0.691). The analysis of all first-time HD patients did not show notable responsiveness, and only patients with temporary vascular access had good responsiveness with an effect size (ES) of 0.54, a standardized response mean (SRM) of 0.85, and a standard error of measurement (SEM) of 0.77. CONCLUSION: The Chinese version of the SONG-HD fatigue scale showed satisfactory reliability and validity in patients undergoing hemodialysis (HD) in China. It could be used as a tool to measure the fatigue of Chinese HD patients.


Asunto(s)
Nefrología , Humanos , Reproducibilidad de los Resultados , Calidad de Vida/psicología , Encuestas y Cuestionarios , Diálisis Renal , Fatiga/terapia , China , Psicometría , Traducciones
19.
Free Radic Biol Med ; 212: 117-132, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38151213

RESUMEN

Damage-associated molecular patterns (DAMPs) such as extracellular ATP and nigericin (a bacterial toxin) not only act as potassium ion (K+) efflux inducers to activate NLRP3 inflammasome, leading to pyroptosis, but also induce cell death independently of NLRP3 expression. However, the roles of energy metabolism in determining NLRP3-dependent pyroptosis and -independent necrosis upon K+ efflux are incompletely understood. Here we established cellular models by pharmacological blockade of energy metabolism, followed by stimulation with a K+ efflux inducer (ATP or nigericin). Two energy metabolic inhibitors, namely CPI-613 that targets α-ketoglutarate dehydrogenase and pyruvate dehydrogenase (a rate-limiting enzyme) and 2-deoxy-d-glucose (2-DG) that targets hexokinase, are recruited in this study, and Nlrp3 gene knockout macrophages were used. Our data showed that CPI-613 and 2-DG dose-dependently inhibited NLRP3 inflammasome activation, but profoundly increased cell death in the presence of ATP or nigericin. The cell death was K+ efflux-induced but NLRP3-independent, which was associated with abrupt reactive oxygen species (ROS) production, reduction of mitochondrial membrane potential, and oligomerization of mitochondrial proteins, all indicating mitochondrial damage. Notably, the cell death induced by K+ efflux and blockade of energy metabolism was distinct from pyroptosis, apoptosis, necroptosis or ferroptosis. Furthermore, fructose 1,6-bisphosphate, a high-energy intermediate of glycolysis, significantly suppressed CPI-613+nigericin-induced mitochondrial damage and cell death. Collectively, our data show that energy deficiency diverts NLRP3 inflammasome activation-dependent pyroptosis to Nlrp3-independent necrosis upon K+ efflux inducers, which can be dampened by high-energy intermediate, highlighting a critical role of energy metabolism in cell survival and death under inflammatory conditions.


Asunto(s)
Caprilatos , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Sulfuros , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/genética , Inflamasomas/metabolismo , Nigericina/farmacología , Potasio/metabolismo , Necrosis/genética , Metabolismo Energético/genética , Adenosina Trifosfato/metabolismo , Interleucina-1beta/metabolismo , Especies Reactivas de Oxígeno/metabolismo
20.
Sensors (Basel) ; 23(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38067724

RESUMEN

Carrier phase measurements currently play a crucial role in achieving rapid and highly accurate positioning of global navigation satellite systems (GNSS). Resolving the integer ambiguity correctly is one of the key steps in this process. To address the inefficiency and slow search problem during ambiguity solving, we propose a single-frequency GNSS integer ambiguity solving based on an adaptive genetic particle swarm optimization (AGPSO) algorithm. Initially, we solve for the floating-point solution and its corresponding covariance matrix using the carrier-phase double difference equation. Subsequently, we decorrelate it using the inverse integer Cholesky algorithm. Furthermore, we introduce an improved fitness function to enhance convergence and search performance. Finally, we combine a particle swarm optimization algorithm with adaptive weights to conduct an integer ambiguity search, where each generation selectively undergoes half-random crossover and mutation operations to facilitate escaping local optima. Comparative studies against traditional algorithms and other intelligent algorithms demonstrate that the AGPSO algorithm exhibits faster convergence rates, improved stability in integer ambiguity search results, and in practical experiments the baseline accuracy of the solution is within 0.02 m, which has some application value in the practical situation of short baselines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA