Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Carbohydr Polym ; 346: 122600, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39245488

RESUMEN

Panax ginseng C. A. Meyer (ginseng) is a medicinal plant widely used for promoting longevity. Recently, homogalacturonan (HG) domain-rich pectins purified from some plants have been reported to have anti-aging-related activities, leading us to explore the longevity-promoting activity of the HG pectins from ginseng. In this study, we discovered that two of low methyl-esterified ginseng HG pectins (named as WGPA-2-HG and WGPA-3-HG), whose degree of methyl-esterification (DM) was 16 % and 8 % respectively, promoted longevity in Caenorhabditis elegans. Results showed that WGPA-2-HG/WGPA-3-HG impaired insulin/insulin-like growth factor 1 (IGF-1) signalling (IIS) pathway, thereby increasing the nuclear accumulation of transcription factors SKN-1/Nrf2 and DAF-16/FOXO and enhancing the expression of relevant anti-aging genes. BLI and ITC analysis showed that the insulin-receptor binding, the first step to activate IIS pathway, was impeded by the engagement of WGPA-2-HG/WGPA-3-HG with insulin. By chemical modifications, we found that high methyl-esterification of WGPA-2-HG/WGPA-3-HG was detrimental for their longevity-promoting activity. These findings provided novel insight into the precise molecular mechanism for the longevity-promoting effect of ginseng pectins, and suggested a potential to utilize the ginseng HG pectins with appropriate DM values as natural nutrients for increasing human longevity.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Factor I del Crecimiento Similar a la Insulina , Insulina , Longevidad , Panax , Pectinas , Transducción de Señal , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/metabolismo , Panax/química , Factor I del Crecimiento Similar a la Insulina/metabolismo , Pectinas/farmacología , Pectinas/metabolismo , Pectinas/química , Longevidad/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Insulina/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Esterificación
2.
Carbohydr Polym ; 345: 122551, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39227094

RESUMEN

Even though Stellaria dichotoma L. var. lanceolate (S. dichotoma) is a well-known medicinal plant in the family Caryophyllaceae, its oligosaccharides remain unexplored in terms of their potential as bioactive agents. Here, we isolated a mixture of oligosaccharides from S. dichotoma (Yield: 12 % w/w), that are primarily non-classical raffinose family oligosaccharides (RFOs). Nine major oligosaccharides were purified and identified from the mixture, including sucrose, raffinose, 1-planteose, lychnose, stellariose, along with four new non-classical RFOs. Two of the four new oligosaccharides are linear hexose pentamers with α-galactosyl extensions on their lychnose moieties, and the other two are branched hexose hexamers with α-galactosyl extensions on their stellariose groups. Their interactions with galectin-3 (Gal-3) revealed significant binding, with the terminal galactose providing enhanced affinity for the lectin. Notably, Gal-3 residues Arg144, His158, Asn160, Arg162, Asn174, Trp181, Glu184 and Arg186 coordinate with the lychnose. In vivo studies using the dextran sulfate sodium (DSS) mouse model for colitis demonstrated the ability of these carbohydrates in mitigating ulcerative colitis (UC). Overall, our study has provided structural information and potential applications of S. dichotoma oligosaccharides, also offers new approaches for the development of medicinal oligosaccharides.


Asunto(s)
Colitis , Galectina 3 , Oligosacáridos , Animales , Oligosacáridos/química , Oligosacáridos/farmacología , Ratones , Galectina 3/metabolismo , Galectina 3/química , Colitis/tratamiento farmacológico , Colitis/inducido químicamente , Colitis/metabolismo , Caryophyllaceae/química , Sulfato de Dextran , Ratones Endogámicos C57BL , Masculino , Humanos
3.
BMC Biol ; 22(1): 201, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39256812

RESUMEN

BACKGROUND: Methods to suppress pest insect populations using genetic constructs and repeated releases of male homozygotes have recently been shown to be an attractive alternative to older sterile insect techniques based on radiation. Female-specific lethal alleles have substantially increased power, but still require large, sustained transgenic insect releases. Gene drive alleles bias their own inheritance to spread throughout populations, potentially allowing population suppression with a single, small-size release. However, suppression drives often suffer from efficiency issues, and the most well-studied type, homing drives, tend to spread without limit. RESULTS: In this study, we show that coupling female-specific lethal alleles with homing gene drive allowed substantial improvement in efficiency while still retaining the self-limiting nature (and thus confinement) of a lethal allele strategy. Using a mosquito model, we show the required release sizes for population elimination in a variety of scenarios, including different density growth curves, with comparisons to other systems. Resistance alleles reduced the power of this method, but these could be overcome by targeting an essential gene with the drive while also providing rescue. A proof-of-principle demonstration of this system in Drosophila melanogaster was effective in both biasing its inheritance and achieving high lethality among females that inherit the construct in the absence of antibiotic. CONCLUSIONS: Overall, our study shows that substantial improvements can be achieved in female-specific lethal systems for population suppression by combining them with various types of gene drive.


Asunto(s)
Alelos , Drosophila melanogaster , Tecnología de Genética Dirigida , Animales , Femenino , Tecnología de Genética Dirigida/métodos , Drosophila melanogaster/genética , Masculino , Genes Letales , Control Biológico de Vectores/métodos , Control de Mosquitos/métodos , Animales Modificados Genéticamente/genética , Genes Dominantes
4.
Nat Commun ; 15(1): 4560, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811556

RESUMEN

Gene drive systems could be a viable strategy to prevent pathogen transmission or suppress vector populations by propagating drive alleles with super-Mendelian inheritance. CRISPR-based homing gene drives convert wild type alleles into drive alleles in heterozygotes with Cas9 and gRNA. It is thus desirable to identify Cas9 promoters that yield high drive conversion rates, minimize the formation rate of resistance alleles in both the germline and the early embryo, and limit somatic Cas9 expression. In Drosophila, the nanos promoter avoids leaky somatic expression, but at the cost of high embryo resistance from maternally deposited Cas9. To improve drive efficiency, we test eleven Drosophila melanogaster germline promoters. Some achieve higher drive conversion efficiency with minimal embryo resistance, but none completely avoid somatic expression. However, such somatic expression often does not carry detectable fitness costs for a rescue homing drive targeting a haplolethal gene, suggesting somatic drive conversion. Supporting a 4-gRNA suppression drive, one promoter leads to a low drive equilibrium frequency due to fitness costs from somatic expression, but the other outperforms nanos, resulting in successful suppression of the cage population. Overall, these Cas9 promoters hold advantages for homing drives in Drosophila species and may possess valuable homologs in other organisms.


Asunto(s)
Sistemas CRISPR-Cas , Proteínas de Drosophila , Drosophila melanogaster , Tecnología de Genética Dirigida , Células Germinativas , Regiones Promotoras Genéticas , ARN Guía de Sistemas CRISPR-Cas , Animales , Regiones Promotoras Genéticas/genética , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Tecnología de Genética Dirigida/métodos , Células Germinativas/metabolismo , ARN Guía de Sistemas CRISPR-Cas/genética , Animales Modificados Genéticamente , Proteína 9 Asociada a CRISPR/metabolismo , Proteína 9 Asociada a CRISPR/genética , Alelos , Femenino , Masculino , Proteínas de Unión al ARN
5.
J Genet Genomics ; 51(8): 836-843, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38599514

RESUMEN

CRISPR homing gene drives have considerable potential for managing populations of medically and agriculturally significant insects. They operate by Cas9 cleavage followed by homology-directed repair, copying the drive allele to the wild-type chromosome and thus increasing in frequency and spreading throughout a population. However, resistance alleles formed by end-joining repair pose a significant obstacle. To address this, we create a homing drive targeting the essential hairy gene in Drosophila melanogaster. Nonfunctional resistance alleles are recessive lethal, while drive carriers have a recoded "rescue" version of hairy. The drive inheritance rate is moderate, and multigenerational cage studies show drive spread to 96%-97% of the population. However, the drive does not reach 100% due to the formation of functional resistance alleles despite using four gRNAs. These alleles have a large deletion but likely utilize an alternate start codon. Thus, revised designs targeting more essential regions of a gene may be necessary to avoid such functional resistance. Replacement of the rescue element's native 3' UTR with a homolog from another species increases drive inheritance by 13%-24%. This was possibly because of reduced homology between the rescue element and surrounding genomic DNA, which could also be an important design consideration for rescue gene drives.


Asunto(s)
Sistemas CRISPR-Cas , Drosophila melanogaster , Tecnología de Genética Dirigida , ARN Guía de Sistemas CRISPR-Cas , Animales , Tecnología de Genética Dirigida/métodos , Drosophila melanogaster/genética , ARN Guía de Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/genética , Alelos , Proteínas de Drosophila/genética , Edición Génica
6.
PLoS Genet ; 20(4): e1011226, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38578788

RESUMEN

CRISPR-based gene drives offer promising prospects for controlling disease-transmitting vectors and agricultural pests. A significant challenge for successful suppression-type drive is the rapid evolution of resistance alleles. One approach to mitigate the development of resistance involves targeting functionally constrained regions using multiple gRNAs. In this study, we constructed a 3-gRNA homing gene drive system targeting the recessive female fertility gene Tyrosine decarboxylase 2 (Tdc2) in Drosophila suzukii, a notorious fruit pest. Our investigation revealed only a low level of homing in the germline, but feeding octopamine restored the egg-laying defects in Tdc2 mutant females, allowing easier line maintenance than for other suppression drive targets. We tested the effectiveness of a similar system in Drosophila melanogaster and constructed additional split drive systems by introducing promoter-Cas9 transgenes to improve homing efficiency. Our findings show that genetic polymorphisms in wild populations may limit the spread of gene drive alleles, and the position effect profoundly influences Cas9 activity. Furthermore, this study highlights the potential of conditionally rescuing the female infertility caused by the gene drive, offering a valuable tool for the industrial-scale production of gene drive transgenic insects.


Asunto(s)
Tecnología de Genética Dirigida , Infertilidad Femenina , Femenino , Animales , Humanos , Drosophila/genética , Drosophila melanogaster/genética , Infertilidad Femenina/genética , Sistemas CRISPR-Cas , Frutas , ARN Guía de Sistemas CRISPR-Cas , Fenotipo
7.
J Stroke Cerebrovasc Dis ; 33(6): 107689, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38527567

RESUMEN

OBJECTIVES: Microglia-mediated neuroinflammation plays a crucial role in the pathophysiological process of multiple neurological disorders such as ischemic stroke, which still lacks effective therapeutic agents. Shikonin possesses anti-inflammatory and neuroprotective properties. However, its underlying mechanism remains elusive. This study aimed to investigate whether Shikonin confers protection against cerebral ischemia/reperfusion (I/R) injury by modulating microglial polarization and elucidate the associated mechanisms. METHODS: This study employed an oxygen-glucose deprivation and reoxygenation (OGD/R) BV2 microglial cellular model and a middle cerebral artery occlusion/reperfusion (MCAO/R) animal model to investigate the protection and underlying mechanism of Shikonin against ischemic stroke. RESULTS: The results demonstrated that Shikonin treatment significantly reduced brain infarction volume and improved neurological function in MCAO/R rats. Simultaneously, Shikonin treatment significantly reduced microglial proinflammatory phenotype and levels of proinflammatory markers (inducible-NO synthase (iNOS), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1ß), and IL-6), increased microglial anti-inflammatory phenotype and levels of anti-inflammatory markers (Arginase-1 (Arg1), transforming growth factor-beta (TGF-ß), and IL-10), reversed the expression of Nucleotide-binding oligomerization domain 2 (NOD2) and phosphorylation receptor interacting protein 2 (p-RIP2), and suppressed nuclear factor kappa-B (NF-κB) signaling activation in the ischemic penumbra regions. These effects of Shikonin were further corroborated in OGD/R-treated BV2 cells. Furthermore, overexpression of NOD2 markedly attenuated the neuroprotective effects of Shikonin treatment in MCAO/R rats. NOD2 overexpression also attenuated the regulatory effects of Shikonin on neuroinflammation, microglial polarization, and NF-κB signaling activation. CONCLUSION: This study illustrates that Shikonin mitigates inflammation mediated by microglial proinflammatory polarization by inhibiting the NOD2/RIP2/NF-κB signaling pathway, thereby exerting a protective role. The findings uncover a potential molecular mechanism for Shikonin in treating ischemic stroke.


Asunto(s)
Antiinflamatorios , Infarto de la Arteria Cerebral Media , FN-kappa B , Naftoquinonas , Fármacos Neuroprotectores , Proteína Adaptadora de Señalización NOD2 , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor , Daño por Reperfusión , Animales , Masculino , Ratones , Antiinflamatorios/farmacología , Línea Celular , Citocinas/metabolismo , Modelos Animales de Enfermedad , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Mediadores de Inflamación/metabolismo , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Naftoquinonas/farmacología , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , Fármacos Neuroprotectores/farmacología , FN-kappa B/metabolismo , Proteína Adaptadora de Señalización NOD2/metabolismo , Fenotipo , Ratas Sprague-Dawley , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo , Daño por Reperfusión/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/patología , Transducción de Señal/efectos de los fármacos
8.
J Ginseng Res ; 48(2): 202-210, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38465210

RESUMEN

Background: Panax ginseng Meyer polysaccharides exhibit various biological functions, like antagonizing galectin-3-mediated cell adhesion and migration. Galectin-8 (Gal-8), with its linker-joined N- and C-terminal carbohydrate recognition domains (CRDs), is also crucial to these biological processes, and thus plays a role in various pathological disorders. Yet the effect of ginseng-derived polysaccharides in modulating Gal-8 function has remained unclear. Methods: P. ginseng-derived pectin was chromatographically isolated and enzymatically digested to obtain a series of polysaccharides. Biolayer Interferometry (BLI) quantified their binding affinity to Gal-8, and their inhibitory effects on Gal-8 was assessed by hemagglutination, cell migration and T-cell apoptosis. Results: Our ginseng-derived pectin polysaccharides consist mostly of rhamnogalacturonan-I (RG-I) and homogalacturonan (HG). BLI shows that Gal-8 binding rests primarily in RG-I and its ß-1,4-galactan side chains, with sub-micromolar KD values. Both N- and C-terminal Gal-8 CRDs bind RG-I, with binding correlated with Gal-8-mediated function. Conclusion: P. ginseng RG-I pectin ß-1,4-galactan side chains are crucial to binding Gal-8 and antagonizing its function. This study enhances our understanding of galectin-sugar interactions, information that may be used in the development of pharmaceutical agents targeting Gal-8.

9.
Mikrochim Acta ; 191(4): 216, 2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38517549

RESUMEN

A photoelectrochemical (PEC) sensor for the sensitive detection of thrombin (TB) was established. Co-sensitized combination of TiO2 nanoparticles combined with modified cadmium sulfide and cadmium telluride quantum dots (CdS/CdTe QDs) was utilized as a photoactive material. Successful growth of CdS/CdTe quantum dots on mesoporous TiO2 films occured by successive ion-layer adsorption and reaction. This interesting formation of co-sensitive structure is conducive to enhancing the photocurrent response by improving the use rate of light energy. Additionally, the step-level structure of CdS/CdTe QDs and TiO2 NPs shows a wide range of visible light absorption, facilitating the dissociation of excitons into free electrons and holes. Consequently, the photoelectric response of the PEC analysis platform is significantly enhanced. This constructed PEC aptasensor shows good detection of thrombin with a low detection limit (0.033 pM) and a wide linear range (0.0001-100 nM) in diluted actual human serum samples. In addition, this PEC aptasensor also has the characteristics of good stability and good reproducibility, which provides a novel insight for the quantitative measurement of other similar analytes.


Asunto(s)
Compuestos de Cadmio , Nanopartículas , Puntos Cuánticos , Humanos , Puntos Cuánticos/química , Compuestos de Cadmio/química , Telurio/química , Trombina , Reproducibilidad de los Resultados , Técnicas Electroquímicas , Nanopartículas/química
10.
Front Pharmacol ; 15: 1348019, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38389919

RESUMEN

Depression is a prevalent mental disorder. However, clinical treatment options primarily based on chemical drugs have demonstrated varying degrees of adverse reactions and drug resistance, including somnolence, nausea, and cognitive impairment. Therefore, the development of novel antidepressant medications that effectively reduce suffering and side effects has become a prominent area of research. Polysaccharides are bioactive compounds extracted from natural plants that possess diverse pharmacological activities and medicinal values. It has been discovered that polysaccharides can effectively mitigate depression symptoms. This paper provides an overview of the pharmacological action and mechanisms, intervention approaches, and experimental models regarding the antidepressant effects of polysaccharides derived from various natural sources. Additionally, we summarize the roles and potential mechanisms through which these polysaccharides prevent depression by regulating neurotransmitters, HPA axis, neurotrophic factors, neuroinflammation, oxidative stress, tryptophan metabolism, and gut microbiota. Natural plant polysaccharides hold promise as adjunctive antidepressants for prevention, reduction, and treatment of depression by exerting their therapeutic effects through multiple pathways and targets. Therefore, this review aims to provide scientific evidence for developing polysaccharide resources as effective antidepressant drugs.

11.
Int J Biol Macromol ; 263(Pt 1): 130271, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38373570

RESUMEN

Overuse of insecticides has accelerated the evolution of insecticide resistance and created serious environmental concerns worldwide, thus incentivizing development of alternative methods. Bacillus thuringiensis (Bt) is an insecticidal bacterium that has been developed as a biopesticide to successfully control multiple species of pests. It operates by secreting several insect toxins such as Cry1Ac. However, metabolic resistance based on ATP-binding cassette (ABC) transporters may play a crucial role in the development of metabolic resistance to Bt. Here, we characterized an ABCG gene from the agricultural pest Plutella xylostella (PxABCG3) and found that it was highly expressed in a Cry1Ac-resistant strain, up-regulated after Cry1Ac protoxin treatment. Binding miR-8510a-3p to the coding sequence (CDS) of PxABCG3 was then confirmed by a luciferase reporter assay and RNA immunoprecipitation. miR-8510a-3p agomir delivery markedly reduced PxABCG3 expression in vivo and consequently decreased the tolerance of P. xylostella to Cry1Ac, while reduction of miR-8510a-3p significantly increased PxABCG3 expression, accompanied by an increased tolerance to Cry1Ac. Our results suggest that miR-8510a-3p could potentially be used as a novel molecular target against P. xylostella or other lepidopterans, providing novel insights into developing effective and environmentally friendly pesticides.


Asunto(s)
Bacillus thuringiensis , Insecticidas , MicroARNs , Mariposas Nocturnas , Animales , Mariposas Nocturnas/metabolismo , Larva/genética , Endotoxinas/genética , Endotoxinas/metabolismo , Toxinas de Bacillus thuringiensis/metabolismo , Bacillus thuringiensis/química , Insecticidas/farmacología , Insecticidas/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacología , Proteínas Hemolisinas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
12.
Anal Chim Acta ; 1290: 342218, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38246744

RESUMEN

BACKGROUND: Lead (Pb) is one of the most toxic heavy-metal pollutants. Additionally, lead ions (Pb2+) can accumulate in the human body through the food chain, causing irreversible damage through organ damage and system disorders. In the past few years, the detection of Pb2+ has mainly relied on instrumental methods such as atomic absorption spectroscopy (AAS) and inductively coupled plasma mass spectrometry (ICP-MS). Nonetheless, these techniques are complicated in terms of equipment and procedures, along with being time-intensive and expensive in terms of detection. These drawbacks have limited their wide application. Hence, there is a pressing need to develop detection techniques for Pb2+ that are not only cost-efficient but also highly sensitive and specific. RESULTS: A novel "on-off-on" electrochemiluminescence (ECL) sensor for detecting Pb2+ was developed based on the resonance energy transfer (RET) effect between AuNPs and boron nitride quantum dots (BN QDs) and the recognition of Pb2+ by DNAzyme along with the cleavage reaction of the substrate chain. Poly(6-carboxyindole)/stannic sulfide (P6ICA/SnS2) nanocomposite was employed as a co-reaction accelerator to consequently facilitate the production of intermediate SO4•-. This effective enhancement of the reaction led to an improved ECL intensity of BN QDs and enabled the sensor platform to exhibit a higher original ECL response. Benefiting from the combination of the DNAzyme signal amplification strategy with the "on-off-on" design, the ECL sensor showed satisfactory selectivity, good stability, and high sensitivity. This ECL sensor exhibited a linear detection range (LDR) of 10-12-10-5 M and a limit of detection (LOD) of 2.6 × 10-13 M. SIGNIFICANCE: In the present work, an "on-off-on" ECL sensor is constructed based on RET effect for ultrasensitive detection of Pb2+. P6ICA/SnS2 was investigated as the co-reaction accelerator in this sensor. Moreover, this ECL sensor exhibited excellent analytical capability for detecting Pb2+ in actual water samples, providing a method for detecting other heavy metal ions as well.


Asunto(s)
ADN Catalítico , Nanopartículas del Metal , Humanos , Oro , Plomo , División del ARN , Transferencia de Energía , Iones
13.
Psychopharmacology (Berl) ; 241(2): 379-399, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38019326

RESUMEN

BACKGROUND: Ischemic stroke still ranks as the most fatal disease worldwide. Blood-brain barrier (BBB) is a promising therapeutic target for protection. Brain microvascular endothelial cell is a core component of BBB, the barrier function maintenance of which can ameliorate ischemic injury and improve neurological deficit. Se-methyl L-selenocysteine (SeMC) has been shown to exert cardiovascular protection. However, the protection of SeMC against ischemic stroke remains to be elucidated. This research was designed to explore the protection of SeMC from the perspective of BBB protection. METHODS: To simulate cerebral ischemic injury, C57BL/6J mice were subjected to middle cerebral artery occlusion/reperfusion (MCAO/R), and bEnd.3 was exposed to oxygen-glucose deprivation/reoxygenation (OGD/R). After the intervention of SeMC, the barrier function and the expression of tight junction and ferroptosis-associated proteins were determined. For mechanism exploration, LY294002 (Akt inhibitor) was introduced both in vivo and in vitro. RESULTS: SeMC lessened the brain infarct volume and attenuated the leakage of BBB in mice. In vitro, SeMC improved cell viability and maintained the barrier function of bEnd.3 cells. The protection of SeMC was accompanied with ferroptosis inhibition and tight junction protein upregulation. Mechanism studies revealed that the effect of SeMC was reversed by LY294002, indicating that the protection of SeMC against ischemic stroke was mediated by the Akt signal pathway. CONCLUSION: These results suggested that SeMC exerted protection against ischemic stroke, which might be attributed to activating the Akt/GSK3ß signaling pathway and increasing the nuclear translocation of Nrf2 and ß-catenin, subsequently maintaining the integrity of BBB.


Asunto(s)
Isquemia Encefálica , Ferroptosis , Accidente Cerebrovascular Isquémico , Daño por Reperfusión , Ratas , Ratones , Animales , Barrera Hematoencefálica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Células Endoteliales/metabolismo , Uniones Estrechas/metabolismo , Selenocisteína/metabolismo , Selenocisteína/farmacología , Selenocisteína/uso terapéutico , Regulación hacia Arriba , Ratas Sprague-Dawley , Ratones Endogámicos C57BL , Isquemia Encefálica/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo
14.
Int J Biol Macromol ; 256(Pt 1): 128304, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37992938

RESUMEN

Galectin-3 (Gal-3) is unique in the galectin family, due to the presence of a long N-terminal tail (NT) arising from its conserved carbohydrate recognition domain (CRD). Although functional significance of the NT has remained elusive, our previous studies demonstrated the importance of NT prolines to Gal-3 function. Here, we show that during the time Gal-3 stands in solution for three or more days, Gal-3 NT undergoes a slow, intra-molecular, time-dependent conformational/dynamical change associated with proline cis-trans isomerization. From initial dissolution of Gal-3 in buffer to three days in solution, Gal-3-mediated T cell apoptosis is enhanced from 23 % to 37 %. Western blotting and flow cytometry show that the enhancement occurs via the ROS-ERK pathway, and not by the PKC-ERK pathway. To assess which proline(s) is (are) responsible for this effect, we individually mutated all 14 NT prolines within the first 68 residues to alanines, and assessed their effect on ROS production. Our study shows that isomerization of P46 alone is responsible for the upregulation of ROS and T cell apoptosis. NMR studies show that this unique effect is mediated by a change in dynamic interactions between the NT and CRD F-face, which in turn leads to this change in Gal-3 function.


Asunto(s)
Galectina 3 , Sistema de Señalización de MAP Quinasas , Galectina 3/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Isomerismo , Prolina/química , Galectinas/metabolismo , Carbohidratos/química , Apoptosis , Linfocitos T/metabolismo
15.
Exp Cell Res ; 433(2): 113849, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37926343

RESUMEN

Estrogens have been demonstrated to inhibit age-related cognitive decline via binding to estrogen receptors (ERs). As a natural flavonoid component of Cuscuta Chinensis Lam., Kaempferol-3-O-glucoside (K-3-G) not only possesses anti-neuroinflammatory potential but also functions as an agonist for ERα and ERß. This study aimed to determine whether K-3-G improved cognition during the aging process, with an emphasis on its effect on microglial inflammation. In vivo, K-3-G (5 or 10 mg/kg/day) was orally given to the senescence-accelerated mouse prone 8 (SAMP8) mice from six to eight-month old. In addition to mitigating the memory and learning deficits of SAMP8 mice, K-3-G upregulated the expression of ERα and ERß in their hippocampal CA1 region, with the higher dose being more effective. Less Iba-1+ microglial cells presented in SAMP8 mice treated with K-3-G. The formation of NLR Family Pyrin Domain Containing 3 (NLRP3) complex, production of pro-inflammatory cytokines and oxidative stress-related markers, as well as expression of pro-apoptotic proteins were reduced by K-3-G. In vitro, BV2 microglial cells exposed to oligomeric amyloid beta (Aß)1-42 were treated with 100 µM K-3-G. K-3-G showed similar anti-inflammatory effects on BV2 cells as in vivo. K-3-G-induced alterations were partly diminished by fulvestrant, an ER antagonist. Moreover, dual-luciferase reporter system demonstrated that K-3-G induced ER expression by activating the transcription of estrogen-response elements (EREs). Collectively, these findings demonstrate that K-3-G may be a novel therapeutic agent for senescence-related cognitive impairment by inhibiting microglial inflammation through its action on ERs.


Asunto(s)
Envejecimiento , Antiinflamatorios no Esteroideos , Disfunción Cognitiva , Receptor alfa de Estrógeno , Receptor beta de Estrógeno , Quempferoles , Monosacáridos , Receptores de Estrógenos , Animales , Ratones , Péptidos beta-Amiloides/metabolismo , Cognición , Disfunción Cognitiva/tratamiento farmacológico , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/metabolismo , Estrógenos/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Microglía/metabolismo , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/uso terapéutico , Monosacáridos/farmacología , Monosacáridos/uso terapéutico , Quempferoles/farmacología , Quempferoles/uso terapéutico , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico
16.
J Agric Food Chem ; 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37930271

RESUMEN

Glucose oxidase (GOX) is a representative compound found in most insect saliva that can suppress plant-defensive responses. However, little is known about the origin and role of GOX in the crucifer-specialized pest Plutella xylostella. In this study, we showed obvious regurgitation from the larval gut of P. xylostella and identified abundant peptides highly similar to known GOX. Three PxGOX genes were verified with PxGOX2 preferentially expressed in the gut. The heterologously expressed PxGOX2 confirmed its function to be a GOX, and it was detected in plant wounds together with the gut regurgitant. Further experiments revealed that PxGOX2 functioned as an effector and may suppress defensive responses in plant through the production of H2O2, which modulates levels of antagonistic salicylic acid and jasmonic acid. However, excessive H2O2 in the host plant may be neutralized by peroxidase, thus forming defensive feedback. Our findings provided new insights into understanding the GOX-mediated insect-plant interactions.

17.
Angew Chem Int Ed Engl ; 62(34): e202306963, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37384426

RESUMEN

Graphite anodes are prone to dangerous Li plating during fast charging, but the difficulty to identify the rate-limiting step has made a challenging to eliminate Li plating thoroughly. Thus, the inherent thinking on inhibiting Li plating needs to be compromised. Herein, an elastic solid electrolyte interphase (SEI) with uniform Li-ion flux is constructed on graphite anode by introducing a triglyme (G3)-LiNO3 synergistic additive (GLN) to commercial carbonate electrolyte, for realizing a dendrite-free and highly-reversible Li plating under high rates. The cross-linked oligomeric ether and Li3 N particles derived from the GLN greatly improve the stability of the SEI before and after Li plating and facilitate the uniform Li deposition. When 51 % of lithiation capacity is contributed from Li plating, the graphite anode in the electrolyte with 5 vol.% GLN achieved an average 99.6 % Li plating reversibility over 100 cycles. In addition, the 1.2-Ah LiFePO4 | graphite pouch cell with GLN-added electrolyte stably operated over 150 cycles at 3 C, firmly demonstrating the promise of GLN in commercial Li-ion batteries for fast-charging applications.

18.
BMC Med Genomics ; 16(1): 101, 2023 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-37179305

RESUMEN

BACKGROUND: Retinoblastoma (RB) is frequently occurring malignant tumors that originate in the retina, and their exact cause and development mechanisms are yet to be fully comprehended. In this study, we identified possible biomarkers for RB and delved into the molecular mechanics linked with such markers. METHODS: In this study GSE110811 and GSE24673 were analyzed. Weighted gene co-expression network analysis (WGCNA) was applied to screen modules and genes associated with RB. By overlapping RB-related module genes with differentially expressed genes (DEGs) between RB and control samples, differentially expressed retinoblastoma genes (DERBGs) were acquired. A gene ontology (GO) enrichment analysis and a kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis were conducted to explore the functions of these DERBGs. To study the protein interactions of DERBGs, a protein-protein interaction (PPI) network was constructed. Hub DERBGs were screened using the least absolute shrinkage and selection operator (LASSO) regression analysis, as well as the random forest (RF) algorithm. Additionally, the diagnostic performance of RF and LASSO methods was evaluated using receiver operating characteristic (ROC) curves and single-gene gene set enrichment analysis (GSEA) was conducted to explore the potential molecular mechanisms involved with these Hub DERBGs. In addition, the competing endogenous RNA (ceRNA) regulatory network of Hub DERBGs was constructed. RESULT: About 133 DERBGs were found to be associated with RB. GO and KEGG enrichment analyses revealed that the important pathways of these DERBGs. Furthermore, the PPI network revealed 82 DERBGs interacting with each other. By RF and LASSO methods, PDE8B, ESRRB, and SPRY2 were identified as Hub DERBGs in patients with RB. From the expression assessment of Hub DERBGs, it was found that the levels of expression of PDE8B, ESRRB, and SPRY2 were significantly decreased in the tissues of RB tumors. Secondly, single-gene GSEA revealed a connection between these 3 Hub DERBGs and oocyte meiosis, cell cycle, and spliceosome. Finally, the ceRNA regulatory network revealed that hsa-miR-342-3p, hsa-miR-146b-5p, hsa-miR-665, and hsa-miR-188-5p may play a central role in the disease. CONCLUSION: Hub DERBGs may provide new insight into RB diagnosis and treatment based on the understanding of disease pathogenesis.


Asunto(s)
MicroARNs , Neoplasias de la Retina , Retinoblastoma , Humanos , Retinoblastoma/genética , Perfilación de la Expresión Génica , Retina , Biología Computacional , Neoplasias de la Retina/genética , Redes Reguladoras de Genes , Proteínas de la Membrana , Péptidos y Proteínas de Señalización Intracelular
19.
Mikrochim Acta ; 190(4): 131, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36912979

RESUMEN

An "on-off-on"-type electrochemiluminescence (ECL) aptamer sensor based on Ru@Zn-oxalate metal-organic framework (MOF) composites is constructed for sensitive detection of sulfadimethoxine (SDM). The prepared Ru@Zn-oxalate MOF composites with the three-dimensional structure provide good ECL performance for the "signal-on." The MOF structure with a large surface area enables the material to fix more Ru(bpy)32+. Moreover, the Zn-oxalate MOF with three-dimensional chromophore connectivity provides a medium which can accelerate excited-state energy transfer migration among Ru(bpy)32+ units, and greatly reduces the influence of solvent on chromophore, achieving a high-energy Ru emission efficiency. The aptamer chain modified with ferrocene at the end can hybridize with the capture chain DNA1 fixed on the surface of the modified electrode through base complementary pairing, which can significantly quench the ECL signal of Ru@Zn-oxalate MOF. SDM specifically binds to its aptamer to separate ferrocene from the electrode surface, resulting in a "signal-on" ECL signal. The use of the aptamer chain further improves the selectivity of the sensor. Thus, high-sensitivity detection of SDM specificity is realized through the specific affinity between SDM and its aptamer. This proposed ECL aptamer sensor has good analytical performance for SDM with low detection limit (27.3 fM) and wide detection range (100 fM-500 nM). The sensor also shows excellent stability, selectivity, and reproducibility, which proved its analytical performance. The relative standard deviation (RSD) of SDM detected by the sensor is between 2.39 and 5.32%, and the recovery is in the range 97.23 to 107.5%. The sensor shows satisfactory results in the analysis of actual seawater samples, which is expected to play a role in the exploration of marine environmental pollution.


Asunto(s)
Técnicas Biosensibles , Estructuras Metalorgánicas , Estructuras Metalorgánicas/química , Metalocenos , Sulfadimetoxina , Técnicas Biosensibles/métodos , Oxalatos , Reproducibilidad de los Resultados , Técnicas Electroquímicas/métodos , Mediciones Luminiscentes/métodos , Oligonucleótidos , Zinc
20.
Angew Chem Int Ed Engl ; 62(19): e202302285, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-36896813

RESUMEN

The difficulties to identify the rate-limiting step cause the lithium (Li) plating hard to be completely avoided on graphite anodes during fast charging. Therefore, Li plating regulation and morphology control are proposed to address this issue. Specifically, a Li plating-reversible graphite anode is achieved via a localized high-concentration electrolyte (LHCE) to successfully regulate the Li plating with high reversibility over high-rate cycling. The evolution of solid electrolyte interphase (SEI) before and after Li plating is deeply investigated to explore the interaction between the lithiation behavior and electrochemical interface polarization. Under the fact that Li plating contributes 40 % of total lithiation capacity, the stable LiF-rich SEI renders the anode a higher average Coulombic efficiency (99.9 %) throughout 240 cycles and a 99.95 % reversibility of Li plating. Consequently, a self-made 1.2-Ah LiNi0.5 Mn0.3 Co0.2 O2 | graphite pouch cell delivers a competitive retention of 84.4 % even at 7.2 A (6 C) after 150 cycles. This work creates an ingenious bridge between the graphite anode and Li plating, for realizing the high-performance fast-charging batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA