Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Neuroinformatics ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39278985

RESUMEN

Mouse models are crucial for neuroscience research, yet discrepancies arise between macro- and meso-scales due to sample preparation altering brain morphology. The absence of an accessible toolbox for magnetic resonance imaging (MRI) data processing presents a challenge for assessing morphological changes in the mouse brain. To address this, we developed the MBV-Pipe (Mouse Brain Volumetric Statistics-Pipeline) toolbox, integrating the methods of Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra (DARTEL)-Voxel-based morphometry (VBM) and Tract-Based Spatial Statistics (TBSS) to evaluate brain tissue volume and white matter integrity. To validate the reliability of MBV-Pipe, brain MRI data from seven mice at three time points (in vivo, post-perfusion, and post-fixation) were acquired using a 9.4T ultra-high MRI system. Employing the MBV-Pipe toolbox, we discerned substantial volumetric changes in the mouse brain following perfusion relative to the in vivo condition, with the fixation process inducing only negligible variations. Importantly, the white matter integrity was found to be largely stable throughout the sample preparation procedures. The MBV-Pipe source code is publicly available and includes a user-friendly GUI for facilitating quality control and experimental protocol optimization, which holds promise for advancing mouse brain research in the future.

2.
World J Gastroenterol ; 30(31): 3717-3725, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39193003

RESUMEN

BACKGROUND: Small cell lung carcinoma (SCLC) is highly susceptible to metastasis in the early stages of the disease. However, the stomach is an uncommon site of metastasis in SCLC, and only a few cases of this type of metastasis have been reported. Therefore, SCLC gastric metastases have not been systematically characterized and are easily missed and misdiagnosed. CASE SUMMARY: We report three cases of gastric metastasis from SCLC in this article. The first patient presented primarily with cough, hemoptysis, and epigastric fullness. The other two patients presented primarily with abdominal discomfort, epigastric distension, and pain. All patients underwent gastroscopy and imaging examinations. Meanwhile, the immunohistochemical results of the lesions in three patients were suggestive of small cell carcinoma. Finally, the three patients were diagnosed with gastric metastasis of SCLC through a comprehensive analysis. The three patients did not receive appropriate treatment and died within a short time. CONCLUSION: Here, we focused on summarizing the characteristics of gastric metastasis of SCLC to enhance clinicians' understanding of this disease.


Asunto(s)
Gastroscopía , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patología , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/patología , Masculino , Carcinoma Pulmonar de Células Pequeñas/secundario , Carcinoma Pulmonar de Células Pequeñas/patología , Carcinoma Pulmonar de Células Pequeñas/diagnóstico por imagen , Persona de Mediana Edad , Resultado Fatal , Anciano , Femenino , Tomografía Computarizada por Rayos X , Inmunohistoquímica , Biopsia
4.
Sci Bull (Beijing) ; 69(14): 2241-2259, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38580551

RESUMEN

The rhesus macaque (Macaca mulatta) is a crucial experimental animal that shares many genetic, brain organizational, and behavioral characteristics with humans. A macaque brain atlas is fundamental to biomedical and evolutionary research. However, even though connectivity is vital for understanding brain functions, a connectivity-based whole-brain atlas of the macaque has not previously been made. In this study, we created a new whole-brain map, the Macaque Brainnetome Atlas (MacBNA), based on the anatomical connectivity profiles provided by high angular and spatial resolution ex vivo diffusion MRI data. The new atlas consists of 248 cortical and 56 subcortical regions as well as their structural and functional connections. The parcellation and the diffusion-based tractography were evaluated with invasive neuronal-tracing and Nissl-stained images. As a demonstrative application, the structural connectivity divergence between macaque and human brains was mapped using the Brainnetome atlases of those two species to uncover the genetic underpinnings of the evolutionary changes in brain structure. The resulting resource includes: (1) the thoroughly delineated Macaque Brainnetome Atlas (MacBNA), (2) regional connectivity profiles, (3) the postmortem high-resolution macaque diffusion and T2-weighted MRI dataset (Brainnetome-8), and (4) multi-contrast MRI, neuronal-tracing, and histological images collected from a single macaque. MacBNA can serve as a common reference frame for mapping multifaceted features across modalities and spatial scales and for integrative investigation and characterization of brain organization and function. Therefore, it will enrich the collaborative resource platform for nonhuman primates and facilitate translational and comparative neuroscience research.


Asunto(s)
Encéfalo , Macaca mulatta , Animales , Macaca mulatta/anatomía & histología , Encéfalo/metabolismo , Encéfalo/anatomía & histología , Encéfalo/diagnóstico por imagen , Humanos , Conectoma , Atlas como Asunto , Masculino , Mapeo Encefálico/métodos , Imagen de Difusión Tensora/métodos , Vías Nerviosas/anatomía & histología , Vías Nerviosas/metabolismo , Vías Nerviosas/diagnóstico por imagen
5.
ACS Nano ; 18(17): 11449-11461, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38644575

RESUMEN

Bimetallic alloy nanoparticles have garnered substantial attention for diverse catalytic applications owing to their abundant active sites and tunable electronic structures, whereas the synthesis of ultrafine alloy nanoparticles with atomic-level homogeneity for bulk-state immiscible couples remains a formidable challenge. Herein, we present the synthesis of RuxCo1-x solid-solution alloy nanoparticles (ca. 2 nm) across the entire composition range, for highly efficient, durable, and selective CO2 hydrogenation to CH4 under mild conditions. Notably, Ru0.88Co0.12/TiO2 and Ru0.74Co0.26/TiO2 catalysts, with 12 and 26 atom % of Ru being substituted by Co, exhibit enhanced catalytic activity compared with the monometallic Ru/TiO2 counterparts both in dark and under light irradiation. The comprehensive experimental investigations and density functional theory calculations unveil that the electronic state of Ru is subtly modulated owing to the intimate interaction between Ru and Co in the alloy nanoparticles, and this effect results in the decline in the CO2 conversion energy barrier, thus ultimately culminating in an elevated catalytic performance relative to monometallic Ru and Co catalysts. In the photopromoted thermocatalytic process, the photoinduced charge carriers and localized photothermal effect play a pivotal role in facilitating the chemical reaction process, which accounts for the further boosted CO2 methanation performance.

6.
Cancer Sci ; 115(7): 2220-2234, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38623968

RESUMEN

Enhancing sensitivity to sorafenib can significantly extend the duration of resistance to it, offering substantial benefits for treating patients with hepatocellular carcinoma (HCC). However, the role of ferroptosis in influencing sorafenib sensitivity within HCC remains pivotal. The enhancer of zeste homolog 2 (EZH2) plays a significant role in promoting malignant progression in HCC, yet the relationship between ferroptosis, sorafenib sensitivity, and EZH2 is not entirely clear. Bioinformatic analysis indicates elevated EZH2 expression in HCC, predicting an unfavorable prognosis. Overexpressing EZH2 can drive HCC cell proliferation while simultaneously reducing ferroptosis. Further analysis reveals that EZH2 amplifies the modification of H3K27 me3, thereby influencing TFR2 expression. This results in decreased RNA polymerase II binding within the TFR2 promoter region, leading to reduced TFR2 expression. Knocking down EZH2 amplifies sorafenib sensitivity in HCC cells. In sorafenib-resistant HepG2(HepG2-SR) cells, the expression of EZH2 is increased. Moreover, combining tazemetostat-an EZH2 inhibitor-with sorafenib demonstrates significant synergistic ferroptosis-promoting effects in HepG2-SR cells. In conclusion, our study illustrates how EZH2 epigenetically regulates TFR2 expression through H3K27 me3, thereby suppressing ferroptosis. The combination of the tazemetostat with sorafenib exhibits superior synergistic effects in anticancer therapy and sensitizes the HepG2-SR cells to sorafenib, shedding new light on delaying and ameliorating sorafenib resistance.


Asunto(s)
Carcinoma Hepatocelular , Resistencia a Antineoplásicos , Proteína Potenciadora del Homólogo Zeste 2 , Epigénesis Genética , Ferroptosis , Neoplasias Hepáticas , Sorafenib , Sorafenib/farmacología , Sorafenib/uso terapéutico , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Resistencia a Antineoplásicos/genética , Células Hep G2 , Ratones , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Animales , Piridonas/farmacología , Piridonas/uso terapéutico , Receptores de Transferrina/genética , Receptores de Transferrina/metabolismo , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Morfolinas/farmacología , Benzamidas , Compuestos de Bifenilo
7.
Mikrochim Acta ; 191(5): 243, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38575711

RESUMEN

PEDOT: PSS has been used as a biomimetic uric acid (UA) sensor but suffers from unfortunate low detection limit (LOD), narrow detection range and poor stability. Herein, we get graphdiyne (GDY) marry PEDOT:PSS to create a very stable GDY@PEDOT:PSS heterostructure for a biomimetic UA sensor, which accomplishes the lowest LOD (6 nM), the widest detection range (0.03 µM-7 mM) and the longest stability (98.1% for 35 days) among the related UA sensors. The sensor was successfully used to in situ real-time detection of  UA in sweat. The enhancement mechanisms of the sensor were investigated, and results discover that C≡C of GDY and C = C of PEDOT:PSS can cross-link each other by π-π interactions, making not only the former strongly resistant against oxidation deterioration, but also causes the latter to efficiently prevent water swelling of polymer for poor conductivity, thereby leading to high stability from both components. While the stabilized heterostructure can also offer more active sites by enhanced absorption of UA via π-π interactions for highly sensitive detection of UA. This work holds great promise for a practical sweat UA sensor while providing scientific insight to design a stable and electrocatalytically active structure from two unstable components.


Asunto(s)
Grafito , Sudor , Ácido Úrico , Límite de Detección
8.
Chin Med J (Engl) ; 137(5): 508-523, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38269482

RESUMEN

ABSTRACT: The brain is a complex organ that requires precise mapping to understand its structure and function. Brain atlases provide a powerful tool for studying brain circuits, discovering biological markers for early diagnosis, and developing personalized treatments for neuropsychiatric disorders. Neuromodulation techniques, such as transcranial magnetic stimulation and deep brain stimulation, have revolutionized clinical therapies for neuropsychiatric disorders. However, the lack of fine-scale brain atlases limits the precision and effectiveness of these techniques. Advances in neuroimaging and machine learning techniques have led to the emergence of stereotactic-assisted neurosurgery and navigation systems. Still, the individual variability among patients and the diversity of brain diseases make it necessary to develop personalized solutions. The article provides an overview of recent advances in individualized brain mapping and navigated neuromodulation and discusses the methodological profiles, advantages, disadvantages, and future trends of these techniques. The article concludes by posing open questions about the future development of individualized brain mapping and navigated neuromodulation.


Asunto(s)
Encefalopatías , Estimulación Encefálica Profunda , Humanos , Encéfalo , Mapeo Encefálico/métodos , Neuroimagen , Estimulación Magnética Transcraneal/métodos
9.
ACS Nano ; 17(23): 23761-23771, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37982387

RESUMEN

Carbon dioxide (CO2) hydrogenation to methane (CH4) is regarded as a promising approach for CO2 utilization, whereas achieving desirable conversion efficiency under mild conditions remains a significant challenge. Herein, we have identified ultrasmall Ru nanoparticles (∼2.5 nm) anchored on MnCo2O4 nanosheets as prospective photothermal catalysts for CO2 methanation at ambient pressure with light irradiation. Our findings revealed that MnCo2O4 nanosheets exhibit dual functionality as photothermal substrates for localized temperature enhancement and photocatalysts for electron donation. As such, the optimized Ru/MnCo2O4-2 gave a high CH4 production rate of 66.3 mmol gcat-1 h-1 (corresponding to 5.1 mol gRu-1 h-1) with 96% CH4 selectivity at 230 °C under ambient pressure and light irradiation (420-780 nm, 1.25 W cm-2), outperforming most reported plasmonic metal-based catalysts. The mechanisms behind the intriguing photothermal catalytic performance improvement were substantiated through a comprehensive investigation involving experimental characterizations, numerical simulations and density functional theory (DFT) calculations, which unveiled the synergistic effects of enhanced charge separation efficiency, improved reaction kinetics, facilitated reactant adsorption/activation and accelerated intermediate conversion under light irradiation over Ru/MnCo2O4. A comparison study showed that, with identical external input energy during the reaction, Ru/MnCo2O4-2 had a much higher catalytic efficiency compared to Ru/TiO2 and Ru/Al2O3. This study underscores the pivotal role played by photothermal supports and is believed to engender a heightened interest in plasmonic metal nanoparticles anchored on photothermal substrates for CO2 methanation under mild conditions.

10.
J Neural Eng ; 20(6)2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37939483

RESUMEN

Objective.Transcranial magnetic stimulation (TMS) has emerged as a prominent non-invasive technique for modulating brain function and treating mental disorders. By generating a high-precision magnetically evoked electric field (E-field) using a TMS coil, it enables targeted stimulation of specific brain regions. However, current computational methods employed for E-field simulations necessitate extensive preprocessing and simulation time, limiting their fast applications in the determining the optimal coil placement.Approach.We present an attentional deep learning network to simulate E-fields. This network takes individual magnetic resonance images and coil configurations as inputs, firstly transforming the images into explicit brain tissues and subsequently generating the local E-field distribution near the target brain region. Main results. Relative to the previous deep-learning simulation method, the presented method reduced the mean relative error in simulated E-field strength of gray matter by 21.1%, and increased the correlation between regional E-field strengths and corresponding electrophysiological responses by 35.0% when applied into another dataset.In-vivoTMS experiments further revealed that the optimal coil placements derived from presented method exhibit comparable stimulation performance on motor evoked potentials to those obtained using computational methods. The simplified preprocessing and increased simulation efficiency result in a significant reduction in the overall time cost of traditional TMS coil placement optimization, from several hours to mere minutes.Significance.The precision and efficiency of presented simulation method hold promise for its application in determining individualized coil placements in clinical practice, paving the way for personalized TMS treatments.


Asunto(s)
Aprendizaje Profundo , Humanos , Encéfalo/fisiología , Estimulación Magnética Transcraneal/métodos , Mapeo Encefálico/métodos , Sustancia Gris
11.
Nat Struct Mol Biol ; 30(12): 1902-1912, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37857822

RESUMEN

Glutaminase (GLS), which deaminates glutamine to form glutamate, is a mitochondrial tetrameric protein complex. Although inorganic phosphate (Pi) is known to promote GLS filamentation and activation, the molecular basis of this mechanism is unknown. Here we aimed to determine the molecular mechanism of Pi-induced mouse GLS filamentation and its impact on mitochondrial physiology. Single-particle cryogenic electron microscopy revealed an allosteric mechanism in which Pi binding at the tetramer interface and the activation loop is coupled to direct nucleophile activation at the active site. The active conformation is prone to enzyme filamentation. Notably, human GLS filaments form inside tubulated mitochondria following glutamine withdrawal, as shown by in situ cryo-electron tomography of cells thinned by cryo-focused ion beam milling. Mitochondria with GLS filaments exhibit increased protection from mitophagy. We reveal roles of filamentous GLS in mitochondrial morphology and recycling.


Asunto(s)
Glutaminasa , Mitofagia , Ratones , Humanos , Animales , Glutaminasa/química , Glutaminasa/metabolismo , Glutamina/metabolismo , Mitocondrias/metabolismo
12.
mBio ; 14(5): e0079323, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37772839

RESUMEN

IMPORTANCE: Bacterial chemotaxis is a ubiquitous behavior that enables cell movement toward or away from specific chemicals. It serves as an important model for understanding cell sensory signal transduction and motility. Characterization of the molecular mechanisms underlying chemotaxis is of fundamental interest and requires a high-resolution structural picture of the sensing machinery, the chemosensory array. In this study, we combine cryo-electron tomography and molecular simulation to present the complete structure of the core signaling unit, the basic building block of chemosensory arrays, from Escherichia coli. Our results provide new insight into previously poorly-resolved regions of the complex and offer a structural basis for designing new experiments to test mechanistic hypotheses.


Asunto(s)
Quimiotaxis , Proteínas de Escherichia coli , Escherichia coli/genética , Escherichia coli/química , Proteínas Quimiotácticas Aceptoras de Metilo/química , Transducción de Señal , Proteínas de Escherichia coli/química , Proteínas Bacterianas/química
13.
Sci Total Environ ; 901: 166454, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37607639

RESUMEN

Microorganisms can drive a substrate-specific biodegradation process to mitigate soil contamination resulting from extensive agrochemical usage. However, microorganisms with high metabolic efficiency are capable of adapting to the co-occurrence of non-substrate contaminants in the soil (particularly antibiotics). Therefore, the utilization of active microorganisms for biodegradation raises concerns regarding the potential risk of antibiotic resistance development. Here, the horizontal transfer risk of antibiotic-resistance genes (ARGs) in the soil-plant biota was assessed during biodegradation by the newly isolated Proteus terrae ZQ02 (which shortened the half-life of fungicide chlorothalonil from 9.24 d to 2.35 d when exposed to tetracycline). Based on metagenomic analyses, the distribution of ARGs and mobile genetic elements (MGEs) was profiled. The ARGs shared with ∼118 core genes and mostly accumulated in the rhizosphere and maize roots. After ZQ02 was inoculated, the core genes of ARGs reduced significantly in roots. In addition, the Pseudomonas and Proteus genera were identified as the dominant microbial hosts of ARGs and MGEs after ZQ02 adoption. The richness of major ARG hosts increased in soil but barely changed in the roots, which contributed to the mitigation of hosts-mediated ARGs transfer from soil to maize. Finally, the risk of ARGs has been assessed. Compared with the regular planting system, the number of risky ARGs declined from 220 (occupied 4.77 % of the total ARGs) to 143 (occupied 2.67 %) after biodegradation. Among these, 23 out of 25 high-risk genes were aggregated in the soil whereas only 2 genes were identified in roots, which further verified the low antibiotic resistance risk for crop after biodegradation. In a nutshell, this work highlights the critical advantage of ZQ02-based biodegradation that alleviating the ARGs transfer risks from soil to crop, which offers deeper insights into the versatility and feasibility of bioremediation techniques in sustainable agriculture.

14.
Adv Sci (Weinh) ; 10(19): e2301073, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37092564

RESUMEN

Achieving scalable synthesis of nanoscale transition-metal carbides (TMCs), regarded as substitutes for platinum-group noble metals, remains an ongoing challenge. Herein, a 100-g scale synthesis of single-phased cobalt carbide (Co2 C) through carburization of Co-based Prussian Blue Analog (Co-PBA) is reported in CO2 /H2 atmosphere under mild conditions (230 °C, ambient pressure). Textural property investigations indicate a successful preparation of orthorhombic-phased Co2 C nanomaterials with Pt-group-like electronic properties. As a demonstration, Co2 C achieves landmark photo-assisted thermal catalytic CO2 conversion rates with photo-switched product selectivity, which far exceeds the representative Pt-group-metal-based catalysts. This impressive result is attributed to the excellent activation of reactants, colorific light absorption, and photo-to-thermal conversion capacities. In addition to CO2 hydrogenation, the versatile Co2 C materials show huge prospects in antibacterial therapy, interfacial water evaporation, electrochemical hydrogen evolution reaction, and battery technologies. This study paves the way toward unlocking the potential of multi-functional Co2 C nanomaterials.

15.
Cell Discov ; 9(1): 27, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36878905

RESUMEN

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that affects social interaction and behavior. Mutations in the gene encoding chromodomain helicase DNA-binding protein 8 (CHD8) lead to autism symptoms and macrocephaly by a haploinsufficiency mechanism. However, studies of small animal models showed inconsistent findings about the mechanisms for CHD8 deficiency-mediated autism symptoms and macrocephaly. Using the nonhuman primate as a model system, we found that CRISPR/Cas9-mediated CHD8 mutations in the embryos of cynomolgus monkeys led to increased gliogenesis to cause macrocephaly in cynomolgus monkeys. Disrupting CHD8 in the fetal monkey brain prior to gliogenesis increased the number of glial cells in newborn monkeys. Moreover, knocking down CHD8 via CRISPR/Cas9 in organotypic monkey brain slices from newborn monkeys also enhanced the proliferation of glial cells. Our findings suggest that gliogenesis is critical for brain size in primates and that abnormal gliogenesis may contribute to ASD.

16.
Adv Sci (Weinh) ; 10(15): e2300122, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36932051

RESUMEN

Photo-thermal catalytic CO2 hydrogenation is currently extensively studied as one of the most promising approaches for the conversion of CO2 into value-added chemicals under mild conditions; however, achieving desirable conversion efficiency and target product selectivity remains challenging. Herein, the fabrication of Ir-CoO/Al2 O3 catalysts derived from Ir/CoAl LDH composites is reported for photo-thermal CO2 methanation, which consist of Ir-CoO ensembles as active centers that are evenly anchored on amorphous Al2 O3 nanosheets. A CH4 production rate of 128.9 mmol gcat⁻ 1 h⁻1  is achieved at 250 °C under ambient pressure and visible light irradiation, outperforming most reported metal-based catalysts. Mechanism studies based on density functional theory (DFT) calculations and numerical simulations reveal that the CoO nanoparticles function as photocatalysts to donate electrons for Ir nanoparticles and meanwhile act as "nanoheaters" to effectively elevate the local temperature around Ir active sites, thus promoting the adsorption, activation, and conversion of reactant molecules. In situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS) demonstrates that illumination also efficiently boosts the conversion of formate intermediates. The mechanism of dual functions of photothermal semiconductors as photocatalysts for electron donation and as nano-heaters for local temperature enhancement provides new insight in the exploration for efficient photo-thermal catalysts.

17.
Heliyon ; 9(2): e13486, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36814628

RESUMEN

Pristine SnO2, Fe-doped SnO2 and Ni-doped SnO2 were synthesized using facile hydrothermal method. Analysis based on XRD, TEM and UV-Vis DRS measurements demonstrated the successful insertion of Fe and Ni dopants into SnO2 crystal. Formaldehyde-detection measurements revealed that transition metal-doped SnO2 exhibited improved formaldehyde-sensing properties compared with that of pristine SnO2. When the amount of incorporated dopant (Fe or Ni) was 4 at.%, the most effective enhancement on sensing performance of SnO2 was obtained. At 160 °C, the 4 at.% Fe-SnO2 and 4 at.% Ni-SnO2 exhibited higher response values of 7.52 and 4.37 with exposure to low-concentration formaldehyde, respectively, which were 2.4 and 1.4 times higher than that of pristine SnO2. The change of electronic structure and crystal structure as well as catalytic effect of transition metals are chiefly responsible for the enhanced sensing properties.

18.
Sensors (Basel) ; 23(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36772203

RESUMEN

Methane (CH4), as the main component of natural gas and coal mine gas, is widely used in daily life and industrial processes and its leakage always causes undesirable misadventures. Thus, the rapid detection of low concentration methane is quite necessary. However, due to its robust chemical stability resulting from the strong tetrahedral-symmetry structure, the methane molecules are usually chemically inert to the sensing layers in detectors, making the rapid and efficient alert a big challenge. In this work, palladium nanoparticles (Pd NPs) embedded indium oxide porous hollow tubes (In2O3 PHTs) were successfully synthesized using Pd@MIL-68 (In) MOFs as precursors. All In2O3-based samples derived from Pd@MIL-68 (In) MOFs inherited the morphology of the precursors and exhibited the feature of hexagonal hollow tubes with porous architecture. The gas-sensing performances to 5000 ppm CH4 were evaluated and it was found that Pd@In2O3-2 gave the best response (Ra/Rg = 23.2) at 370 °C, which was 15.5 times higher than that of pristine-In2O3 sensors. In addition, the sensing materials also showed superior selectivity against interfering gases and a rather short response/recovery time of 7 s/5 s. The enhancement in sensing performances of Pd@In2O3-2 could be attributed to the large surface area, rich porosity, abundant oxygen vacancies and the catalytic function of Pd NPs.

19.
Sensors (Basel) ; 23(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36679422

RESUMEN

k nearest neighbours (kNN) queries are fundamental in many applications, ranging from data mining, recommendation system and Internet of Things, to Industry 4.0 framework applications. In mining, specifically, it can be used for the classification of human activities, iterative closest point registration and pattern recognition and has also been helpful for intrusion detection systems and fault detection. Due to the importance of kNN queries, many algorithms have been proposed in the literature, for both static and dynamic data. In this paper, we focus on exact kNN queries and present a comprehensive survey of exact kNN queries. In particular, we study two fundamental types of exact kNN queries: the kNN Search queries and the kNN Join queries. Our survey focuses on exact approaches over high-dimensional data space, which covers 20 kNN Search methods and 9 kNN Join methods. To the best of our knowledge, this is the first work of a comprehensive survey of exact kNN queries over high-dimensional datasets. We specifically categorise the algorithms based on indexing strategies, data and space partitioning strategies, clustering techniques and the computing paradigm. We provide useful insights for the evolution of approaches based on the various categorisation factors, as well as the possibility of further expansion. Lastly, we discuss some open challenges and future research directions.


Asunto(s)
Algoritmos , Minería de Datos , Humanos , Análisis por Conglomerados , Solución de Problemas
20.
Mar Environ Res ; 183: 105825, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36401955

RESUMEN

With the rapid marine economic development, the problem of the marine ecological environment has become progressively prominent. Mariculture monitoring plays an essential role in sustaining ecological stability, rational planning, and green economic development of sea areas. Using the Landsat image, the raft-mariculture area information of Haizhou Bay and its adjacent southern waters were extracted by the object-oriented classification method based on remote sensing techniques. Landscape pattern index and principal component analysis were used to analyze the spatiotemporal expansion and structural changes of mariculture areas, and to quantify the effects of natural, socio-economic factors on the spatiotemporal variations of mariculture areas. This study discusses the correlation between the mariculture area and the outbreak scale of Enteromorpha Enteromorpha green tide. Results show that the object-oriented classification method has the highest accuracy, with total classification accuracy and Kappa coefficient of more than 90% and 0.79, respectively. The total area, patch density, and landscape shape index of mariculture areas in Haizhou Bay increase yearly, which demonstrates that the heterogeneity and fragmentation increase with the expansion of the mariculture area. The landscape pattern changes in the mariculture area are predominantly impacted by annual mean sea surface temperature (SST), annual average wind speed, social development level, and population density, etc. The larger the area of raft-aquaculture, the wider the outbreak scale of the Enteromorpha prolifera disaster. Study results can provide scientific references for the further development of mariculture in Haizhou Bay and marine environmental protection.


Asunto(s)
Bahías , Desastres , Bahías/química , China , Acuicultura , Conservación de los Recursos Naturales , Monitoreo del Ambiente/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA