Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (210)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39283128

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) and myocardial infarction (MI) are two major health burdens with significant prevalence and mortality. This study aimed to explore the co-expressed genes to understand the relationship between NAFLD and MI and identify potential crucial biomarkers of NAFLD-related MI using bioinformatics and machine learning. Functional enrichment analysis was conducted, a co-protein-protein interaction (PPI) network diagram was constructed, and support vector machine-recursive feature elimination (SVM-RFE) and least absolute shrinkage and selection operator (LASSO) techniques were employed to identify one differentially expressed gene (DEG), Thrombospondin 1 (THBS1). THBS1 demonstrated strong performance in distinguishing NAFLD patients (AUC = 0.981) and MI patients (AUC = 0.900). Immuno-infiltration analysis revealed significantly lower CD8+ T cells and higher neutrophil levels in patients with NAFLD and MI. CD8+ T cells and neutrophils were effective in distinguishing NAFLD/MI from healthy controls. Correlation analysis showed that THBS1 was positively correlated with CCR (chemokine receptor), MHC class (major histocompatibility complex class), neutrophils, parainflammation, and Tfh (follicular helper T cells), and negatively correlated with CD8+ T cells, cytolytic activity, and TIL (tumor-infiltrating lymphocytes) in NAFLD and MI patients. THBS1 emerged as a novel biomarker for diagnosing NAFLD/MI in comparison to healthy controls. The results indicate that CD8+ T cells and neutrophils could serve as inflammatory immune features for differentiating patients with NAFLD/MI from healthy individuals.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Trombospondina 1 , Humanos , Enfermedad del Hígado Graso no Alcohólico/inmunología , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Trombospondina 1/genética , Trombospondina 1/metabolismo , Infarto del Miocardio/inmunología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/genética , Máquina de Vectores de Soporte , Biomarcadores/metabolismo , Biomarcadores/análisis
2.
J Ethnopharmacol ; 337(Pt 1): 118821, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39265794

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Positive evidence from clinical trials highlights the promising potential of traditional Chinese medication, Qili qiangxin capsule (QLQX), on chronic heart failure; however, limited data are available regarding its effects and mechanism in myocardial ischemia-reperfusion injury (MIRI). Herein, we aimed to explore cardioprotective effects and the underlying mechanism of QLQX in MIRI in vivo and in vitro. MATERIALS AND METHODS: Mice were subjected to left anterior descending coronary artery ligation for 30 min followed by 24 h of reperfusion with or without 7-day pretreatment with QLQX (0.234, 0.468, or 0.936 g/kg). Cardiac function, myocardial infarction, and morphological changes were evaluated. The mechanism underlying the cardio-protection of QLQX on MIRI was determined by network pharmacology based on the common genes of potential targets of QLQX and MIRI-related genes, further validated by H9c2 cardiomyocytes exposing hypoxia/reoxygenation (H/R). The viability, apoptosis, as well as autophagy and relevant signaling proteins in H9c2 were analyzed. RESULTS: QLQX pretreatment markedly improved cardiac function and decreased myocardium infarct size, apoptotic cardiomyocyte number, and LHD, CK-MB, and TnT levels in MIRI mice. QLQX could mitigate H/R-induced H9c2 cardiomyocyte injury, as evidenced by decreased cell apoptosis and LDH release and increased ATP production. QLQX effectively attenuates excessive autophagy in cardiomyocytes both in vivo and in vitro. Mechanically, network pharmacology analysis demonstrated the cardio-protection of QLQX on MIRI involving in PI3K/Akt signaling; the effects of QLQX on H/R-induced H9c2 cardiomyocytes were abolished by a specific PI3K inhibitor. CONCLUSION: QLQX protects against cardiomyocyte apoptosis and excessive autophagy via PI3K/Akt signaling during MIRI.

3.
Aging (Albany NY) ; 16(11): 9944-9958, 2024 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-38850523

RESUMEN

Several studies have demonstrated a correlation between neurodegenerative diseases (NDDs) and myocardial infarction (MI), yet the precise causal relationship between these remains elusive. This study aimed to investigate the potential causal associations of genetically predicted Alzheimer's disease (AD), dementia with Lewy bodies (DLB), Parkinson's disease (PD), and multiple sclerosis (MS) with MI using two-sample Mendelian randomization (TSMR). Various methods, including inverse variance weighted (IVW), weighted median (WM), MR-Egger regression, weighted mode, and simple mode, were employed to estimate the effects of genetically predicted NDDs on MI. To validate the analysis, we assessed pleiotropic effects, heterogeneity, and conducted leave-one-out sensitivity analysis. We identified that genetic predisposition to NDDs was suggestively associated with higher odds of MI (OR_IVW=1.07, OR_MR-Egger=1.08, OR_WM=1.07, OR_weighted mode=1.07, OR_simple mode=1.10, all P<0.05). Furthermore, we observed significant associations of genetically predicted DLB with MI (OR_IVW=1.07, OR_MR-Egger=1.11, OR_WM=1.09, OR_weighted mode=1.09, all P<0.05). However, there was no significant causal evidence of genetically predicted PD and MS in MI. Across all MR analyses, no horizontal pleiotropy or statistical heterogeneity was observed (all P>0.05). Additionally, results from MRPRESSO and leave-one-out sensitivity analysis confirmed the robustness of the causal effect estimations for genetically predicted AD, DLB, PD, and MS on MI. This study provides further support for the causal effects of AD on MI and, for the first time, establishes robust causal evidence for the detrimental effect of DLB on the risk of MI. Our findings emphasize the importance of monitoring the cardiovascular function of the elderly experiencing neurodegenerative changes.


Asunto(s)
Predisposición Genética a la Enfermedad , Análisis de la Aleatorización Mendeliana , Infarto del Miocardio , Enfermedades Neurodegenerativas , Humanos , Infarto del Miocardio/genética , Infarto del Miocardio/epidemiología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/epidemiología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/epidemiología , Factores de Riesgo , Polimorfismo de Nucleótido Simple , Causalidad
4.
Front Cardiovasc Med ; 11: 1342379, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38682102

RESUMEN

Background: The long-term prognosis of patients with stable coronary artery disease (CAD) combined with orthostatic hypotension (OH) has rarely been reported. This research was designed to examine whether OH increases the risk of all-cause mortality and cardiovascular death among patients with stable CAD. Methods: We retrospectively analyzed retired military personnel over 65 years of age who were hospitalized at the General Hospital of Southern Theater Command of the Chinese People's Liberation Army between March and July 2010. A total of 924 patients with stable CAD were included, among whom 263 had OH. The risk of all-cause mortality and cardiovascular death in OH and non-OH groups were analyzed with the Cox proportional hazards models, and restricted cubic spline plots were utilized for subgroup analyses. Furthermore, competing risk models were applied for sensitivity analyses. Results: The median age of the patients was 82.00 (80.00-85.00) years. Over 159 months of follow-up, the loss to follow-up rate was 2.27%, and all-cause mortality was observed in 574 (63.57%) patients, including 184 with OH. Moreover, cardiovascular death occurred in 127 patients (13.73%), with 58 cases associated with OH. Although the relationship between OH and all-cause mortality was non-significant [body mass index (BMI) < 25 group, adjusted hazard ratio (HR) = 1.10 with a 95% confidence interval (CI): 0.82-1.40; BMI ≥ 25 group, adjusted HR = 1.30, 95% CI: 0.98-1.70], it was independently related to a growing risk of cardiovascular death (adjusted HR = 1.80, 95% CI: 1.20-2.60). This finding was further validated by using a competing risk model (subdistribution HR = 1.74, 95% CI: 1.22-2.49). Moreover, age, low-density lipoprotein cholesterol, and frequency of hospital admissions were identified as risk factors of cardiovascular death among patients with OH (P < 0.05). Conclusion: Our study, based on retired military personnel with stable CAD, found that OH led to a significantly higher risk of cardiovascular death, but it was not noticeably associated with all-cause mortality on long-term prognosis.

5.
Oncol Res ; 32(4): 625-641, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560562

RESUMEN

The cancer cell metastasis is a major death reason for patients with non-small cell lung cancer (NSCLC). Although researchers have disclosed that interleukin 17 (IL-17) can increase matrix metalloproteinases (MMPs) induction causing NSCLC cell metastasis, the underlying mechanism remains unclear. In the study, we found that IL-17 receptor A (IL-17RA), p300, p-STAT3, Ack-STAT3, and MMP19 were up-regulated both in NSCLC tissues and NSCLC cells stimulated with IL-17. p300, STAT3 and MMP19 overexpression or knockdown could raise or reduce IL-17-induced p-STAT3, Ack-STAT3 and MMP19 level as well as the cell migration and invasion. Mechanism investigation revealed that STAT3 and p300 bound to the same region (-544 to -389 nt) of MMP19 promoter, and p300 could acetylate STAT3-K631 elevating STAT3 transcriptional activity, p-STAT3 or MMP19 expression and the cell mobility exposed to IL-17. Meanwhile, p300-mediated STAT3-K631 acetylation and its Y705-phosphorylation could interact, synergistically facilitating MMP19 gene transcription and enhancing cell migration and invasion. Besides, the animal experiments exhibited that the nude mice inoculated with NSCLC cells by silencing p300, STAT3 or MMP19 gene plus IL-17 treatment, the nodule number, and MMP19, Ack-STAT3, or p-STAT3 production in the lung metastatic nodules were all alleviated. Collectively, these outcomes uncover that IL-17-triggered NSCLC metastasis involves up-regulating MMP19 expression via the interaction of STAT3-K631 acetylation by p300 and its Y705-phosphorylation, which provides a new mechanistic insight and potential strategy for NSCLC metastasis and therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Ratones , Animales , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Interleucina-17/genética , Interleucina-17/metabolismo , Fosforilación , Neoplasias Pulmonares/patología , Acetilación , Ratones Desnudos , Transcripción Genética , Movimiento Celular/genética , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
6.
Sci Rep ; 14(1): 5010, 2024 02 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424223

RESUMEN

High mortality due to hygrothermal stress during heat waves is mostly linked to cardiovascular malfunction, the most serious of which are malignant arrhythmias. However, the mechanism associated with hygrothermal stress leading to malignant arrhythmias remains unclear. The energy metabolism regulated by liver kinase B1 (LKB1) and adenosine monophosphate-activated protein kinase (AMPK) and the electrical signaling based on gap junction protein, connexin43 (Cx43), plays important roles in the development of cardiac arrhythmias. In order to investigate whether hygrothermal stress induces arrhythmias via the LKB1-AMPK-Cx43 pathway, Sprague-Dawley rats were exposed to high temperature and humidity for constructing the hygrothermal stress model. A final choice of 40 °C and 85% humidity was made by pre-exploration based on different gradient environmental conditions with reference to arrhythmia event-inducing stability and risk of sudden death. Then, the incidence of arrhythmic events, as well as the expression, phosphorylation at Ser368, and distribution of Cx43 in the myocardium, were examined. Meanwhile, the adenosine monophosphate-activated protein kinase activator, Acadesine, was also administered to investigate the role played by AMPK in the process. Our results showed that hygrothermal stress induced malignant arrhythmias such as ventricular tachycardia, ventricular fibrillation, and severe atrioventricular block. Besides, hygrothermal stress decreased the phosphorylation of Cx43 at Ser368, induced proarrhythmic redistribution of Cx43 from polar to lateral sides of the cardiomyocytes, and also caused LKB1 and phosphorylated-AMPK expression to be less abundant. While, pretreatment with Acadesine significantly actived the LKB1-AMPK-Cx43 pathway and thus ameliorated malignant arrhythmias, indicating that the hygrothermal stress-induced arrhythmias is associated with the redistribution of gap junctions in cardiomyocytes and the organism's energy metabolism.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Conexina 43 , Ratas , Animales , Conexina 43/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Ratas Sprague-Dawley , Arritmias Cardíacas , Proteínas Serina-Treonina Quinasas/metabolismo , Fosforilación , Adenosina Monofosfato/metabolismo
7.
Pharmaceutics ; 15(10)2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37896137

RESUMEN

Chemotherapy-induced side effects restrain anti-tumor efficiency, with hyperlipidemia being the most common accompanying disease to cause treatment failure. In this work, a chimeric peptide-engineered nanomedicine (designated as PRS) was fabricated for the synergistic suppression of tumor growth and therapy-induced hyperlipidemia. Within this nanomedicine, the tumor matrix-targeting peptide palmitic-K(palmitic)CREKA can self-assemble into a nano-micelle to encapsulate Rapamycin (mTOR inhibitor) and SBC-115076 (PCSK9 inhibitor). This PRS nanomedicine exhibits a uniform nano-distribution with good stability which enhances intracellular drug delivery and tumor-targeting delivery. Also, PRS was found to synergistically inhibit tumor cell proliferation by interrupting the mTOR pathway and reducing Rapamycin-induced hyperlipidemia by increasing the production of LDLR. In vitro and in vivo results demonstrate the superiority of PRS for systematic suppression of tumor growth and the reduction of hyperlipidemia without initiating any other toxic side effects. This work proposes a sophisticated strategy to inhibit tumor growth and also provides new insights for cooperative management of chemotherapy-induced side effects.

8.
Int Immunopharmacol ; 124(Pt B): 110970, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37748221

RESUMEN

Rat Thy-1 nephritis (Thy-1N) is an experimental model for studying human mesangioproliferative glomerulonephritis (MsPGN), and its pathological features are glomerular mesangial cell (GMC) proliferation and extracellular matrix (ECM) accumulation. Although we have confirmed that renal lesions of Thy-1N rats are sublytic C5b-9-dependent, and ECM accumulation is related to tissue inhibitor of matrix metalloproteinase (TIMP) inhibiting matrix metalloproteinase (MMP) activity, whether sublytic C5b-9 can induce TIMP production by GMC in Thy-1N rat and the underlying mechanism remains unclear. In the study, we proved that the expressions of TIMP3, krϋppel-like transcription factor 5 (KLF5) and tumor necrosis factor receptor-associated factor 6 (TRAF6) were simultaneously up-regulated both in the renal tissues of Thy-1N rats (in vivo) and in the GMC exposed to sublytic C5b-9 (in vitro). Further mechanism exploration discovered that KLF5 and TRAF6 as two upstream molecules could induce TIMP3 gene transcription through binding to the same region i.e., -1801nt to -1554nt (GGGGAGGGGC) and -228nt to -46nt (GCCCCGCCCC) of TIMP3 promoter. In the process, TRAF6 mediated KLF5 K63-linked ubiquitination at K99 and K100 enhancing KLF5 nuclear localization and binding to TIMP3 promoter, augmenting its gene activation. Furthermore, the experiments in vivo exhibited that silencing KLF5, TRAF6 or TIMP3 gene could markedly lessen renal KLF5 K63-linked ubiquitination or TIMP3 induction, ECM accumulation and other pathological changes of Thy-1N rats. Besides, the positive expressions of above-mentioned these proteins and ECM accumulation and their correlation in the renal tissues of MsPGN patients were also demonstrated. Overall, our findings implicate that KLF5 and TRAF6 play a promoting role in sublytic C5b-9-triggered TIMP3 gene transcription and expression, which might provide a novel mechanistic insight into rat Thy-1N and human MsPGN.


Asunto(s)
Células Mesangiales , Nefritis , Humanos , Ratas , Animales , Células Mesangiales/metabolismo , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Factor 6 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/metabolismo , Nefritis/metabolismo , Ubiquitinación , Metaloproteinasas de la Matriz/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Inhibidor Tisular de Metaloproteinasa-3/genética , Inhibidor Tisular de Metaloproteinasa-3/metabolismo
9.
BMC Cardiovasc Disord ; 23(1): 339, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37403066

RESUMEN

BACKGROUND: Malnutrition is common in patients with acute myocardial infarction (AMI) and is associated with a poor prognosis. The prognostic value of the prognostic nutritional index (PNI) in patients with AMI remains controversial. We aimed to explore the relationship between PNI and all-cause mortality in critically ill patients with AMI and evaluate the incremental prognostic value of PNI to commonly used prognostic assessment tools. METHODS: The Medical Information Mart for Intensive Care-IV (MIMIC-IV) database was used to conduct a retrospective cohort analysis on 1180 critically ill patients with AMI. The primary endpoints were defined as 6-month and 1-year all-cause mortality. Cox regression analysis was used to investigate the relationship between admission PNI and all-cause mortality. The effect of adding PNI to sequential organ failure assessment (SOFA) score, or charlson comorbidity index (CCI) on its discriminative ability was assessed using C-statistic, net reclassification improvement (NRI), and integrated discrimination improvement (IDI). RESULTS: Multivariate cox regression analysis demonstrated that the low PNI was regarded as an independent predictor of 1-year all-cause mortality in AMI patients admitted to ICU (adjusted Hazard Ratio: 95% CI = 1.75 (1.22-2.49)). The ROC test showed that admission PNI had a moderate predictive ability to predict all-cause mortality of critically ill patients with AMI. Furthermore, the net reclassification and integrated discrimination of the CCI alone model improved significantly with PNI. [C-statistic increased from 0.669 to 0.752, p < 0.001; NRI = 0.698, p < 0.001; IDI = 0.073, p < 0.001]. When PNI was added to the SOFA score, the C-statistic significantly improved from 0.770 to 0.805 (p < 0.001), and the NRI and IDI were estimated at 0.573 (p < 0.001) and 0.041 (p < 0.001), respectively. CONCLUSION: PNI could be a novel predictor for identifying patients at high risk of 1-year all-cause mortality in critically ill patients with AMI. The addition of PNI to the SOFA score or CCI may be useful for very early risk stratification.


Asunto(s)
Infarto del Miocardio , Evaluación Nutricional , Humanos , Pronóstico , Estudios Retrospectivos , Enfermedad Crítica , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/terapia
10.
Mol Carcinog ; 62(9): 1399-1416, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37294072

RESUMEN

Interleukin-17 (IL-17), a potent proinflammatory cytokine, can trigger the metastasis of non-small cell lung cancer (NSCLC). However, the underlying mechanism involved in IL-17-induced NSCLC cell metastasis remains unclear. In this study, we found that not only the expression of IL-17, IL-17RA, and/or general control nonrepressed protein 5 (GCN5), SRY-related HMG-BOX gene 4 (SOX4), and matrix metalloproteinase 9 (MMP9) was increased in the NSCLC tissues and in the IL-17-stimulated NSCLC cells, but also IL-17 treatment could enhance NSCLC cell migration and invasion. Further mechanism exploration revealed that IL-17-upregulated GCN5 and SOX4 could bind to the same region (-915 to -712 nt) of downstream MMP9 gene promoter driving its gene transcription. In the process, GCN5 could mediate SOX4 acetylation at lysine 118 (K118, a newly identified site) boosting MMP9 gene expression as well as cell migration and invasion. Moreover, the SOX4 acetylation or MMP9 induction and metastatic nodule number in the lung tissues of the BALB/c nude mice inoculated with the NSCLC cells stably infected by corresponding LV-shGCN5 or LV-shSOX4, LV-shMMP9 plus IL-17 incubation were markedly reduced. Overall, our findings implicate that NSCLC metastasis is closely associated with IL-17-GCN5-SOX4-MMP9 axis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Interleucina-17/genética , Interleucina-17/metabolismo , Acetilación , Ratones Desnudos , Movimiento Celular/genética , Transcripción Genética , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Proliferación Celular/genética
11.
BMC Cardiovasc Disord ; 23(1): 231, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37138214

RESUMEN

BACKGROUND: The prognostic value of in-hospital hemoglobin drop in non-overt bleeding patients with acute myocardial infarction (AMI) admitted to the intensive care unit (ICU) remains insufficiently investigated. METHODS: A retrospective analysis was performed based on the Medical Information Mart for Intensive Care (MIMIC)-IV database. 2,334 ICU-admitted non-overt bleeders diagnosed with AMI were included. In-hospital hemoglobin values (baseline value on admission and nadir value during hospitalization) were available. Hemoglobin drop was defined as a positive difference between admission and in-hospital nadir hemoglobin. The primary endpoint was 180-day all-cause mortality. The time-dependent Cox proportional hazard models were structured to analyze the connection between hemoglobin drop and mortality. RESULTS: 2,063 patients (88.39%) experienced hemoglobin drop during hospitalization. We categorized patients based on the degree of hemoglobin drop: no hemoglobin drop (n = 271), minimal hemoglobin drop (< 3 g/dl; n = 1661), minor hemoglobin drop (≥ 3 g/dl & < 5 g/dl, n = 284) and major hemoglobin drop (≥ 5 g/dl; n = 118). Minor (adjusted hazard ratio [HR] = 12.68; 95% confidence interval [CI]: 5.13-31.33; P < 0.001) and major (adjusted HR = 13.87; 95% CI: 4.50-42.76; P < 0.001) hemoglobin drops were independently associated with increased 180-day mortality. After adjusting the baseline hemoglobin level, a robust nonlinear relationship was observed in the association between hemoglobin drop and 180-day mortality, with 1.34 g/dl as the lowest value (HR = 1.04; 95% CI: 1.00-1.08). CONCLUSION: In non-overt bleeding ICU-admitted patients with AMI, in-hospital hemoglobin drop is independently associated with higher 180-day all-cause mortality.


Asunto(s)
Infarto del Miocardio , Humanos , Pronóstico , Estudios Retrospectivos , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/terapia , Hemoglobinas/análisis , Hemorragia , Cuidados Críticos , Unidades de Cuidados Intensivos , Hospitales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA