Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 215: 109065, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39186852

RESUMEN

Histidine biosynthesis is essential for the growth and development of plants, where it occurs within chloroplasts. The eleven reactions are catalyzed by eight enzymes, known as HISN1-8, each acting sequentially. Here, we present the crystal structures of a 5'-ProFAR isomerase (HISN3) from the model legume Medicago truncatula bound to its enzymatically synthesized substrate (ProFAR) and product (PrFAR). The active site of MtHISN3 contains a sodium cation that participates in ligand recognition, a feature not observed in bacterial and fungal structures of homologous enzymes. The steady-state kinetics of wild-type MtHISN3 revealed a slightly higher turnover rate compared to its bacterial homologs. Plant HISN3 sequences contain an unusually elongated Lys60-Ser91 fragment, while deletion of the 74-80 region resulted in a 30-fold loss in catalytic efficiency compared to the wild-type. Molecular dynamics simulations suggested that the fragment facilitates product release, thereby contributing to a higher kcat. Moreover, conservation analyses suggested a non-cyanobacterial origin for plant HISN3 enzymes, which is another instance of a non-cyanobacterial enzyme in the plant histidine biosynthetic pathway. Finally, a virtual screening campaign yielded five molecules, with the energy gains ranging between -13.6 and -13.1 kcal/mol, which provide new scaffolds for the future development of herbicides.


Asunto(s)
Isomerasas , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Cinética , Isomerasas/metabolismo , Isomerasas/genética , Isomerasas/química , Medicago truncatula/enzimología , Medicago truncatula/genética , Histidina/metabolismo , Secuencia de Aminoácidos , Evolución Molecular , Simulación de Dinámica Molecular , Dominio Catalítico
2.
Postepy Biochem ; 70(2): 128-138, 2024 07 01.
Artículo en Polaco | MEDLINE | ID: mdl-39083468

RESUMEN

Structural biology is focused on understanding the architecture of biomolecules, such as proteins and nucleic acids. Deciphering the structure helps to understand their function in the cell at a very precise ­ molecular level. This makes it possible to not only determine the basis of diseases but also to propose therapeutic strategies and tools. Such a strong motivation for the development of structural biology has led to the development of a number of methods, which enable determination of the structures of the molecules of life. The continuous progress has been enabled by the integration of biology, chemistry, physics, and computer science, making structural biology extremely interdisciplinary. In its 35-year history, the Institute of Bioorganic Chemistry of the Polish Academy of Sciences in Poznan has become one of the key Polish institutions conducting research in the field of structural biology. On one hand, the research has brought international recognition, and on the other hand, it has forced the implementation and development of cutting-edge methods. This review discusses the methods used in structural biology at the Institute.


Asunto(s)
Proteínas , Polonia , Proteínas/química , Biología Molecular , Ácidos Nucleicos/química , Humanos
3.
Front Plant Sci ; 15: 1343980, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38559763

RESUMEN

The histidine biosynthetic pathway (HBP) is targeted for herbicide design with preliminary success only regarding imidazole-glycerol phosphate dehydratase (IGPD, EC 4.2.1.19), or HISN5, as referred to in plants. HISN5 catalyzes the sixth step of the HBP, in which imidazole-glycerol phosphate (IGP) is dehydrated to imidazole-acetol phosphate. In this work, we present high-resolution cryoEM and crystal structures of Medicago truncatula HISN5 (MtHISN5) in complexes with an inactive IGP diastereoisomer and with various other ligands. MtHISN5 can serve as a new model for plant HISN5 structural studies, as it enables resolving protein-ligand interactions at high (2.2 Å) resolution using cryoEM. We identified ligand-binding hotspots and characterized the features of plant HISN5 enzymes in the context of the HISN5-targeted inhibitor design. Virtual screening performed against millions of small molecules not only revealed candidate molecules but also identified linkers for fragments that were experimentally confirmed to bind. Based on experimental and computational approaches, this study provides guidelines for designing symmetric HISN5 inhibitors that can reach two neighboring active sites. Finally, we conducted analyses of sequence similarity networks revealing that plant HISN5 enzymes derive from cyanobacteria. We also adopted a new approach to measure MtHISN5 enzymatic activity using isothermal titration calorimetry and enzymatically synthesized IGP.

4.
Plant Physiol Biochem ; 196: 759-773, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36842242

RESUMEN

Histidinol-phosphate aminotransferase is the sixth protein (hence HISN6) in the histidine biosynthetic pathway in plants. HISN6 is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the reversible conversion of imidazole acetol phosphate into L-histidinol phosphate (HOLP). Here, we show that plant HISN6 enzymes are closely related to the orthologs from Chloroflexota. The studied example, HISN6 from Medicago truncatula (MtHISN6), exhibits a surprisingly high affinity for HOLP, which is much higher than reported for bacterial homologs. Moreover, unlike the latter, MtHISN6 does not transaminate phenylalanine. High-resolution crystal structures of MtHISN6 in the open and closed states, as well as the complex with HOLP and the apo structure without PLP, bring new insights into the enzyme dynamics, pointing at a particular role of a string-like fragment that oscillates near the active site and participates in the HOLP binding. When MtHISN6 is compared to bacterial orthologs with known structures, significant differences arise in or near the string region. The high affinity of MtHISN6 appears linked to the particularly tight active site cavity. Finally, a virtual screening against a library of over 1.3 mln compounds revealed three sites in the MtHISN6 structure with the potential to bind small molecules. Such compounds could be developed into herbicides inhibiting plant HISN6 enzymes absent in animals, which makes them a potential target for weed control agents.


Asunto(s)
Fosfato de Piridoxal , Transaminasas , Animales , Especificidad por Sustrato , Transaminasas/química , Transaminasas/metabolismo , Dominio Catalítico , Fosfatos , Cristalografía por Rayos X , Sitios de Unión
5.
Sci Rep ; 11(1): 9647, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33958623

RESUMEN

The second and third steps of the histidine biosynthetic pathway (HBP) in plants are catalyzed by a bifunctional enzyme-HISN2. The enzyme consists of two distinct domains, active respectively as a phosphoribosyl-AMP cyclohydrolase (PRA-CH) and phosphoribosyl-ATP pyrophosphatase (PRA-PH). The domains are analogous to single-domain enzymes encoded by bacterial hisI and hisE genes, respectively. The calculated sequence similarity networks between HISN2 analogs from prokaryotes and eukaryotes suggest that the plant enzymes are closest relatives of those in the class of Deltaproteobacteria. In this work, we obtained crystal structures of HISN2 enzyme from Medicago truncatula (MtHISN2) and described its architecture and interactions with AMP. The AMP molecule bound to the PRA-PH domain shows positioning of the N1-phosphoribosyl relevant to catalysis. AMP bound to the PRA-CH domain mimics a part of the substrate, giving insights into the reaction mechanism. The latter interaction also arises as a possible second-tier regulatory mechanism of the HBP flux, as indicated by inhibition assays and isothermal titration calorimetry.


Asunto(s)
Aminohidrolasas/metabolismo , Histidina/biosíntesis , Pirofosfatasas/metabolismo , Adenosina Monofosfato/metabolismo , Aminohidrolasas/química , Aminohidrolasas/genética , Catálisis , Dominio Catalítico , Medicago truncatula/enzimología , Medicago truncatula/metabolismo , Redes y Vías Metabólicas , Filogenia , Estructura Terciaria de Proteína , Pirofosfatasas/química , Pirofosfatasas/genética , Alineación de Secuencia
6.
Front Physiol ; 11: 456, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32477164

RESUMEN

Peptidergic signaling regulates various physiological processes in insects. Neuropeptides are important messenger molecules that act as neurotransmitters, neuromodulators or hormones. Neuropeptides with myotropic properties in insects are known as FMRFamide-like peptides (FaLPs). Here, we describe the myotropic effects of the endogenous FaLPs in the regulation of contractile activity of the heart, ejaculatory duct, oviduct and the hindgut in two beetle species, Tenebrio molitor and Zophobas atratus. A putative receptor was identified in silico in both species. Using RT-PCR these putative FaLPs receptors were found in the various tissues of both beetles, including visceral organs. Analysis of the amino acid sequence of the receptor indicated that it is similar to other insect FaLPs receptors and belongs to G-protein coupled receptors. A synthetic FaLP (NSNFLRFa) found as the bioanalogue of both species demonstrated concentration-dependent and organ-specific myoactive properties. The peptide had species-specific cardioactivity, in that it stimulated Z. atratus heart contractions, while slightly inhibiting that of T. molitor and had mainly myostimulatory effect on the examined visceral organs of both beetle species, with the lowest activity in the ejaculatory duct of these beetles. The peptide was the most active in the hindgut of both species, but only at high concentration of 10-5 M. The results suggest that FaLPs are potent modulators of endogenous contractile activity of the visceral muscles in beetles and may indirectly affect various physiological processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA