RESUMEN
New nanoparticles containing biomaterials are emerging as versatile active platforms in a great number of applications, for example, as skin substitutes and therapeutic media. The present study describes the preparation of silver nanoparticles (AgNPs) embedded in agarose films and the impact of calcium ascorbate in the formation of ANPs as well as in the final properties of the films. Colloidal AgNPs were synthetized by two chemical reduction routes: (i) applying calcium ascorbate and NaBH4 and (ii) applying only NaBH4. AgNPs synthetized using NaBH4 showed sizes ranging from 5 to 18â¯nm while AgNPs were calcium ascorbate was used showed micrometer from 164 to 955â¯nm size. Films were prepared in three formulations: agarose control film (A1); agaroseâ¯+â¯AgNPs without calcium ascorbate (A2) and agaroseâ¯+â¯AgNPs with calcium ascorbate (A3). The characterization of films by SEM and EDS showed agarose agglomerates in A2 and unreacted calcium ascorbate crystals on surface of A3. Thus, the presence of calcium ascorbate influenced the properties of A3 film. In addition, the antimicrobial analysis showed a silver particles release dependence on the film composition and only the A3 presented activity against Staphylococcus aureus. The results found in this study open an important way for development of new biomaterials, economically competitive, and with medical application.