Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(33): 35744-35756, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39184503

RESUMEN

Understanding the effects of laser light, water vapor, and energetic electron irradiation on the intrinsic properties of perovskites is important in the development of perovskite-based solar cells. Various phase transition and degradation processes have been reported when these agents interact with perovskites separately. However, detailed studies of their synergistic effects are still missing. In this work, the synergistic effect of three factors (exposure to laser light, water vapor, and e-beam) on the optical and physical properties of two-dimensional (2D) Ruddlesden-Popper (RP) perovskite flakes [(BA)2(MA)2Pb3Br10] has been investigated in an environmental cell. When the perovskite flakes were subjected to moderate laser irradiation in a humid environment after prior e-beam irradiation, the photoluminescence (PL) peak centered at 480 nm vanished, while a new PL peak centered at 525 nm emerged, grew, and then quenched. This indicates the degradation process of the 2D RP perovskite was a phase transition to a three-dimensional (3D) perovskite [MAPbBr3] followed by the degradation of 3D perovskite. The spatial distribution of the 525 nm PL signal shows that this phase-transition process spreads across the flake to the area as far as ∼40 µm from the laser spot. Without humidity, the phase transition happened in the laser-irritated area but did not spread, which suggests that moisture enhanced the ion migration from the laser-scanned area to the rest of the flake and accelerated the phase transition in the nearby area. Experiments with no prior e-beam irradiation show that e-beam irradiation is the key to activating the 2D-3D phase transition. Therefore, when the three factors work synergistically, a conversion from the 2D RP perovskite into the 3D perovskite is not localized and propagates through the perovskite. These findings contribute to our understanding of the complex interactions between external stimuli and perovskite materials, thereby advancing the development of efficient and stable perovskite-based solar cells.

2.
iScience ; 26(11): 108265, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38026192

RESUMEN

Native pollinators are crucial to local ecosystems but are under threat with the introduction of managed pollinators, e.g., honeybees (Apis mellifera). We explored the feasibility of employing the entomological lidar technique in native pollinator abundance studies. This study included individuals of both genders of three common solitary bee species, Osmia californica, Osmia lignaria, and Osmia ribifloris, native to North America. Properties including optical cross-section, degree of linear polarization, and wingbeat power spectra at all three wavelengths have been extracted from the insect signals collected by a compact stand-off sensing system. These properties are then used in the classification analysis. For species with temporal and spatial overlapping, the highest accuracies of our method exceed 96% (O. ribifloris & O. lignaria) and 93% (O. lignaria & O. californica). The benefit of employing the seasonal activity and foraging preference information in enhancing identification accuracy has been emphasized.

3.
Proc Natl Acad Sci U S A ; 120(30): e2218826120, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37463207

RESUMEN

Development of a simple, label-free screening technique capable of precisely and directly sensing interaction-in-solution over a size range from small molecules to large proteins such as antibodies could offer an important tool for researchers and pharmaceutical companies in the field of drug development. In this work, we present a thermostable Raman interaction profiling (TRIP) technique that facilitates low-concentration and low-dose screening of binding between protein and ligand in physiologically relevant conditions. TRIP was applied to eight protein-ligand systems, and produced reproducible high-resolution Raman measurements, which were analyzed by principal component analysis. TRIP was able to resolve time-depending binding between 2,4-dinitrophenol and transthyretin, and analyze biologically relevant SARS-CoV-2 spike-antibody interactions. Mixtures of the spike receptor-binding domain with neutralizing, nonbinding, or binding but nonneutralizing antibodies revealed distinct and reproducible Raman signals. TRIP holds promise for the future developments of high-throughput drug screening and real-time binding measurements between protein and drug.


Asunto(s)
COVID-19 , Microscopía , Humanos , SARS-CoV-2 , Evaluación Preclínica de Medicamentos , Ligandos , Anticuerpos Antivirales , Interacciones Farmacológicas , Glicoproteína de la Espiga del Coronavirus/metabolismo , Anticuerpos Neutralizantes
4.
Sci Rep ; 12(1): 1263, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35075142

RESUMEN

In a viral pandemic, a few important tests are required for successful containment of the virus and reduction in severity of the infection. Among those tests, a test for the neutralizing ability of an antibody is crucial for assessment of population immunity gained through vaccination, and to test therapeutic value of antibodies made to counter the infections. Here, we report a sensitive technique to detect the relative neutralizing strength of various antibodies against the SARS-CoV-2 virus. We used bright, photostable, background-free, fluorescent upconversion nanoparticles conjugated with SARS-CoV-2 receptor binding domain as a phantom virion. A glass bottom plate coated with angiotensin-converting enzyme 2 (ACE-2) protein imitates the target cells. When no neutralizing IgG antibody was present in the sample, the particles would bind to the ACE-2 with high affinity. In contrast, a neutralizing antibody can prevent particle attachment to the ACE-2-coated substrate. A prototype system consisting of a custom-made confocal microscope was used to quantify particle attachment to the substrate. The sensitivity of this assay can reach 4.0 ng/ml and the dynamic range is from 1.0 ng/ml to 3.2 [Formula: see text]g/ml. This is to be compared to 19 ng/ml sensitivity of commercially available kits.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Prueba Serológica para COVID-19 , COVID-19/inmunología , Nanopartículas/química , SARS-CoV-2/inmunología , Enzima Convertidora de Angiotensina 2/química , Fluoroinmunoensayo , Humanos , Pruebas de Neutralización
5.
ArXiv ; 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34671697

RESUMEN

In a viral pandemic, a few important tests are required for successful containment of the virus and reduction in severity of the infection. Among those tests, a test for the neutralizing ability of an antibody is crucial for assessment of population immunity gained through vaccination, and to test therapeutic value of antibodies made to counter the infections. Here, we report a sensitive technique to detect the relative neutralizing strength of various antibodies against the SARS-CoV-2 virus. We used bright, photostable, background-free, fluorescent upconversion nanoparticles conjugated with SARS-CoV-2 receptor binding domain as a phantom virion. A glass bottom plate coated with angiotensin-converting enzyme 2 (ACE-2) protein imitates the target cells. When no neutralizing IgG antibody was present in the sample, the particles would bind to the ACE-2 with high affinity. In contrast, a neutralizing antibody can prevent particle attachment to the ACE-2-coated substrate. A prototype system consisting of a custom-made confocal microscope was used to quantify particle attachment to the substrate. The sensitivity of this assay can reach 4.0 ng/ml and the dynamic range is from 1.0 ng/ml to 3.2 {\mu}g/ml. This is to be compared to 19 ng/ml sensitivity of commercially available kits.

6.
Opt Lett ; 45(19): 5428-5431, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33001920

RESUMEN

We show that waveguide sensors can enable a quantitative characterization of coronavirus spike glycoprotein-host-receptor binding-the process whereby coronaviruses enter human cells, causing disease. We demonstrate that such sensors can help quantify and eventually understand kinetic and thermodynamic properties of viruses that control their affinity to targeted cells, which is known to significantly vary in the course of virus evolution, e.g., from SARS-CoV to SARS-CoV-2, making the development of virus-specific drugs and vaccine difficult. With the binding rate constants and thermodynamic parameters as suggested by the latest SARS-CoV-2 research, optical sensors of SARS-CoV-2 spike protein-receptor binding may be within sight.


Asunto(s)
Betacoronavirus , Técnicas Biosensibles , Infecciones por Coronavirus , Óptica y Fotónica/instrumentación , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral , Receptores Virales/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2 , Sitios de Unión , COVID-19 , Humanos , Unión Proteica/fisiología , SARS-CoV-2
7.
Proc Natl Acad Sci U S A ; 117(45): 27820-27824, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33093197

RESUMEN

From the famous 1918 H1N1 influenza to the present COVID-19 pandemic, the need for improved viral detection techniques is all too apparent. The aim of the present paper is to show that identification of individual virus particles in clinical sample materials quickly and reliably is near at hand. First of all, our team has developed techniques for identification of virions based on a modular atomic force microscopy (AFM). Furthermore, femtosecond adaptive spectroscopic techniques with enhanced resolution via coherent anti-Stokes Raman scattering (FASTER CARS) using tip-enhanced techniques markedly improves the sensitivity [M. O. Scully, et al, Proc. Natl. Acad. Sci. U.S.A. 99, 10994-11001 (2002)].


Asunto(s)
Microscopía de Fuerza Atómica/métodos , SARS-CoV-2/ultraestructura , Espectrometría Raman/métodos , Rayos Láser/normas , Límite de Detección , Microscopía de Fuerza Atómica/instrumentación , Espectrometría Raman/instrumentación , Tiempo , Virión/ultraestructura
8.
Appl Phys Lett ; 117(12): 120601, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-33012808

RESUMEN

Lateral flow assay (LFA) has long been used as a biomarker detection technique. It has advantages such as low cost, rapid readout, portability, and ease of use. However, its qualitative readout process and lack of sensitivity are limiting factors. We report a photon-counting approach to accurately quantify LFAs while enhancing sensitivity. In particular, we demonstrate that the density of SARS-CoV-2 antibodies can be quantified and measured with an enhanced sensitivity using this simple laser optical analysis.

10.
J Phys Chem Lett ; 10(15): 4448-4454, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31304758

RESUMEN

Molecular polaritons created by the strong coupling between matter and field in microcavities enable the control of molecular dynamical processes and optical response. Multidimensional infrared spectroscopy is proposed for monitoring the polariton-assisted cooperative properties. The response of molecules to local fluctuations is incorporated and the full dynamics is monitored through the time- and frequency-resolved multidimensional signal. The cooperativity against solvent-induced disorder and its connection to the localization of the vibrational excitations are predicted. New insights are provided for recent 2DIR experiments on vibrational polaritons.

11.
Phys Rev Lett ; 120(6): 063602, 2018 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-29481233

RESUMEN

In this Letter we present a new technique for attaining efficient low-background coherent Raman scattering where the Raman coherence is mediated by a tunable infrared laser in two-photon resonance with a chosen vibrational transition. In addition to the traditional benefits of conventional coherent Raman schemes, this approach offers a number of advantages including potentially higher emission intensity, reduction of nonresonant four-wave mixing background, preferential excitation of the anti-Stokes field, and simplified phase matching conditions. In particular, this is demonstrated in gaseous methane along the ν_{1} (A_{1}) and ν_{3} (T_{2}) vibrational levels using an infrared field tuned between 1400 and 1600 cm^{-1} and a 532-nm pump field. This approach has broad applications, from coherent light generation to spectroscopic remote sensing and chemically specific imaging in microscopy.

12.
Sci Rep ; 2: 626, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22953047

RESUMEN

Faithful transmission of quantum information is a crucial ingredient in quantum communication networks. To overcome the unavoidable decoherence in a noisy channel, to date, many efforts have been made to transmit one state by consuming large numbers of time-synchronized ancilla states. However, such huge demands of quantum resources are hard to meet with current technology and this restricts practical applications. Here we experimentally demonstrate quantum error detection, an economical approach to reliably protecting a qubit against bit-flip errors. Arbitrary unknown polarization states of single photons and entangled photons are converted into time bins deterministically via a modified Franson interferometer. Noise arising in both 10 m and 0.8 km fiber, which induces associated errors on the reference frame of time bins, is filtered when photons are detected. The demonstrated resource efficiency and state independence make this protocol a promising candidate for implementing a real-world quantum communication network.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA