Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 815
Filtrar
1.
Cancers (Basel) ; 16(17)2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39272962

RESUMEN

The CLARINET trial led to the approval of lanreotide for the treatment of patients with gastroenteropancreatic neuroendocrine tumors (NETs). It is hypothesized that lanreotide regulates proliferation, hormone synthesis, and other cellular functions via binding to somatostatin receptors (SSTR1-5) present in NETs. However, our knowledge of how lanreotide affects the immune system is limited. In vitro studies have investigated functional immune response parameters with lanreotide treatment in healthy donor T cell subsets, encompassing the breadth of SSTR expression, apoptosis induction, cytokine production, and activity of transcription factor signaling pathways. In our study, we characterized in vitro immune mechanisms in healthy donor T cells in response to lanreotide. We also studied the in vivo effects by looking at differential gene expression pre- and post-lanreotide therapy in patients with NET. Immune-focused gene and protein expression profiling was performed on peripheral blood samples from 17 NET patients and correlated with clinical response. In vivo, lanreotide therapy showed reduced effects on wnt, T cell receptor (TCR), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) signaling in CD8+ T cells in responders compared to non-responders. Compared to non-responders, responders showed reduced effects on cytokine and chemokine signaling but greater effects on ubiquitination and proteasome degradation genes. Our results suggest significant lanreotide pharmacodynamic effects on immune function in vivo, which correlate with responses in NET patients. This is not evident from experimental in vitro settings.

2.
BMC Genomics ; 25(1): 832, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232653

RESUMEN

BACKGROUND: Exploring the physiological and molecular mechanisms underlying goat sexual maturation can enhance breeding practices and optimize reproductive efficiency and is therefore substantially important for practical breeding purposes. As an essential neuroendocrine organ in animals, the hypothalamus is involved in sexual development and other reproductive processes in female animals. Although microRNAs (miRNAs) have been identified as significant regulators of goat reproduction, there is a lack of research on the molecular regulatory mechanisms of hypothalamic miRNAs that are involved in the sexual development of goats. Therefore, we examined the dynamic changes in serum hormone profiles and hypothalamic miRNA expression profiles at four developmental stages (1 day (neonatal, D1, n = 5), 2 months (prepubertal, M2, n = 5), 4 months (sexual maturity, M4, n = 5), and 6 months (breeding period, M6, n = 5)) during sexual development in Jining grey goats. RESULTS: Transcriptome analysis revealed 95 differentially expressed miRNAs (DEMs) in the hypothalamus of goats across the four developmental stages. The target genes of these miRNAs were significantly enriched in the GnRH signalling pathway, the PI3K-Akt signalling pathway, and the Ras signalling pathway (P < 0.05). Additionally, 16 DEMs are common among the M2 vs. D1, M4 vs. D1, and M6 vs. D1 comparisons, indicating that the transition from D1 to M2 represents a potentially critical period for sexual development in Jining grey goats. The bioinformatics analysis results indicate that miR-193a/miR-193b-3p-Annexin A7 (ANXA7), miR-324-5p-Adhesion G protein-coupled receptor A1 (ADGRA1), miR-324-3p-Erbb2 receptor tyrosine kinase 2 (ERBB2), and miR-324-3p-Rap guanine nucleotide exchange factor 3 (RAPGEF3) are potentially involved in biological processes such as hormone secretion, energy metabolism, and signal transduction. In addition, we further confirmed that miR-324-3p targets the regulatory gene RAPGEF3. CONCLUSION: These results further enrich the expression profile of hypothalamic miRNAs in goats and provide important insights for studying the regulatory effects of hypothalamic miRNAs on the sexual development of goats after birth.


Asunto(s)
Perfilación de la Expresión Génica , Cabras , Hipotálamo , MicroARNs , Animales , Cabras/genética , Cabras/metabolismo , Hipotálamo/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Femenino , Masculino , Transcriptoma , Desarrollo Sexual/genética , Transducción de Señal , Regulación del Desarrollo de la Expresión Génica , Maduración Sexual/genética
3.
Medicine (Baltimore) ; 103(33): e39350, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39151516

RESUMEN

BACKGROUND: Previous researches have demonstrated that the traditional Chinese medicine could therapeutically treat inflammatory and hypoxic diseases by enhancing the functionality of mesenchymal stem cells. However, its mechanism was not yet clear. This research aimed to investigate the impact of the traditional Chinese medicine Sijunzi decoction and its herb monomer ginsenoside Rg1 on the proliferation and differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs) and explore the underlying mechanisms. METHODS: Different concentrations of Sijunzi decoction and Rg1 were applied to differentiating induced hUC-MSCs. The CCK-8 test was utilized to evaluate cell proliferation activity and identify suitable drug concentrations. Alizarin Red staining was employed to detect the formation of calcium nodules, and Oil Red O staining was used to assess the formation of lipid droplets. PCR was utilized to examine gene expression related to osteogenic differentiation, adipogenic differentiation, and the HIF-1α signaling pathway in hUC-MSCs. Western blot analysis was conducted to evaluate protein expression in osteogenic differentiation and HIF-1α. ELISA was performed to measure HIF-1α signaling factors and inflammatory cytokine expression. Biochemical assays were used to assess changes in oxidative stress indicators. RESULTS: The Sijunzi decoction and Rg1 both demonstrated a dose-dependent promotion of hUC-MSC proliferation. The Sijunzi decoction significantly increased the expression of genes and proteins relevant to osteogenesis, such as osterix, osteocalcin, RUNX2, and osteopontin, and activated the HIF-1α pathway in hUC-MSCs. (P < .05). Similar effects were observed at the gene level after treatment with Rg1. Simultaneously, Sijunzi decoction significantly reduced the secretion of pro-inflammatory cytokines TNF-α, IL-6, and IL-1ß, while increasing the secretion of the anti-inflammatory cytokine IL-10 during osteogenic differentiation (P < .05). Moreover, Sijunzi decoction lowered oxidative stress levels and enhanced the antioxidant capacity of hUC-MSCs during osteogenic differentiation (P < .05). However, the impact of Sijunzi decoction on hUC-MSCs toward adipogenic differentiation was not significant (P > .05). CONCLUSION: Sijunzi decoction promotes the proliferation and osteogenic differentiation of hUC-MSCs, potentially through the activation of the HIF-1α signaling pathway and by modulating the microenvironment via reducing inflammation and oxidative stress levels. Rg1 might be involved in this process.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Medicamentos Herbarios Chinos , Ginsenósidos , Subunidad alfa del Factor 1 Inducible por Hipoxia , Células Madre Mesenquimatosas , Osteogénesis , Cordón Umbilical , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Proliferación Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Cordón Umbilical/citología , Osteogénesis/efectos de los fármacos , Ginsenósidos/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Adipogénesis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Células Cultivadas
4.
Front Pharmacol ; 15: 1398953, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39135788

RESUMEN

Introduction: Sodium zirconium cyclosilicate (SZC) is a nonabsorbed cation-exchanger approved in China for the treatment of hyperkalemia [HK; serum potassium (sK+) levels >5.0 mmol/L]. This is the first real-world study aimed to assess the effectiveness, safety, and treatment patterns of SZC in Chinese patients with HK. Here we present the results of the first interim analysis. Methods: This multicenter, prospective, cohort study included patients aged ≥18 years with documented HK within 1-year before study enrollment day. These patients were followed up for 6 months from the enrollment day after initiating SZC treatment. The treatment was categorized into correction phase (FAS-P1) and maintenance phase (FAS-P2 new and ongoing users). Subgroup analysis was performed in patients on hemodialysis (FAS-H). The primary objective was evaluation of safety profile of SZC; secondary objectives included assessment of treatment patterns of SZC and its effectiveness. Results: Of 421 screened patients, 193, 354, and 162 patients were enrolled in the FAS-P1, FAS-P2, and FAS-H groups, respectively. sK+ levels were reduced significantly from 5.9 mmol/L to 5.0 mmol/L after the correction phase. For the maintenance phase, the mean sK+ levels were maintained at 5.2 mmol/L and 5.0 mmol/L in the FAS-P2 new and ongoing user, respectively, and 5.3 mmol/L in the FAS-H subgroup. A considerable proportion of patients showed normokalemia after 48 h of SZC treatment (FAS-P1:51.3%) which was maintained up to 6 months in the maintenance phase (FAS-P2:44%). SZC was well-tolerated. Conclusion: SZC was effective and safe for the treatment of HK in real-world clinical practice in China.

5.
ACS Biomater Sci Eng ; 10(8): 5352-5361, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39013628

RESUMEN

Conducting/insulating inks have received significant attention for the fabrication of a wide range of additive manufacturing technology. However, current inks often demonstrate poor biocompatibility and face trade-offs between conductivity and mechanical stiffness under physiological conditions. Here, conductive/insulating bioinks based on two-dimensional materials are proposed. The conductive bioink, graphene (GR)-poly(lactic-co-glycolic acid) (PLGA), is prepared by introducing conductive GR into a degradable polymer matrix, PLGA, while the insulating bioink, boron nitride (BN)-PLGA, is synthesized by adding insulating BN. By optimizing the material ratios, this work achieves precise control of the electromechanical properties of the bioinks, thereby enabling the flexible construction of conductive networks according to specific requirements. Furthermore, these bioinks are compatible with a variety of manufacturing technologies such as 3D printing, electrospinning, spin coating, and injection molding, expanding their application range in the biomedical field. Overall, the results suggest that these conducting/insulating bioinks offer improved mechanical, electronic, and biological properties for various emerging biomedical applications.


Asunto(s)
Materiales Biocompatibles , Conductividad Eléctrica , Grafito , Tinta , Impresión Tridimensional , Grafito/química , Materiales Biocompatibles/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Compuestos de Boro/química , Humanos
6.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-39038937

RESUMEN

Peptide drugs are becoming star drug agents with high efficiency and selectivity which open up new therapeutic avenues for various diseases. However, the sensitivity to hydrolase and the relatively short half-life have severely hindered their development. In this study, a new generation artificial intelligence-based system for accurate prediction of peptide half-life was proposed, which realized the half-life prediction of both natural and modified peptides and successfully bridged the evaluation possibility between two important species (human, mouse) and two organs (blood, intestine). To achieve this, enzymatic cleavage descriptors were integrated with traditional peptide descriptors to construct a better representation. Then, robust models with accurate performance were established by comparing traditional machine learning and transfer learning, systematically. Results indicated that enzymatic cleavage features could certainly enhance model performance. The deep learning model integrating transfer learning significantly improved predictive accuracy, achieving remarkable R2 values: 0.84 for natural peptides and 0.90 for modified peptides in human blood, 0.984 for natural peptides and 0.93 for modified peptides in mouse blood, and 0.94 for modified peptides in mouse intestine on the test set, respectively. These models not only successfully composed the above-mentioned system but also improved by approximately 15% in terms of correlation compared to related works. This study is expected to provide powerful solutions for peptide half-life evaluation and boost peptide drug development.


Asunto(s)
Péptidos , Animales , Semivida , Humanos , Ratones , Péptidos/metabolismo , Péptidos/química , Aprendizaje Profundo , Aprendizaje Automático
7.
Adv Sci (Weinh) ; : e2402607, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38952126

RESUMEN

Neural Crest cells (NC) are a multipotent cell population that give rise to a multitude of cell types including Schwann cells (SC) in the peripheral nervous system (PNS). Immature SC interact with neuronal axons via the neuregulin 1 (NRG1) ligand present on the neuronal surface and ultimately form the myelin sheath. Multiple attempts to derive functional SC from pluripotent stem cells have met challenges with respect to expression of mature markers and axonal sorting. Here, they hypothesized that sustained signaling from immobilized NRG1 (iNRG1) might enhance the differentiation of NC derived from glabrous neonatal epidermis towards a SC phenotype. Using this strategy, NC derived SC expressed mature markers to similar levels as compared to explanted rat sciatic SC. Signaling studies revealed that sustained NRG1 signaling led to yes-associated protein 1 (YAP) activation and nuclear translocation. Furthermore, NC derived SC on iNRG1 exhibited mature SC function as they aligned with rat dorsal root ganglia (DRG) neurons in an in vitro coculture model; and most notably, aligned on neuronal axons upon implantation in a chick embryo model in vivo. Taken together their work demonstrated the importance of signaling dynamics in SC differentiation, aiming towards development of drug testing platforms for de-myelinating disorders.

8.
Sci Data ; 11(1): 777, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003290

RESUMEN

The ovaries and uterus are crucial reproductive organs in mammals, and their coordinated development ensures the normal development of sexual maturity and reproductive capacity. This study aimed to comprehensively capture the different physiological stages of the goat's sexual maturation by selecting four specific time points. We collected samples of ovarian and uterine tissues from five female Jining Gray goats at each time point: after birth (D1), 2-month-old (M2), 4-month-old (M4), and 6-month-old (M6). By combining transcriptomic sequencing of 40 samples (including rRNA-depleted RNA-seq libraries with 3607.8 million reads and miRNA-seq libraries with 444.0 million reads) and metabolomics analysis, we investigated the transcriptomic mechanisms involved in reproductive regulation in the ovary and uterus during sexual maturation, as well as the changes in metabolites and their functional potential. Additionally, we analyzed blood hormone indices and uterine tissue sections to examine temporal changes. These datasets will provide a valuable reference for the reproductive regulation of the ovary and uterus, as well as the regulation of metabolites during sexual maturation in goats.


Asunto(s)
Cabras , Ovario , Maduración Sexual , Transcriptoma , Útero , Animales , Femenino , Cabras/genética , Cabras/metabolismo , Útero/metabolismo , Ovario/metabolismo , Ovario/crecimiento & desarrollo , Metaboloma , Metabolómica
9.
Front Oncol ; 14: 1283428, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974233

RESUMEN

Radiotherapy (RT) and immune checkpoint inhibitor (ICI) are important treatments for esophageal cancer. Some studies have confirmed the safety and effectiveness of using RT in combination with ICI, while serious side effects have been exhibited by some patients. We report a patient with metastatic esophageal cancer who received RT combined with ICI. The patient experienced severe thrombocytopenia, and treatment with thrombopoietin and corticosteroids were ineffective. Finally, the patient developed abscopal hyperprogression outside the radiation field. Interestingly, next-generation sequencing revealed increased JAK2 gene copies in the surgical slices. The JAK2/STAT3 pathway is involved in the regulation of megakaryocyte development. Recurrent thrombocytopenia may activate the JAK2/STAT3 pathway, leading to megakaryocyte differentiation and platelet biogenesis. However, persistent activation of the JAK2/STAT3 pathway has been associated with immune ICI resistance and tumor progression. This case indicates that thrombocytopenia and increased JAK2 gene copies may be risk factors for poor prognosis after ICI and RT treatment.

10.
Cell Mol Immunol ; 21(8): 873-891, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38902348

RESUMEN

Myeloid-derived suppressor cells (MDSCs) are a main driver of immunosuppression in tumors. Understanding the mechanisms that determine the development and immunosuppressive function of these cells could provide new therapeutic targets to improve antitumor immunity. Here, using preclinical murine models, we discovered that exportin 1 (XPO1) expression is upregulated in tumor MDSCs and that this upregulation is induced by IL-6-induced STAT3 activation during MDSC differentiation. XPO1 blockade transforms MDSCs into T-cell-activating neutrophil-like cells, enhancing the antitumor immune response and restraining tumor growth. Mechanistically, XPO1 inhibition leads to the nuclear entrapment of ERK1/2, resulting in the prevention of ERK1/2 phosphorylation following the IL-6-mediated activation of the MAPK signaling pathway. Similarly, XPO1 blockade in human MDSCs induces the formation of neutrophil-like cells with immunostimulatory functions. Therefore, our findings revealed a critical role for XPO1 in MDSC differentiation and suppressive functions; exploiting these new discoveries revealed new targets for reprogramming immunosuppressive MDSCs to improve cancer therapeutic responses.


Asunto(s)
Transporte Activo de Núcleo Celular , Proteína Exportina 1 , Carioferinas , Células Supresoras de Origen Mieloide , Receptores Citoplasmáticos y Nucleares , Animales , Humanos , Ratones , Diferenciación Celular , Línea Celular Tumoral , Núcleo Celular/metabolismo , Tolerancia Inmunológica , Interleucina-6/metabolismo , Carioferinas/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones Endogámicos C57BL , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Neoplasias/inmunología , Neoplasias/patología , Receptores Citoplasmáticos y Nucleares/metabolismo , Factor de Transcripción STAT3/metabolismo
11.
iScience ; 27(6): 109995, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38868185

RESUMEN

The canonical mechanism behind tamoxifen's therapeutic effect on estrogen receptor α/ESR1+ breast cancers is inhibition of ESR1-dependent estrogen signaling. Although ESR1+ tumors expressing wild-type p53 were reported to be more responsive to tamoxifen (Tam) therapy, p53 has not been factored into choice of this therapy and the mechanism underlying the role of p53 in Tam response remains unclear. In a window-of-opportunity trial on patients with newly diagnosed stage I-III ESR1+/HER2/wild-type p53 breast cancer who were randomized to arms with or without Tam prior to surgery, we reveal that the ESR1-p53 interaction in tumors was inhibited by Tam. This resulted in functional reactivation of p53 leading to transcriptional reprogramming that favors tumor-suppressive signaling, as well as downregulation of oncogenic pathways. These findings illustrating the convergence of ESR1 and p53 signaling during Tam therapy enrich mechanistic understanding of the impact of p53 on the response to Tam therapy.

12.
Front Vet Sci ; 11: 1404681, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38938911

RESUMEN

The hypothalamus is an essential neuroendocrine area in animals that regulates sexual development. Long non-coding RNAs (lncRNAs) are hypothesized to regulate physiological processes related to animal reproduction. However, the regulatory mechanism by which lncRNAs participate in sexual maturity in goats is poorly known, particularly from birth to sexual maturation. In this study, RNAseq analysis was conducted on the hypothalamus of four developmental stages (1day (D1, n = 5), 2 months (M2, n = 5), 4 months (M4, n = 5), and 6 months (M6, n = 5)) of Jining grey goats. The results showed that a total of 237 differentially expressed lncRNAs (DELs) were identified in the hypothalamus. Among these, 221 DELs exhibited cis-regulatory effects on 693 target genes, while 24 DELs demonstrated trans-regulatory effects on 63 target genes. The target genes of these DELs are mainly involved in biological processes related to energy metabolism, signal transduction and hormone secretion, such as sphingolipid signaling pathway, adipocytokine signaling pathway, neurotrophic signaling pathway, glutamatergic synapse, P53 signaling pathway and GnRH signaling pathway. In addition, XR_001918477.1, TCONS_00077463, XR_001918760.1, and TCONS_00029048 and their potential target genes may play a crucial role in the process of goat sexual maturation. This study advances our understanding of lncRNA in hypothalamic tissue during sexual maturation in goats and will give a theoretical foundation for improving goat reproductive features.

13.
J Hazard Mater ; 476: 134868, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38897119

RESUMEN

Both selenium (Se) and gibberellins (GA3) can alleviate cadmium (Cd) toxicity in plants. However, the application of Se and GA3 as foliar spray to against Cd stress on soybean and its related mechanisms have been poorly explored. Herein, this experiment evaluated the effects of Se and GA3 alone and combined application on soybean rhizosphere microenvironment, Cd accumulation and growth of soybean seedlings. The results revealed that both Se and GA3 can effectively decrease the accumulation of Cd in soybean seedlings. Foliar application of Se, GA3 and their combination reduced Cd contents in soybean seedlings respectively by 21.70 %, 27.53 % and 45.07 % when compared with the control treatment, suggest a synergistic effect of Se and GA3 in decreasing Cd accumulation. Se and GA3 also significantly increased diversity and abundance of the metabolites in rhizosphere, which consequently played an important role in shaping rhizosphere bacteria community and improve rhizosphere soil physicochemical properties of Cd contaminated soil, as well as decreased the Cd available forms contents but enhance the immobilized form levels. Overall, this study affords a novel approach on mitigating Cd accumulation in soybean seedlings which is attributed to Se and GA3 regulated interplay among rhizosphere soil metabolites, bacteria community and cadmium speciation.


Asunto(s)
Cadmio , Giberelinas , Glycine max , Rizosfera , Selenio , Microbiología del Suelo , Contaminantes del Suelo , Glycine max/efectos de los fármacos , Glycine max/metabolismo , Glycine max/crecimiento & desarrollo , Cadmio/toxicidad , Cadmio/metabolismo , Giberelinas/metabolismo , Giberelinas/farmacología , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/toxicidad , Selenio/metabolismo , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Bacterias/clasificación , Plantones/efectos de los fármacos , Plantones/metabolismo , Plantones/crecimiento & desarrollo
14.
Front Endocrinol (Lausanne) ; 15: 1326761, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38800490

RESUMEN

Background: The relationship between hormonal fluctuations in the reproductive system and the occurrence of low back pain (LBP) has been widely observed. However, the causal impact of specific variables that may be indicative of hormonal and reproductive factors, such as age at menopause (ANM), age at menarche (AAM), length of menstrual cycle (LMC), age at first birth (AFB), age at last live birth (ALB) and age first had sexual intercourse (AFS) on low back pain remains unclear. Methods: This study employed Bidirectional Mendelian randomization (MR) using publicly available summary statistics from Genome Wide Association Studies (GWAS) and FinnGen Consortium to investigate the causal links between hormonal and reproductive factors on LBP. Various MR methodologies, including inverse-variance weighted (IVW), MR-Egger regression, and weighted median, were utilized. Sensitivity analysis was conducted to ensure the robustness and validity of the findings. Subsequently, Multivariate Mendelian randomization (MVMR) was employed to assess the direct causal impact of reproductive and hormone factors on the risk of LBP. Results: After implementing the Bonferroni correction and conducting rigorous quality control, the results from MR indicated a noteworthy association between a decreased risk of LBP and AAM (OR=0.784, 95% CI: 0.689-0.891; p=3.53E-04), AFB (OR=0.558, 95% CI: 0.436-0.715; p=8.97E-06), ALB (OR=0.396, 95% CI: 0.226-0.692; p=0.002), and AFS (OR=0.602, 95% CI: 0.518-0.700; p=3.47E-10). Moreover, in the reverse MR analysis, we observed no significant causal effects of LBP on ANM, AAM, LMC and AFS. MVMR analysis demonstrated the continued significance of the causal effect of AFB on LBP after adjusting for BMI. Conclusion: Our study explored the causal relationship between ANM, AAM, LMC, AFB, AFS, ALB and the prevalence of LBP. We found that early menarche, early age at first birth, early age at last live birth and early age first had sexual intercourse may decrease the risk of LBP. These insights enhance our understanding of LBP risk factors, offering valuable guidance for screening, prevention, and treatment strategies for at-risk women.


Asunto(s)
Estudio de Asociación del Genoma Completo , Dolor de la Región Lumbar , Menarquia , Análisis de la Aleatorización Mendeliana , Humanos , Dolor de la Región Lumbar/etiología , Dolor de la Región Lumbar/epidemiología , Femenino , Menopausia , Factores de Riesgo , Adulto , Ciclo Menstrual , Factores de Edad , Persona de Mediana Edad
15.
Int J Dent Hyg ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773892

RESUMEN

OBJECTIVES: Ultrasonic scaling is extensively applied as part of the initial therapy for periodontal diseases, which has been restricted since the outbreak of the COVID-19 pandemic due to droplets and aerosols generated by ultrasonic devices. An extraoral scavenging device (EOS) was designed for diminishing droplets and aerosols in dental clinics. The objective of this study is to evaluate the effect of EOS on eliminating droplets and aerosols during ultrasonic supragingival scaling. METHODS: This single-blinded, randomised controlled clinical trial enrolled 45 patients with generalised periodontitis (stage I or II, grade A or B) or plaque-induced gingivitis. The patients were randomly allocated and received ultrasonic supragingival scaling under three different intervention measures: only saliva ejector (SE), SE plus EOS and SE plus high-volume evacuation (HVE). The natural sedimentation method was applied to sample droplets and aerosols before or during supragingival scaling. After aerobic culturing, colony-forming units (CFUs) were counted and analysed. RESULTS: Compared with the level before treatment, more CFUs of samples throughout treatment could be obtained at the operator's chest and the patient's chest and the table surface when using SE alone (p < 0.05). Compared with the SE group, the SE + EOS group and the SE + HVE group obtained decreasing CFUs at the operator's chest and the patient's chest (p < 0.05), while no significant difference was determined between these two groups. CONCLUSIONS: The EOS effectively eliminated splatter contamination from ultrasonic supragingival scaling, which was an alternative precaution for nosocomial contamination in dental clinics.

16.
Bioorg Chem ; 147: 107419, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703440

RESUMEN

We formerly reported that EZH2 inhibitors sensitized HIF-1 inhibitor-resistant cells and inhibited HIF-1α to promote SUZ12 transcription, leading to enhanced EZH2 enzyme activity and elevated H3K27me3 levels, and conversely, inhibition of EZH2 promoted HIF-1α transcription. HIF-1α and EZH2 interacted to form a negative feedback loop that reinforced each other's activity. In this paper, a series of 2,2- dimethylbenzopyran derivatives containing pyridone structural fragments were designed and synthesized with DYB-03, a HIF-1α inhibitor previously reported by our group, and Tazemetostat, an EZH2 inhibitor approved by FDA, as lead compounds. Among these compounds, D-01 had significant inhibitory activities on HIF-1α and EZH2. In vitro experiments showed that D-01 significantly inhibited the migration of A549 cells, clone, invasion and angiogenesis. Moreover, D-01 had good pharmacokinetic profiles. All the results about compound D-01 could lay a foundation for the research and development of HIF-1α and EZH2 dual-targeting compounds.


Asunto(s)
Antineoplásicos , Ensayos de Selección de Medicamentos Antitumorales , Proteína Potenciadora del Homólogo Zeste 2 , Subunidad alfa del Factor 1 Inducible por Hipoxia , Neoplasias Pulmonares , Piridonas , Humanos , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Piridonas/química , Piridonas/farmacología , Piridonas/síntesis química , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Relación Estructura-Actividad , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Estructura Molecular , Relación Dosis-Respuesta a Droga , Proliferación Celular/efectos de los fármacos , Animales , Benzopiranos/química , Benzopiranos/farmacología , Benzopiranos/síntesis química , Movimiento Celular/efectos de los fármacos
17.
Front Oncol ; 14: 1401496, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38812780

RESUMEN

Liver cancer is one of the most prevalent forms of cancer worldwide. A significant proportion of patients with hepatocellular carcinoma (HCC) are diagnosed at advanced stages, leading to unfavorable treatment outcomes. Generally, the development of HCC occurs in distinct stages. However, the diagnostic and intervention markers for each stage remain unclear. Therefore, there is an urgent need to explore precise grading methods for HCC. Machine learning has emerged as an effective technique for studying precise tumor diagnosis. In this research, we employed random forest and LightGBM machine learning algorithms for the first time to construct diagnostic models for HCC at various stages of progression. We categorized 118 samples from GSE114564 into three groups: normal liver, precancerous lesion (including chronic hepatitis, liver cirrhosis, dysplastic nodule), and HCC (including early stage HCC and advanced HCC). The LightGBM model exhibited outstanding performance (accuracy = 0.96, precision = 0.96, recall = 0.96, F1-score = 0.95). Similarly, the random forest model also demonstrated good performance (accuracy = 0.83, precision = 0.83, recall = 0.83, F1-score = 0.83). When the progression of HCC was categorized into the most refined six stages: normal liver, chronic hepatitis, liver cirrhosis, dysplastic nodule, early stage HCC, and advanced HCC, the diagnostic model still exhibited high efficacy. Among them, the LightGBM model exhibited good performance (accuracy = 0.71, precision = 0.71, recall = 0.71, F1-score = 0.72). Also, performance of the LightGBM model was superior to that of the random forest model. Overall, we have constructed a diagnostic model for the progression of HCC and identified potential diagnostic characteristic gene for the progression of HCC.

18.
Int J Mol Sci ; 25(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38791246

RESUMEN

The myocyte enhancer factor 2 (MEF2) gene family play fundamental roles in the genetic programs that control cell differentiation, morphogenesis, proliferation, and survival in a wide range of cell types. More recently, these genes have also been implicated as drivers of carcinogenesis, by acting as oncogenes or tumor suppressors depending on the biological context. Nonetheless, the molecular programs they regulate and their roles in tumor development and progression remain incompletely understood. The present study evaluated whether the MEF2D transcription factor functions as a tumor suppressor in breast cancer. The knockout of the MEF2D gene in mouse mammary epithelial cells resulted in phenotypic changes characteristic of neoplastic transformation. These changes included enhanced cell proliferation, a loss of contact inhibition, and anchorage-independent growth in soft agar, as well as the capacity for tumor development in mice. Mechanistically, the knockout of MEF2D induced the epithelial-to-mesenchymal transition (EMT) and activated several oncogenic signaling pathways, including AKT, ERK, and Hippo-YAP. Correspondingly, a reduced expression of MEF2D was observed in human triple-negative breast cancer cell lines, and a low MEF2D expression in tissue samples was found to be correlated with a worse overall survival and relapse-free survival in breast cancer patients. MEF2D may, thus, be a putative tumor suppressor, acting through selective gene regulatory programs that have clinical and therapeutic significance.


Asunto(s)
Neoplasias de la Mama , Proliferación Celular , Transición Epitelial-Mesenquimal , Factores de Transcripción MEF2 , Factores de Transcripción MEF2/metabolismo , Factores de Transcripción MEF2/genética , Animales , Humanos , Femenino , Ratones , Transición Epitelial-Mesenquimal/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Transducción de Señal
19.
Int J Mol Sci ; 25(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38791396

RESUMEN

The Hippo pathway controls organ size and homeostasis and is linked to numerous diseases, including cancer. The transcriptional enhanced associate domain (TEAD) family of transcription factors acts as a receptor for downstream effectors, namely yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), which binds to various transcription factors and is essential for stimulated gene transcription. YAP/TAZ-TEAD facilitates the upregulation of multiple genes involved in evolutionary cell proliferation and survival. TEAD1-4 overexpression has been observed in different cancers in various tissues, making TEAD an attractive target for drug development. The central drug-accessible pocket of TEAD is crucial because it undergoes a post-translational modification called auto-palmitoylation. Crystal structures of the C-terminal TEAD complex with small molecules are available in the Protein Data Bank, aiding structure-based drug design. In this study, we utilized the fragment molecular orbital (FMO) method, molecular dynamics (MD) simulations, shape-based screening, and molecular mechanics-generalized Born surface area (MM-GBSA) calculations for virtual screening, and we identified a novel non-covalent inhibitor-BC-001-with IC50 = 3.7 µM in a reporter assay. Subsequently, we optimized several analogs of BC-001 and found that the optimized compound BC-011 exhibited an IC50 of 72.43 nM. These findings can be used to design effective TEAD modulators with anticancer therapeutic implications.


Asunto(s)
Simulación de Dinámica Molecular , Factores de Transcripción de Dominio TEA , Factores de Transcripción , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/química , Sitios de Unión , Descubrimiento de Drogas/métodos , Unión Proteica , Simulación del Acoplamiento Molecular , Diseño de Fármacos
20.
J Chem Theory Comput ; 20(11): 4469-4480, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38816696

RESUMEN

Protein-protein interactions are the basis of many protein functions, and understanding the contact and conformational changes of protein-protein interactions is crucial for linking the protein structure to biological function. Although difficult to detect experimentally, molecular dynamics (MD) simulations are widely used to study the conformational ensembles and dynamics of protein-protein complexes, but there are significant limitations in sampling efficiency and computational costs. In this study, a generative neural network was trained on protein-protein complex conformations obtained from molecular simulations to directly generate novel conformations with physical realism. We demonstrated the use of a deep learning model based on the transformer architecture to explore the conformational ensembles of protein-protein complexes through MD simulations. The results showed that the learned latent space can be used to generate unsampled conformations of protein-protein complexes for obtaining new conformations complementing pre-existing ones, which can be used as an exploratory tool for the analysis and enhancement of molecular simulations of protein-protein complexes.


Asunto(s)
Simulación de Dinámica Molecular , Conformación Proteica , Proteínas , Proteínas/química , Redes Neurales de la Computación , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA