Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Science ; 385(6713): eadi1650, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39236183

RESUMEN

Skin identity is controlled by intrinsic features of the epidermis and dermis and their interactions. Modifying skin identity has clinical potential, such as the conversion of residual limb and stump (nonvolar) skin of amputees to pressure-responsive palmoplantar (volar) skin to enhance prosthesis use and minimize skin breakdown. Greater keratin 9 (KRT9) expression, higher epidermal thickness, keratinocyte cytoplasmic size, collagen length, and elastin are markers of volar skin and likely contribute to volar skin resiliency. Given fibroblasts' capacity to modify keratinocyte differentiation, we hypothesized that volar fibroblasts influence these features. Bioprinted skin constructs confirmed the capacity of volar fibroblasts to induce volar keratinocyte features. A clinical trial of healthy volunteers demonstrated that injecting volar fibroblasts into nonvolar skin increased volar features that lasted up to 5 months, highlighting a potential cellular therapy.


Asunto(s)
Refuerzo Biomédico , Bioimpresión , Dermis , Epidermis , Fibroblastos , Queratinocitos , Adulto , Femenino , Humanos , Masculino , Amputados , Diferenciación Celular , Colágeno/metabolismo , Dermis/citología , Dermis/metabolismo , Elastina/metabolismo , Epidermis/metabolismo , Fibroblastos/citología , Fibroblastos/trasplante , Mano , Queratina-9/metabolismo , Queratinocitos/citología , Queratinocitos/metabolismo , Refuerzo Biomédico/métodos
2.
Mol Carcinog ; 58(1): 102-112, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30302860

RESUMEN

Despite effective surgical methods for non-melanoma skin cancer (NMSC), patients suffer from tissue damage, scarring, or even disfigurement; thus, there is a need for chemopreventive approaches. Because of the complex interplay between glucocorticoids (GCs), inflammation, and cancer, we sought to determine the role of 11ß-hydroxysteroid dehydrogenase 1 and 2 (11ßHSD1 and 2) in regulating GCs during skin cancer development and progression. 11ßHSDs modulate the activation of GCs in a tissue-specific manner and have been reported to play a role in development and progression of other types of cancer, but their role has not yet been reported in NMSC. Here, we found a significant upregulation of 11ßHSD2 protein in skin cancer cells when compared to normal skin cells, suggesting a role for this enzyme in the multifactorial process of skin cancer development. In addition, inhibition of 11ßHSD2 with siRNA resulted in significant reduction in colony formation in vitro. Finally, our in vivo study elucidated that inhibition of 11ßHSD2 with pharmacological inhibitor, Glycyrrhetinic acid (GA) could significantly diminish tumorigenesis in a well-studied in vivo mouse model of NMSC. Overall, these studies highlight for the first time a potential novel role for 11ßHSD2 in NMSC development and may allow for new GC treatment approaches capable of avoiding deactivation by the enzyme. If 11ßHSD2 can be inhibited as we have done here, or circumvented using modified GCs, this may lead to more efficacious outcomes for NMSC patients by preventing deactivation of the GC and minimizing resistance.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , Antiinflamatorios/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Glucocorticoides/farmacología , Ácido Glicirretínico/farmacología , Neoplasias Cutáneas/prevención & control , Animales , Apoptosis , Proliferación Celular , Femenino , Humanos , Ratones , Neoplasias Cutáneas/enzimología , Neoplasias Cutáneas/patología , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA