Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; : 135500, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39276906

RESUMEN

Polysaccharides from sea cucumbers are known for their biological activities, but little is known about those from sea cucumber viscera. The present study isolated a sulfated polysaccharide (SCVP-2) from the viscera of Apostichopus japonicas, which had a molecular weight of 209.1 kDa. SCVP-2 comprised 66.3 % total sugars, 2.1 % uronic acid, 4.5 % proteins, and 25.5 % sulfate groups, containing glucosamine, galactosamine, glucose, galactose, and fucose. FT-IR and NMR analyses identified SCVP-2 as a fucoidan sulfate with sulfation patterns of the fucose branches as Fuc2S, Fuc4S, and Fuc0S. SEM and AFM analyses showed irregular clusters and linear conformations. SCVP-2 demonstrated strong anti-inflammatory properties both in vitro and in vivo. In lipopolysaccharide (LPS)-induced inflammation in macrophage RAW264.7 cells, SCVP-2 significantly reduced nitric oxide (NO) and cytokine secretion (IL-1ß, IL-6, TNF-α). Additionally, it downregulated the expression of these cytokine genes. Furthermore, the anti-inflammatory mechanism of SCVP-2 was related to the inhibition of the MAPKs and NF-κB pathways. SCVP-2's anti-inflammatory capacity was confirmed in acute inflammation models, including xylene-induced ear swelling and acetic acid-induced peritoneal capillary permeability, and in high-fat diet-induced systemic low-grade chronic inflammation. In conclusion, SCVP-2 exhibits significant anti-inflammatory activity, suggesting its potential for development as a functional food ingredient or therapeutic agent for inflammation-related diseases.

2.
Int J Biol Macromol ; 155: 1003-1018, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31712137

RESUMEN

A novel sulfated polysaccharide (SCVP-1) was isolated from sea cucumber viscera and purified to elucidate its structure and immune-enhancing ability. SCVP-1 was found to be a homogeneous polysaccharide with a relative molecular weight of 180.8 kDa and composed of total sugars (60.2 ±â€¯2.6%), uronic acid (15.3 ±â€¯1.8%), proteins (6.8 ±â€¯0.8%), and sulfate groups (18.1 ±â€¯0.9%). SCVP-1 consisted of mannose, glucosamine, glucuronic acid, N-acetyl-galactosamine, glucose, galactose and fucose at an approximate molar ratio of 1.00:1.41:0.88:2.14:1.90:1.12:1.24. The fourier transform infrared spectra (FT-IR) and nuclear magnetic resonance (NMR) analyses showed that SCVP-1 was a kind of glycosaminoglycan. And the sulfation patterns of the fucose branches were Fuc2,4S, Fuc3,4S and Fuc0S. The surface morphology of SCVP-1 presented loose and irregular sheet structure formed by aggregation of polysaccharide molecules with spherical structure. Moreover, SCVP-1 promoted the production of nitric oxide (NO) and cytokines (IL-1ß, IL-6 and TNF-α) by RAW264.7 cells as well as the expression of related genes (iNOS, IL-1ß, IL-6 and TNF-α) and also enhanced their phagocytic activity through TLR4-mediated activation of the MAPKs and NF-κB signaling pathways. This study suggests that sea cucumber viscera are good sources of polysaccharides and SCVP-1 might be a novel immunomodulator.


Asunto(s)
Factores Inmunológicos/farmacología , Macrófagos/inmunología , Polisacáridos/aislamiento & purificación , Polisacáridos/farmacología , Pepinos de Mar/química , Sulfatos/química , Vísceras/química , Animales , Línea Celular , Citocinas/metabolismo , Factores Inmunológicos/química , Factores Inmunológicos/aislamiento & purificación , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , FN-kappa B/metabolismo , Polisacáridos/química , Pepinos de Mar/inmunología , Pepinos de Mar/metabolismo , Receptor Toll-Like 4/metabolismo , Vísceras/inmunología , Vísceras/metabolismo
3.
Mar Drugs ; 17(10)2019 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-31547097

RESUMEN

Type 2 diabetes mellitus (T2DM) accounts for more than 90% of cases of diabetes mellitus, which is harmful to human health. Herein, neoagaro-oligosaccharides (NAOs) were prepared and their potential as a treatment of T2DM was evaluated in KunMing (KM) mice. Specifically, a T2DM mice model was established by the combination of a high-fat diet (HFD) and alloxan injection. Consequently, the mice were given different doses of NAOs (100, 200, or 400 mg/kg) and the differences among groups of mice were recorded. As a result of the NAOs treatment, the fasting blood glucose (FBG) was lowered and the glucose tolerance was improved as compared with the model group. As indicated by the immunohistochemistry assay, the NAOs treatment was able to ameliorate hepatic macrovesicular steatosis and hepatocyte swelling, while it also recovered the number of pancreatic ß-cells. Additionally, NAOs administration benefited the antioxidative capacity in mice as evidenced by the upregulation of both glutathione peroxidase and superoxide dismutase activity and the significant reduction of the malondialdehyde concentration. Furthermore, NAOs, as presented by Western blotting, increased the expression of p-ERK1/2, p-JNK, NQO1, HO-1, and PPARγ, via the MAPK, Nrf2, and PPARγ signaling pathways, respectively. In conclusion, NAOs can be used to treat some complications caused by T2DM, and are beneficial in controlling the level of blood glucose and ameliorating the damage of the liver and pancreatic islands.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Oligosacáridos/farmacología , Animales , Antioxidantes/metabolismo , Glucemia/efectos de los fármacos , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa/efectos adversos , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , PPAR gamma/metabolismo , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA