Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros











Intervalo de año de publicación
1.
Braz J Med Biol Res ; 54(10): e11207, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34378677

RESUMEN

Reactive oxygen species (ROS) are involved in neuropathic pain, a complicated condition after nerve tissue lesion. Vitamin D appears to improve symptoms of pain and exhibits antioxidant properties. We investigated the effects of oral administration of vitamin D3, the active form of vitamin D, on nociception, the sciatic functional index (SFI), and spinal cord pro-oxidant and antioxidant markers in rats with chronic constriction injury (CCI) of the sciatic nerve, a model of neuropathic pain. Vitamin D3 (500 IU/kg per day) attenuated the CCI-induced decrease in mechanical withdrawal threshold and thermal withdrawal latency (indicators of antinociception) and SFI. The vitamin prevented increased lipid hydroperoxide levels in injured sciatic nerve without change to total antioxidant capacity (TAC). Vitamin D3 prevented increased lipid hydroperoxide, superoxide anion generation (SAG), and hydrogen peroxide (H2O2) levels in the spinal cord, which were found in rats without treatment at 7 and 28 days post-CCI. A significant negative correlation was found between mechanical threshold and SAG and between mechanical threshold and H2O2 at day 7. Vitamin D3 also prevented decreased spinal cord total thiols content. There was an increase in TAC in the spinal cord of vitamin-treated CCI rats, compared to CCI rats without treatment only at 28 days. No significant changes were found in body weight and blood parameters of hepatic and renal function. These findings demonstrated, for first time, that vitamin D modulated pro-oxidant and antioxidant markers in the spinal cord. Since antinociception occurred in parallel with oxidative changes in the spinal cord, the oxidative changes may have contributed to vitamin D-induced antinociception.


Asunto(s)
Antioxidantes , Neuralgia , Animales , Peróxido de Hidrógeno , Hiperalgesia/tratamiento farmacológico , Neuralgia/tratamiento farmacológico , Nocicepción , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno , Nervio Ciático , Médula Espinal , Vitamina D , Vitaminas
2.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;54(10): e11207, 2021. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1285643

RESUMEN

Reactive oxygen species (ROS) are involved in neuropathic pain, a complicated condition after nerve tissue lesion. Vitamin D appears to improve symptoms of pain and exhibits antioxidant properties. We investigated the effects of oral administration of vitamin D3, the active form of vitamin D, on nociception, the sciatic functional index (SFI), and spinal cord pro-oxidant and antioxidant markers in rats with chronic constriction injury (CCI) of the sciatic nerve, a model of neuropathic pain. Vitamin D3 (500 IU/kg per day) attenuated the CCI-induced decrease in mechanical withdrawal threshold and thermal withdrawal latency (indicators of antinociception) and SFI. The vitamin prevented increased lipid hydroperoxide levels in injured sciatic nerve without change to total antioxidant capacity (TAC). Vitamin D3 prevented increased lipid hydroperoxide, superoxide anion generation (SAG), and hydrogen peroxide (H2O2) levels in the spinal cord, which were found in rats without treatment at 7 and 28 days post-CCI. A significant negative correlation was found between mechanical threshold and SAG and between mechanical threshold and H2O2 at day 7. Vitamin D3 also prevented decreased spinal cord total thiols content. There was an increase in TAC in the spinal cord of vitamin-treated CCI rats, compared to CCI rats without treatment only at 28 days. No significant changes were found in body weight and blood parameters of hepatic and renal function. These findings demonstrated, for first time, that vitamin D modulated pro-oxidant and antioxidant markers in the spinal cord. Since antinociception occurred in parallel with oxidative changes in the spinal cord, the oxidative changes may have contributed to vitamin D-induced antinociception.


Asunto(s)
Animales , Ratas , Neuralgia/tratamiento farmacológico , Antioxidantes , Nervio Ciático , Médula Espinal , Vitamina D , Vitaminas , Especies Reactivas de Oxígeno , Ratas Wistar , Nocicepción , Peróxido de Hidrógeno , Hiperalgesia/tratamiento farmacológico
3.
Int J Dev Neurosci ; 80(6): 547-557, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32683715

RESUMEN

Neonatal handling is an early life stressor that leads to behavioral and neurochemical changes in adult rats in a sex-specific manner and possibly affects earlier stages of development. Here, we investigated the effects of neonatal handling (days 1-10 after birth) on juvenile rats focusing on biochemical parameters and olfactory memory after weaning. Male neonatal handled rats performed more crossings on the hole-board task, increased Na+ /K+ -ATPase activity in the olfactory bulb, and decreased acetylcholinesterase activity in the hippocampus versus non-handled males. Female neonatal handled animals increased the number of rearing and nose-pokes on the hole-board task, decreased glutathione peroxidase activity, and total thiol content in the hippocampus versus non-handled females. This study reinforces that early life stress affects behavioral and neurochemical parameters in a sex-specific manner even before the puberty onset.


Asunto(s)
Acetilcolinesterasa/metabolismo , Conducta Animal/fisiología , Manejo Psicológico , Hipocampo/metabolismo , Actividad Motora/fisiología , Estrés Psicológico/metabolismo , Animales , Catalasa/metabolismo , Femenino , Masculino , Ratas , Ratas Wistar , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Superóxido Dismutasa/metabolismo
4.
Brain Res ; 1728: 146592, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31816318

RESUMEN

In the last decade, increased homocysteine levels have been implicated as a risk factor for neurodegenerative and psychiatric disorders. We have developed an experimental model of chronic mild hyperhomocysteinemia (HHcy) in order to observe metabolic impairments in the brain of adult rodents. Besides its known effects on brain metabolism, the present study sought to investigate whether chronic mild HHcy could induce learning/memory impairments associated with biochemical and histological damage to the hippocampus. Adult male Wistar rats received daily subcutaneous injections of homocysteine (0.03 µmol/g of body weight) twice a day, from the 30th to the 60th day of life or saline solution (Controls). After injections, anxiety-like and memory tests were performed. Following behavioral analyses, brains were sliced and hippocampal volumes assessed and homogenized for redox state assessment, antioxidant activity, mitochondrial functioning (chain respiratory enzymes and ATP levels) and DNA damage analyses. Behavioral analyses showed that chronic mild HHcy may induce anxiety-like behavior and impair long-term aversive memory (24 h) that was evaluated by inhibitory avoidance task. Mild HHcy decreased locomotor and/or exploratory activities in elevated plus maze test and caused hippocampal atrophy. Decrease in cytochrome c oxidase, DNA damage and redox state changes were also observed in hippocampus of adult rats subjected to mild HHcy. Our findings show that chronic mild HHcy alters biochemical and histological parameters in the hippocampus, leading to behavioral impairments. These findings might be considered in future studies aiming to search for alternative strategies for treating the behavioral impairments in patients with mild elevations in homocysteine levels.


Asunto(s)
Ansiedad/etiología , Hipocampo/patología , Hiperhomocisteinemia/complicaciones , Trastornos de la Memoria/etiología , Adenosina Trifosfato/metabolismo , Animales , Ansiedad/patología , Atrofia/etiología , Atrofia/patología , Reacción de Prevención , Enfermedad Crónica , Daño del ADN/fisiología , Complejo IV de Transporte de Electrones/metabolismo , Hipocampo/fisiopatología , Homocisteína/sangre , Hiperhomocisteinemia/inducido químicamente , Masculino , Trastornos de la Memoria/fisiopatología , Prueba de Campo Abierto , Estrés Oxidativo/fisiología , Ratas , Ratas Wistar
5.
Int J Dev Neurosci ; 76: 41-51, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31202867

RESUMEN

INTRODUCTION: Perinatal hypoxia-ischemia (HI) is one of the main causes of mortality and chronic neurological morbidity in infants and children. Astrocytes play a key role in HI progression, becoming reactive in response to the injury, releasing S100 calcium binding protein B (S100B). Since S100B inhibition seems to have neuroprotective effects on central nervous system injury models, here we evaluated the neuroprotective effects of an S100B inhibitor, arundic acid (AA) in a HI model. METHODS: On the 7th postnatal day, animals were submitted to the combination of common carotid artery occlusion and hypoxic atmosphere (8% O2) for 60 min. Three experiments were performed in order to: (1) define AA dose (0.1, 1 or 10 mg/kg, pre-hypoxia i.p. injection), (2) test if repeated AA administrations (10 mg/kg at 3 time points: Pre-hypoxia, 24 h and 48 h after HI) would improve the response and (3) investigate biochemical mechanisms involved in AA protection two days after HI. RESULTS: AA at a dose of 10 mg/kg applied before and after hypoxia, was the only treatment protocol that was able to improve HI-induced memory deficits, to reduce tissue damage, to promote astrocytic survival in the hippocampus and to reduced extracellular release of S100B in the cerebrospinal fluid. CONCLUSION: Overall, AA treatment showed beneficial effects on memory deficits, tissue damage, promoting astrocyte survival likely by reducing S100B release. Protection aided to astrocytes by AA treatment against HI lesion may lead to development of new therapeutic strategies that target these particular cells.


Asunto(s)
Astrocitos/efectos de los fármacos , Caprilatos/farmacología , Hipoxia-Isquemia Encefálica/complicaciones , Trastornos de la Memoria/prevención & control , Fármacos Neuroprotectores/farmacología , Animales , Animales Recién Nacidos , Astrocitos/patología , Encéfalo/patología , Supervivencia Celular/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo , Hipoxia-Isquemia Encefálica/patología , Aprendizaje por Laberinto/efectos de los fármacos , Trastornos de la Memoria/etiología , Ratas , Subunidad beta de la Proteína de Unión al Calcio S100/antagonistas & inhibidores , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo
6.
Braz. J. Biol. ; 78(2): 217-223, maio-ago. 2018. graf
Artículo en Inglés | VETINDEX | ID: vti-735311

RESUMEN

Sciatic nerve transection (SNT), a model for studying neuropathic pain, mimics the clinical symptoms of "phantom limb", a pain condition that arises in humans after amputation or transverse spinal lesions. In some vertebrate tissues, this condition decreases acetylcholinesterase (AChE) activity, the enzyme responsible for fast hydrolysis of released acetylcholine in cholinergic synapses. In spinal cord of frog Rana pipiens, this enzymes activity was not significantly changed in the first days following ventral root transection, another model for studying neuropathic pain. An answerable question is whether SNT decreases AChE activity in spinal cord of frog Lithobates catesbeianus, a species that has been used as a model for studying SNT-induced neuropathic pain. Since each animal model has been created with a specific methodology, and the findings tend to vary widely with slight changes in the method used to induce pain, our study assessed AChE activity 3 and 10 days after complete SNT in lumbosacral spinal cord of adult male bullfrog Lithobates catesbeianus. Because there are time scale differences of motor endplate maturation in rat skeletal muscles, our study also measured the AChE activity in bullfrog tibial posticus (a postural muscle) and gastrocnemius (a typical skeletal muscle that is frequently used to study the motor system) muscles. AChE activity did not show significant changes 3 and 10 days following SNT in spinal cord. Also, no significant change occurred in AChE activity in tibial posticus and gastrocnemius muscles at day 3. However, a significant decrease was found at day 10, with reductions of 18% and 20% in tibial posticus and gastrocnemius, respectively. At present we cannot explain this change in AChE activity. While temporally different, the direction of the change was similar to that described for rats.[...](AU)


A transecção do nervo isquiático (SNT), um modelo para estudar dor neuropática, simula os sintomas clínicos do membro fantasma, uma condição dolorosa que ocorre nos humanos após amputação ou secção completa da medula espinal. Essa condição muda a atividade da acetilcolinesterase (AChE), a enzima responsável pela rápida hidrólise da acetilcolina liberada nas sinapses colinérgicas, em alguns tecidos de vertebrados. Em medula espinal de rã Rana pipiens, a atividade da AChE não foi significativamente alterada nos primeiros dias após a secção da raiz ventral, outro modelo para o estudo da dor neuroptípica. Uma questão ainda não respondida é se a SNT diminui a atividade da AChE na medula espinal de rã Lithobates catesbeianus, uma espécie que vem sendo usada como modelo em estudos da dor neuropática induzida por SNT. Como cada modelo animal é criado a partir de metodologia específica, e seus resultados tendem a variar com pequenas mudanças na metodologia de indução da dor, o presente estudo avaliou a atividade da AChE em medula espinal lombossacral de rã-touro Lithobates catesbeianus, adultos, machos, 3 e 10 dias após a completa SNT. Como há diferenças temporais na maturação de placas motoras em músculos esqueléticos de ratos, nosso estudo ainda demonstrou, na rã-touro, os efeitos da SNT sobre a atividade da AChE nos músculos esqueléticos tibial posticus, um músculo postural, e gastrocnêmio, um músculo frequentemente usado em estudos do sistema motor. A atividade da AChE não mudou significativamente na medula espinal aos 3 e 10 dias após a SNT. Nos músculos, a atividade não alterou significativamente aos 3 dias após a lesão, mas reduziu de forma significativa aos 10 dias após a SNT. Aos 10 dias, a diminuição foi 18% no músculo tibial posticus e 20% no gastrocnêmio. No momento, nós não temos explicação para essa mudança na atividade da AChE. Embora temporalmente diferente, o sentido da mudança é similar ao que é descrito em ratos.[...](AU)


Asunto(s)
Animales , Nervio Ciático/cirugía , Acetilcolinesterasa/análisis , Médula Espinal , Músculo Esquelético , Rana catesbeiana , Modelos Animales
7.
Braz. j. biol ; Braz. j. biol;78(2): 217-223, May-Aug. 2018. graf
Artículo en Inglés | LILACS | ID: biblio-888868

RESUMEN

Abstract Sciatic nerve transection (SNT), a model for studying neuropathic pain, mimics the clinical symptoms of "phantom limb", a pain condition that arises in humans after amputation or transverse spinal lesions. In some vertebrate tissues, this condition decreases acetylcholinesterase (AChE) activity, the enzyme responsible for fast hydrolysis of released acetylcholine in cholinergic synapses. In spinal cord of frog Rana pipiens, this enzyme's activity was not significantly changed in the first days following ventral root transection, another model for studying neuropathic pain. An answerable question is whether SNT decreases AChE activity in spinal cord of frog Lithobates catesbeianus, a species that has been used as a model for studying SNT-induced neuropathic pain. Since each animal model has been created with a specific methodology, and the findings tend to vary widely with slight changes in the method used to induce pain, our study assessed AChE activity 3 and 10 days after complete SNT in lumbosacral spinal cord of adult male bullfrog Lithobates catesbeianus. Because there are time scale differences of motor endplate maturation in rat skeletal muscles, our study also measured the AChE activity in bullfrog tibial posticus (a postural muscle) and gastrocnemius (a typical skeletal muscle that is frequently used to study the motor system) muscles. AChE activity did not show significant changes 3 and 10 days following SNT in spinal cord. Also, no significant change occurred in AChE activity in tibial posticus and gastrocnemius muscles at day 3. However, a significant decrease was found at day 10, with reductions of 18% and 20% in tibial posticus and gastrocnemius, respectively. At present we cannot explain this change in AChE activity. While temporally different, the direction of the change was similar to that described for rats. This similarity indicates that bullfrog is a valid model for investigating AChE activity following SNT.


Resumo A transecção do nervo isquiático (SNT), um modelo para estudar dor neuropática, simula os sintomas clínicos do "membro fantasma", uma condição dolorosa que ocorre nos humanos após amputação ou secção completa da medula espinal. Essa condição muda a atividade da acetilcolinesterase (AChE), a enzima responsável pela rápida hidrólise da acetilcolina liberada nas sinapses colinérgicas, em alguns tecidos de vertebrados. Em medula espinal de rã Rana pipiens, a atividade da AChE não foi significativamente alterada nos primeiros dias após a secção da raiz ventral, outro modelo para o estudo da dor neuropática. Uma questão ainda não respondida é se a SNT diminui a atividade da AChE na medula espinal de rã Lithobates catesbeianus, uma espécie que vem sendo usada como modelo em estudos da dor neuropática induzida por SNT. Como cada modelo animal é criado a partir de metodologia específica, e seus resultados tendem a variar com pequenas mudanças na metodologia de indução da dor, o presente estudo avaliou a atividade da AChE em medula espinal lombossacral de rã-touro Lithobates catesbeianus, adultos, machos, 3 e 10 dias após a completa SNT. Como há diferenças temporais na maturação de placas motoras em músculos esqueléticos de ratos, nosso estudo ainda demonstrou, na rã-touro, os efeitos da SNT sobre a atividade da AChE nos músculos esqueléticos tibial posticus, um músculo postural, e gastrocnêmio, um músculo frequentemente usado em estudos do sistema motor. A atividade da AChE não mudou significativamente na medula espinal aos 3 e 10 dias após a SNT. Nos músculos, a atividade não alterou significativamente aos 3 dias após a lesão, mas reduziu de forma significativa aos 10 dias após a SNT. Aos 10 dias, a diminuição foi 18% no músculo tibial posticus e 20% no gastrocnêmio. No momento, nós não temos explicação para essa mudança na atividade da AChE. Embora temporalmente diferente, o sentido da mudança é similar ao que é descrito em ratos. Esta similaridade torna a rã-touro um modelo válido para se estudar questões ainda não respondidas da SNT sobre a AChE.


Asunto(s)
Animales , Acetilcolinesterasa/metabolismo , Nervio Ciático/enzimología , Nervio Ciático/fisiopatología , Nervio Ciático/lesiones , Médula Espinal/fisiología , Músculo Esquelético/inervación , Rana catesbeiana
8.
Braz J Biol ; 78(2): 217-223, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-28977043

RESUMEN

Sciatic nerve transection (SNT), a model for studying neuropathic pain, mimics the clinical symptoms of "phantom limb", a pain condition that arises in humans after amputation or transverse spinal lesions. In some vertebrate tissues, this condition decreases acetylcholinesterase (AChE) activity, the enzyme responsible for fast hydrolysis of released acetylcholine in cholinergic synapses. In spinal cord of frog Rana pipiens, this enzyme's activity was not significantly changed in the first days following ventral root transection, another model for studying neuropathic pain. An answerable question is whether SNT decreases AChE activity in spinal cord of frog Lithobates catesbeianus, a species that has been used as a model for studying SNT-induced neuropathic pain. Since each animal model has been created with a specific methodology, and the findings tend to vary widely with slight changes in the method used to induce pain, our study assessed AChE activity 3 and 10 days after complete SNT in lumbosacral spinal cord of adult male bullfrog Lithobates catesbeianus. Because there are time scale differences of motor endplate maturation in rat skeletal muscles, our study also measured the AChE activity in bullfrog tibial posticus (a postural muscle) and gastrocnemius (a typical skeletal muscle that is frequently used to study the motor system) muscles. AChE activity did not show significant changes 3 and 10 days following SNT in spinal cord. Also, no significant change occurred in AChE activity in tibial posticus and gastrocnemius muscles at day 3. However, a significant decrease was found at day 10, with reductions of 18% and 20% in tibial posticus and gastrocnemius, respectively. At present we cannot explain this change in AChE activity. While temporally different, the direction of the change was similar to that described for rats. This similarity indicates that bullfrog is a valid model for investigating AChE activity following SNT.


Asunto(s)
Acetilcolinesterasa/metabolismo , Músculo Esquelético/inervación , Nervio Ciático , Médula Espinal/fisiología , Animales , Rana catesbeiana , Nervio Ciático/enzimología , Nervio Ciático/lesiones , Nervio Ciático/fisiopatología
9.
Neurochem Res ; 42(2): 552-562, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27885575

RESUMEN

Neonatal hypoxia-ischemia (HI) is an etiologic component of several neurologic pathologies associated to cognitive impairment. The mechanisms involved in HI-induced tissue damage start immediately after HI and extend for days. Acetylcholine is an important neurotransmitter in the central nervous system and exerts a protector effect on tissue damage by modulating inflammation, and cholinesterase inhibitors have shown neuroprotective properties and their action are often attributed to inhibition of the immune response. The administration of Huperzia quadrifariata alkaloid extract (HqAE), with potent and selective cholinesterase inhibitor properties, will reduce the HI induced behavioral deficits and tissue damage. A total of 84 newborn Wistar rat pups at post natal day 7 (PND7) were subjected to right carotid occlusion followed by 1 h of hypoxia (8% of O2) and i.p. injections of saline, vehicle or HqAE (10 mg/kg). Morris Water Maze and inhibitory avoidance tests were used to assess the cognitive function. Flow cytometry was performed at PND11. Histological analysis was performed at PND45. HqAE treatment was able to prevent the HI induced cognitive deficits in both tests and, at PND45, histological analysis showed that HqAE treatment reduced hippocampus tissue damage. Flow cytometry of the injured hippocampus revealed that the treatment was able to reduce cellular death and the number of infiltrating T cells. Altogether, these results show the therapeutic potential of the Huperzia quadrifariata alkaloid extract to prevent cognitive deficits and histological damage caused by neonatal hypoxia-ischemia, probably by reducing cellular death and T cell mobilization.


Asunto(s)
Alcaloides/uso terapéutico , Inhibidores de la Colinesterasa/uso terapéutico , Huperzia , Hipoxia-Isquemia Encefálica/enzimología , Fármacos Neuroprotectores/uso terapéutico , Extractos Vegetales/uso terapéutico , Alcaloides/aislamiento & purificación , Alcaloides/farmacología , Animales , Animales Recién Nacidos , Inhibidores de la Colinesterasa/aislamiento & purificación , Inhibidores de la Colinesterasa/farmacología , Modelos Animales de Enfermedad , Femenino , Hipoxia-Isquemia Encefálica/prevención & control , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Fármacos Neuroprotectores/aislamiento & purificación , Fármacos Neuroprotectores/farmacología , Componentes Aéreos de las Plantas , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Ratas , Ratas Wistar , Resultado del Tratamiento
10.
Artículo en Inglés | VETINDEX | ID: vti-695548

RESUMEN

Abstract Sciatic nerve transection (SNT), a model for studying neuropathic pain, mimics the clinical symptoms of phantom limb, a pain condition that arises in humans after amputation or transverse spinal lesions. In some vertebrate tissues, this condition decreases acetylcholinesterase (AChE) activity, the enzyme responsible for fast hydrolysis of released acetylcholine in cholinergic synapses. In spinal cord of frog Rana pipiens, this enzymes activity was not significantly changed in the first days following ventral root transection, another model for studying neuropathic pain. An answerable question is whether SNT decreases AChE activity in spinal cord of frog Lithobates catesbeianus, a species that has been used as a model for studying SNT-induced neuropathic pain. Since each animal model has been created with a specific methodology, and the findings tend to vary widely with slight changes in the method used to induce pain, our study assessed AChE activity 3 and 10 days after complete SNT in lumbosacral spinal cord of adult male bullfrog Lithobates catesbeianus. Because there are time scale differences of motor endplate maturation in rat skeletal muscles, our study also measured the AChE activity in bullfrog tibial posticus (a postural muscle) and gastrocnemius (a typical skeletal muscle that is frequently used to study the motor system) muscles. AChE activity did not show significant changes 3 and 10 days following SNT in spinal cord. Also, no significant change occurred in AChE activity in tibial posticus and gastrocnemius muscles at day 3. However, a significant decrease was found at day 10, with reductions of 18% and 20% in tibial posticus and gastrocnemius, respectively. At present we cannot explain this change in AChE activity. While temporally different, the direction of the change was similar to that described for rats. This similarity indicates that bullfrog is a valid model for investigating AChE activity following SNT.


Resumo A transecção do nervo isquiático (SNT), um modelo para estudar dor neuropática, simula os sintomas clínicos do membro fantasma, uma condição dolorosa que ocorre nos humanos após amputação ou secção completa da medula espinal. Essa condição muda a atividade da acetilcolinesterase (AChE), a enzima responsável pela rápida hidrólise da acetilcolina liberada nas sinapses colinérgicas, em alguns tecidos de vertebrados. Em medula espinal de rã Rana pipiens, a atividade da AChE não foi significativamente alterada nos primeiros dias após a secção da raiz ventral, outro modelo para o estudo da dor neuropática. Uma questão ainda não respondida é se a SNT diminui a atividade da AChE na medula espinal de rã Lithobates catesbeianus, uma espécie que vem sendo usada como modelo em estudos da dor neuropática induzida por SNT. Como cada modelo animal é criado a partir de metodologia específica, e seus resultados tendem a variar com pequenas mudanças na metodologia de indução da dor, o presente estudo avaliou a atividade da AChE em medula espinal lombossacral de rã-touro Lithobates catesbeianus, adultos, machos, 3 e 10 dias após a completa SNT. Como há diferenças temporais na maturação de placas motoras em músculos esqueléticos de ratos, nosso estudo ainda demonstrou, na rã-touro, os efeitos da SNT sobre a atividade da AChE nos músculos esqueléticos tibial posticus, um músculo postural, e gastrocnêmio, um músculo frequentemente usado em estudos do sistema motor. A atividade da AChE não mudou significativamente na medula espinal aos 3 e 10 dias após a SNT. Nos músculos, a atividade não alterou significativamente aos 3 dias após a lesão, mas reduziu de forma significativa aos 10 dias após a SNT. Aos 10 dias, a diminuição foi 18% no músculo tibial posticus e 20% no gastrocnêmio. No momento, nós não temos explicação para essa mudança na atividade da AChE. Embora temporalmente diferente, o sentido da mudança é similar ao que é descrito em ratos. Esta similaridade torna a rã-touro um modelo válido para se estudar questões ainda não respondidas da SNT sobre a AChE.

11.
Braz. j. biol ; Braz. j. biol;2017.
Artículo en Inglés | LILACS-Express | LILACS, VETINDEX | ID: biblio-1467081

RESUMEN

Abstract Sciatic nerve transection (SNT), a model for studying neuropathic pain, mimics the clinical symptoms of phantom limb, a pain condition that arises in humans after amputation or transverse spinal lesions. In some vertebrate tissues, this condition decreases acetylcholinesterase (AChE) activity, the enzyme responsible for fast hydrolysis of released acetylcholine in cholinergic synapses. In spinal cord of frog Rana pipiens, this enzymes activity was not significantly changed in the first days following ventral root transection, another model for studying neuropathic pain. An answerable question is whether SNT decreases AChE activity in spinal cord of frog Lithobates catesbeianus, a species that has been used as a model for studying SNT-induced neuropathic pain. Since each animal model has been created with a specific methodology, and the findings tend to vary widely with slight changes in the method used to induce pain, our study assessed AChE activity 3 and 10 days after complete SNT in lumbosacral spinal cord of adult male bullfrog Lithobates catesbeianus. Because there are time scale differences of motor endplate maturation in rat skeletal muscles, our study also measured the AChE activity in bullfrog tibial posticus (a postural muscle) and gastrocnemius (a typical skeletal muscle that is frequently used to study the motor system) muscles. AChE activity did not show significant changes 3 and 10 days following SNT in spinal cord. Also, no significant change occurred in AChE activity in tibial posticus and gastrocnemius muscles at day 3. However, a significant decrease was found at day 10, with reductions of 18% and 20% in tibial posticus and gastrocnemius, respectively. At present we cannot explain this change in AChE activity. While temporally different, the direction of the change was similar to that described for rats. This similarity indicates that bullfrog is a valid model for investigating AChE activity following SNT.


Resumo A transecção do nervo isquiático (SNT), um modelo para estudar dor neuropática, simula os sintomas clínicos do membro fantasma, uma condição dolorosa que ocorre nos humanos após amputação ou secção completa da medula espinal. Essa condição muda a atividade da acetilcolinesterase (AChE), a enzima responsável pela rápida hidrólise da acetilcolina liberada nas sinapses colinérgicas, em alguns tecidos de vertebrados. Em medula espinal de rã Rana pipiens, a atividade da AChE não foi significativamente alterada nos primeiros dias após a secção da raiz ventral, outro modelo para o estudo da dor neuropática. Uma questão ainda não respondida é se a SNT diminui a atividade da AChE na medula espinal de rã Lithobates catesbeianus, uma espécie que vem sendo usada como modelo em estudos da dor neuropática induzida por SNT. Como cada modelo animal é criado a partir de metodologia específica, e seus resultados tendem a variar com pequenas mudanças na metodologia de indução da dor, o presente estudo avaliou a atividade da AChE em medula espinal lombossacral de rã-touro Lithobates catesbeianus, adultos, machos, 3 e 10 dias após a completa SNT. Como há diferenças temporais na maturação de placas motoras em músculos esqueléticos de ratos, nosso estudo ainda demonstrou, na rã-touro, os efeitos da SNT sobre a atividade da AChE nos músculos esqueléticos tibial posticus, um músculo postural, e gastrocnêmio, um músculo frequentemente usado em estudos do sistema motor. A atividade da AChE não mudou significativamente na medula espinal aos 3 e 10 dias após a SNT. Nos músculos, a atividade não alterou significativamente aos 3 dias após a lesão, mas reduziu de forma significativa aos 10 dias após a SNT. Aos 10 dias, a diminuição foi 18% no músculo tibial posticus e 20% no gastrocnêmio. No momento, nós não temos explicação para essa mudança na atividade da AChE. Embora temporalmente diferente, o sentido da mudança é similar ao que é descrito em ratos. Esta similaridade torna a rã-touro um modelo válido para se estudar questões ainda não respondidas da SNT sobre a AChE.

12.
Neuroscience ; 291: 118-27, 2015 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-25617656

RESUMEN

In animal models, environmental enrichment (EE) has been found to be an efficient treatment for alleviating the consequences of neonatal hypoxia-ischemia (HI). However the potential for this therapeutic strategy and the mechanisms involved are not yet clear. The aim of present study is to investigate behavioral performance in the ox-maze test and Na+,K+-ATPase, catalase (CAT) and glutathione peroxidase (GPx) activities in the hippocampus of rats that suffered neonatal HI and were stimulated in an enriched environment. Seven-day-old rats were submitted to the HI procedure and divided into four groups: control maintained in standard environment (CTSE), control submitted to EE (CTEE), HI in standard environment (HISE) and HI in EE (HIEE). Animals were stimulated with EE for 9 weeks (1 h/day for 6 days/week) and then behavioral and biochemical parameters were evaluated. Present results indicate learning and memory in the ox-maze task were impaired in HI rats and this effect was recovered after EE. Hypoxic-ischemic event did not alter the Na+,K+-ATPase activity in the right hippocampus (ipsilateral to arterial occlusion). However, on the contralateral hemisphere, HI caused a decrease in this enzyme activity that was recovered by EE. The activities of GPx and CAT were not changed by HI in any group evaluated. In conclusion, EE was effective in recovering learning and memory impairment in the ox-maze task and Na+,K+-ATPase activity in the hippocampus caused by HI. The present data provide further support for the therapeutic potential of environmental stimulation after neonatal HI in rats.


Asunto(s)
Ambiente , Hipocampo/enzimología , Hipoxia-Isquemia Encefálica/terapia , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/terapia , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Animales Recién Nacidos , Catalasa/metabolismo , Modelos Animales de Enfermedad , Glutatión Peroxidasa/metabolismo , Hipoxia-Isquemia Encefálica/complicaciones , Hipoxia-Isquemia Encefálica/enzimología , Discapacidades para el Aprendizaje/enzimología , Discapacidades para el Aprendizaje/etiología , Discapacidades para el Aprendizaje/terapia , Trastornos de la Memoria/enzimología , Trastornos de la Memoria/etiología , Distribución Aleatoria , Ratas Wistar , Resultado del Tratamiento
13.
Neuroscience ; 250: 121-8, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-23867765

RESUMEN

Hyperprolinemia is an inherited disorder of proline metabolism and hyperprolinemic patients can present neurological manifestations, such as seizures, cognitive dysfunctions, and schizoaffective disorders. However, the mechanisms related to these symptoms are still unclear. In the present study, we evaluated the in vivo and in vitro effects of proline on acetylcholinesterase (AChE) activity and gene expression in the zebrafish brain. For the in vivo studies, animals were exposed at two proline concentrations (1.5 and 3.0mM) during 1h or 7 days (short- or long-term treatments, respectively). For the in vitro assays, different proline concentrations (ranging from 3.0 to 1000 µM) were tested. Long-term proline exposures significantly increased AChE activity for both treated groups when compared to the control (34% and 39%). Moreover, the proline-induced increase on AChE activity was completely reverted by acute administration of antipsychotic drugs (haloperidol and sulpiride), as well as the changes induced in ache expression. When assessed in vitro, proline did not promote significant changes in AChE activity. Altogether, these data indicate that the enzyme responsible for the control of acetylcholine levels might be altered after proline exposure in the adult zebrafish. These findings contribute for better understanding of the pathophysiology of hyperprolinemia and might reinforce the use of the zebrafish as a complementary vertebrate model for studying inborn errors of amino acid metabolism.


Asunto(s)
Acetilcolinesterasa/metabolismo , Antipsicóticos/farmacología , Química Encefálica/efectos de los fármacos , Química Encefálica/genética , Encéfalo/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Prolina/farmacología , Pez Cebra/fisiología , Animales , Femenino , Haloperidol/farmacología , Técnicas In Vitro , Masculino , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Sistema Nervioso Parasimpático/efectos de los fármacos , Prolina/antagonistas & inhibidores , Reacción en Cadena en Tiempo Real de la Polimerasa , Sulpirida/farmacología
14.
Neuroscience ; 246: 28-39, 2013 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-23639877

RESUMEN

Physical exercise during pregnancy has been considered beneficial to mother and child. Recent studies showed that maternal swimming improves memory in the offspring, increases hippocampal neurogenesis and levels of neurotrophic factors. The objective of this work was to investigate the effect of maternal swimming during pregnancy on redox status and mitochondrial parameters in brain structures from the offspring. Adult female Wistar rats were submitted to five swimming sessions (30 min/day) prior to mating with adult male Wistar rats, and then trained during the pregnancy (five sessions of 30-min swimming/week). The litter was sacrificed when 7 days old, when cerebellum, parietal cortex, hippocampus, and striatum were dissected. We evaluated the production of reactive species and antioxidant status, measuring the activities of superoxide-dismutase (SOD), catalase (CAT) and glutathione-peroxidase (GPx), as well as non-enzymatic antioxidants. We also investigated a potential mitochondrial biogenesis regarding mitochondrion mass and membrane potential, through cytometric approaches. Our results showed that maternal swimming exercise promoted an increase in reactive species levels in cerebellum, parietal cortex, and hippocampus, demonstrated by an increase in dichlorofluorescein oxidation. Mitochondrial superoxide was reduced in cerebellum and parietal cortex, while nitrite levels were increased in cerebellum, parietal cortex, hippocampus, and striatum. Antioxidant status was improved in cerebellum, parietal cortex, and hippocampus. SOD activity was increased in parietal cortex, and was not altered in the remaining brain structures. CAT and GPx activities, as well as non-enzymatic antioxidant potential, were increased in cerebellum, parietal cortex, and hippocampus of rats whose mothers were exercised. Finally, we observed an increased mitochondrial mass and membrane potential, suggesting mitochondriogenesis, in cerebellum and parietal cortex of pups subjected to maternal swimming. In conclusion, maternal swimming exercise induced neurometabolic programing in the offspring that could be of benefit to the rats against future cerebral insults.


Asunto(s)
Antioxidantes/metabolismo , Encéfalo/metabolismo , Mitocondrias/metabolismo , Condicionamiento Físico Animal/fisiología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Natación/fisiología , Animales , Animales Recién Nacidos , Femenino , Masculino , Potencial de la Membrana Mitocondrial/fisiología , Biogénesis de Organelos , Embarazo , Ratas , Ratas Wistar
15.
Brain Res ; 1507: 105-14, 2013 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-23466455

RESUMEN

Hypoxia-ischemia on 3-day-old rats (HIP3) allows the investigation of HI damage in the immature brain. HIP3 is characterized for neurological disabilities caused by white matter injury. This study investigates the relationship between animals' sex and injured hemisphere on HIP3 consequences. Male and female Wistar rats had their right or left common carotid artery occluded under halotane anesthesia and exposed to 8% O2 for 1.5 h. Control rats received sham surgery and exposure to 1.5 h of room air in isolation of their mothers. Sex and injured hemisphere influence in Na+/K+ -ATPase activity 24h after lesion: females and the right brain hemispheres showed decreased enzymatic activity after HIP3. Cognitive impairment was observed in step-down inhibitory avoidance, in which females HIP3 left injured were the most damaged. Histological analysis showed a trend to white matter damage in females left injured without hemispherical nor hippocampal volume decrease in HIP3 rats at postnatal day 21. However, at PND90, hemisphere and sex effects were noted in hemispherical volume and myelination: left brain hemisphere and the females evidenced higher histological damage. Our results points to an increased resistance of male rats and right brain hemisphere to support the impairment caused in Na+/K+ -ATPase activity early after HIP3, and evidencing more discrete behavioral impairments and histological damage at adulthood. Present data adds new evidence of distinct effects of brain lateralization and sex vulnerability on biochemical, behavioral and histological parameters after hypoxia-ischemia.


Asunto(s)
Encéfalo/patología , Hipoxia-Isquemia Encefálica/patología , Hipoxia-Isquemia Encefálica/psicología , Animales , Animales Recién Nacidos , Reacción de Prevención/fisiología , Encéfalo/enzimología , Traumatismos de las Arterias Carótidas/enzimología , Traumatismos de las Arterias Carótidas/patología , Traumatismos de las Arterias Carótidas/psicología , Femenino , Lateralidad Funcional/fisiología , Hipoxia-Isquemia Encefálica/enzimología , Masculino , Actividad Motora/fisiología , Fibras Nerviosas Mielínicas/patología , Ratas , Ratas Wistar , Factores Sexuales , ATPasa Intercambiadora de Sodio-Potasio/análisis
16.
Neuroscience ; 223: 28-34, 2012 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-22863571

RESUMEN

Since homocysteine (Hcy) is considered a risk factor to cerebral diseases and adenine nucleotides are important molecules to brain normal function, in the present study we investigated the effect of chronic mild hyperhomocysteinemia on ectonucleotidase activities and expression in rat cerebral cortex. The levels of ATP, ADP, AMP and adenosine (Ado) in cerebrospinal fluid (CSF) of adult rats also were evaluated by high-performance liquid chromatography. For the chronic chemically induced mild hyperhomocysteinemia, Hcy (0.03 µmol/g of body weight) was administered subcutaneously from the 30th to the 60th day of life. Control rats received saline solution in the same volumes. Results showed that Hcy significantly decreased nucleotide hydrolysis in the synaptosomal fraction and increased E-NTPDase1 and ecto-5'-nucleotidase transcripts in rat cerebral cortex. ATP levels were significantly increased, while Ado decreased in CSF of Hcy-treated rats. These findings suggest that the unbalance in ATP and Ado levels may be, at last in part, involved in the cerebral toxicity of mild hyperhomocysteinemia.


Asunto(s)
Adenina/metabolismo , Encéfalo/patología , Líquido Extracelular/metabolismo , Hiperhomocisteinemia/patología , 5'-Nucleotidasa/genética , 5'-Nucleotidasa/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/ultraestructura , Modelos Animales de Enfermedad , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Regulación Enzimológica de la Expresión Génica , Hiperhomocisteinemia/metabolismo , Purinas/líquido cefalorraquídeo , ARN Mensajero , Ratas , Ratas Wistar , Fracciones Subcelulares/metabolismo , Fracciones Subcelulares/patología , Sinaptosomas/metabolismo
17.
Neurochem Res ; 37(5): 1063-73, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22327943

RESUMEN

Social isolation during postnatal development leads to behavioral and neurochemical changes, and a particular susceptibility of the prefrontal cortex to interventions during this period has been suggested. In addition, some studies showed that consumption of a palatable diet reduces some of the stress effects. Therefore, our aim is to investigate the effect of isolation stress in early life on some parameters of oxidative stress and energy metabolism (Na(+),K(+)-ATPase activity, respiratory chain enzymes activities and mitochondrial mass and potential) in prefrontal cortex of juvenile and adult male rats. We also verified if the consumption of a palatable diet during the prepubertal period would reduce stress effects. The results showed that, in juvenile animals, isolation stress increased superoxide dismutase and Complex IV activities and these effects were still observed in the adulthood. An interaction between stress and diet was observed in catalase activity in juveniles, while only the stress effect was detected in adults, reducing catalase activity. Access to a palatable diet increased Na(+),K(+)-ATPase activity in juveniles, an effect that was reversed after removing this diet. On the other hand, isolation stress induced a decreased activity of this enzyme in adulthood. No effects were observed on glutathione peroxidase, total thiols and free radicals production, as well as on mitochondrial mass and potential. In conclusion, isolation stress in the prepubertal period leads to long-lasting changes on antioxidant enzymes and energetic metabolism in the prefrontal cortex of male rats, and a palatable diet was not able to reverse these stress-induced effects.


Asunto(s)
Corteza Prefrontal/metabolismo , Aislamiento Social , Estrés Psicológico , Animales , Catalasa/metabolismo , Transporte de Electrón , Glutatión Peroxidasa/metabolismo , Masculino , Potenciales de la Membrana , Mitocondrias/metabolismo , Corteza Prefrontal/enzimología , Ratas , Ratas Wistar , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
18.
Neuroscience ; 163(4): 1039-45, 2009 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-19619620

RESUMEN

In the present study, we first investigated the effect of single homocysteine administration on consolidation of short- and long-term memories of inhibitory avoidance task in Wistar rats. We also measured brain-derived neurotrophic factor levels in the hippocampus and parietal cortex of rats. The influence of pretreatment with folic acid on behavioral and biochemical effects elicited by homocysteine was also studied. Wistar rats were subjected to a folic acid or saline pretreatment from their 22(nd) to 28(th) day of life; 12 h later they were submitted to a single administration of homocysteine or saline. For motor activity and memory evaluation we performed open-field and inhibitory avoidance tasks. Hippocampus and parietal cortex were obtained for brain-derived neurotrophic factor immunocontent determination. Results showed that homocysteine impaired short- and long-term memories and reduced brain-derived neurotrophic factor levels in the hippocampus. Pretreatment with folic acid prevented both the memory deficit and the reduction in the brain-derived neurotrophic factor immunocontent induced by homocysteine injection. Further studies are required to determine the entire mechanism by which folic acid acts and its potential therapeutic use for memory impairment prevention in homocystinuric patients.


Asunto(s)
Reacción de Prevención/fisiología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ácido Fólico/metabolismo , Hipocampo/fisiología , Homocisteína/metabolismo , Memoria/fisiología , Animales , Ácido Fólico/uso terapéutico , Hiperhomocisteinemia/complicaciones , Hiperhomocisteinemia/metabolismo , Trastornos de la Memoria/complicaciones , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/terapia , Memoria a Corto Plazo/fisiología , Actividad Motora/fisiología , Lóbulo Parietal/fisiología , Distribución Aleatoria , Ratas , Ratas Wistar , Factores de Tiempo , Complejo Vitamínico B/metabolismo , Complejo Vitamínico B/uso terapéutico
19.
J Theor Biol ; 258(3): 418-25, 2009 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-18761018

RESUMEN

The development of transgenic mosquitoes that are resistant to diseases may provide a new and effective weapon of diseases control. Such an approach relies on transgenic mosquitoes being able to survive and compete with wild-type populations. These transgenic mosquitoes carry a specific code that inhibits the plasmodium evolution in its organism. It is said that this characteristic is hereditary and consequently the disease fades away after some time. Once transgenic mosquitoes are released, interactions between the two populations and inter-specific mating between the two types of mosquitoes take place. We present a mathematical model that considers the generation overlapping and variable environment factors. Based on this continuous model, the malaria vector control is formulated and solved as an optimal control problem, indicating how genetically modified mosquitoes should be introduced in the environment. Numerical simulations show the effectiveness of the proposed control.


Asunto(s)
Animales Modificados Genéticamente , Simulación por Computador , Culicidae/genética , Insectos Vectores/genética , Malaria Falciparum/prevención & control , Modelos Estadísticos , Animales , Culicidae/fisiología , Interacciones Huésped-Parásitos , Inmunidad Innata/genética , Insectos Vectores/fisiología , Modelos Biológicos , Plasmodium falciparum/fisiología , Dinámica Poblacional , Reproducción/fisiología
20.
Exp Neurol ; 197(1): 143-9, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16203000

RESUMEN

We have previously demonstrated that octanoic (OA) and decanoic acids (DA) inhibit Na+, K+ ATPase activity in synaptic plasma membranes from rat brain. The objective of the present study was to investigate the in vitro effects of the other metabolites that accumulate in tissues of medium-chain acyl-CoA dehydrogenase (MCAD)-deficient patients, namely cis-4-decenoic acid (cDA), octanoylcarnitine (OC), hexanoylcarnitine (HC), hexanoylglycine (HG), phenylpropionylglycine (PPG) and suberoylglycine (SG), on Na+, K+ ATPase activity in synaptic plasma membrane from cerebral cortex of 30-day-old rats. cDA, the pathognomonic compound found in this disorder, provoked the strongest inhibition on this enzyme activity at concentrations as low as 0.25 mM, whereas OC inhibited this activity at 1.0 mM and higher concentrations in a dose-dependent manner. In contrast, HC, HG, PPG and SG did not affect Na+, K+ ATPase activity. Furthermore, pre-treatment of cortical homogenates with the antioxidant enzymes catalase plus superoxide dismutase totally prevented cDA-induced Na+, K+ ATPase inhibition. We also provided evidence that cDA, as well as OA and DA, caused lipid peroxidation, which may explain, at least in part, the inhibitory properties of these compounds towards Na+, K+ ATPase. Considering that Na+, K+ ATPase is a critical enzyme for normal brain development and functioning, it is presumed that these findings, especially those regarding to the marked inhibitory effect of cDA, may be involved in the pathophysiology of the neurological dysfunction of MCAD-deficient patients.


Asunto(s)
Corteza Cerebral/enzimología , Inhibidores Enzimáticos , Ácidos Grasos Monoinsaturados/farmacología , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , Membranas Sinápticas/enzimología , Acil-CoA Deshidrogenasa/deficiencia , Animales , Antioxidantes/farmacología , Carnitina/análogos & derivados , Carnitina/farmacología , Corteza Cerebral/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Mediciones Luminiscentes , Ratas , Ratas Wistar , Membranas Sinápticas/efectos de los fármacos , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA