Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.171
Filtrar
1.
Biomaterials ; 313: 122803, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39232334

RESUMEN

Bacteria-infected wounds pose challenges to healing due to persistent infection and associated damage to nerves and vessels. Although sonodynamic therapy can help kill bacteria, it is limited by the residual oxidative stress, resulting in prolonged inflammation. To tackle these barriers, novel 4 octyl itaconate-coated Li-doped ZnO/PLLA piezoelectric composite microfibers are developed, offering a whole-course "targeted" treatment under ultrasound therapy. The inclusion of Li atoms causes the ZnO lattice distortion and increases the band gap, enhancing the piezoelectric and sonocatalytic properties of the composite microfibers, collaborated by an aligned PLLA conformation design. During the infection and inflammation stages, the piezoelectric microfibers exhibit spatiotemporal-dependent therapeutic effects, swiftly eliminating over 94.2 % of S. aureus within 15 min under sonodynamic therapy. Following this phase, the microfibers capture reactive oxygen species and aid macrophage reprogramming, restoring mitochondrial function, achieving homeostasis, and shortening inflammation cycles. As the wound progresses through the healing stages, bioactive Zn2+ and Li + ions are continuously released, improving cell recruitment, and the piezoelectrical stimulation enhances wound recovery with neuro-vascularization. Compared to commercially available dressings, our microfibers accelerate the closure of rat wounds (Φ = 15 mm) without scarring in 12 days. Overall, this "one stone, four birds" wound management strategy presents a promising avenue for infected wound therapy.


Asunto(s)
Terapia por Ultrasonido , Cicatrización de Heridas , Animales , Cicatrización de Heridas/efectos de los fármacos , Terapia por Ultrasonido/métodos , Ratas Sprague-Dawley , Ratas , Staphylococcus aureus/efectos de los fármacos , Óxido de Zinc/química , Ratones , Estimulación Eléctrica , Masculino , Infecciones Estafilocócicas/terapia , Poliésteres/química , Especies Reactivas de Oxígeno/metabolismo , Terapia por Estimulación Eléctrica/métodos , Neovascularización Fisiológica/efectos de los fármacos
2.
J Colloid Interface Sci ; 678(Pt B): 67-75, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39241448

RESUMEN

The photocatalytic efficiency can be improved by constructing a Z-scheme heterojunction, but hindered by the only half utilization efficiency of photogenerated carriers. Thus, a novel material, UiO-66-NH2@TAPB-BTCA-COP-Ag (U6N@COP-Ag), with surface plasmon resonance (SPR) effect synergistic Z-scheme heterostructure has been prepared by depositing Ag nanoparticles (Ag NPs) on TAPB-BTCA-COP (COP)-coated UiO-66-NH2. The deposited Ag NPs expand the range of light absorption and introduce more photogenerated electrons in the composite. The SPR effect of noble metal compensates for the limited utilization of the Z-scheme heterojunction photogenerated carriers and the increased density of semiconductor carriers at the reducing end, which is more conducive to the redox reaction of the catalyst. Without sacrificial agents, U6N@COP-Ag shows great photocatalytic nitrogen reduction conversion efficiency with the rate of NH4+ in ammonia water at 167.63µmol g-1h-1, which is 6.6 and 2.8 times that of the original UiO-66-NH2 and COP, respectively. In-situ XPS and Kelvin probe technology verify that UiO-66-NH2 and Ag nanoparticles provide more photogenerated electrons to COP. The cleavage and conversion of N2 to NH4+ on U6N@COP-Ag was confirmed by the enhancement of NH bonds and NH4+ characteristic absorption peaks in the in-situ diffuse reflectance infrared Fourier transform spectroscopy (in-situ DRIFTS). This work presents a great method to improve the Z-scheme heterojunction photogenerated carrier utilization and the density of semiconductor carriers at the reducing end by the noble metal SPR effect, which is more conducive to enhance the redox reaction of the catalyst.

3.
Neuron ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39241779

RESUMEN

Episodic memory is organized in both spatial and temporal contexts. The hippocampus is crucial for episodic memory and has been demonstrated to encode spatial and temporal information. However, how the representations of space and time interact in the hippocampal memory system is still unclear. Here, we recorded the activity of hippocampal CA1 neurons in mice in a variety of one-dimensional navigation tasks while systematically varying the speed of the animals. For all tasks, we found neurons simultaneously represented space and elapsed time. There was a negative correlation between the preferred space and lap duration, e.g., the preferred spatial position shifted more toward the origin when the lap duration became longer. A similar relationship between the preferred time and traveled distance was also observed. The results strongly suggest a competitive and integrated representation of space-time by single hippocampal neurons, which may provide the neural basis for spatiotemporal contexts.

4.
Macromol Rapid Commun ; : e2400536, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254587

RESUMEN

The rising awareness of fire safety among consumers has driven the demand for fire retardants (FRs) that are both cost-effective and efficient across various industries, particularly in textiles. Traditional FRs often compromise fabric softness, resulting in undesirable tactile texture and stiffness changes. While the external addition of softeners can mitigate the stiffness, it may introduce issues such as a greasy texture and increased flammability. This study introduces ethanolamine polyphosphate (EAPP), an innovative organic polyphosphate, as an effective fire retardant that preserves the softness of textiles. Comprehensive evaluations are conducted on EAPP-treated textiles, revealing significant improvements in fire retardancy without compromising fabric quality. EAPP treatment (15 wt.% aqueous solutions) increases the limiting oxygen index (LOI) of pure cotton textiles from 17% to 36% and significantly reduces the peak heat release rate (pHRR) and total smoke rate (TSR) as measured by cone calorimetry. Unlike conventional FR products that form FR-salt crystal particles on the fabric surface after drying, EAPP forms a smooth FR protective layer on the fabric, enhancing mechanical fastness and maintaining tactile qualities. These findings highlight EAPP's potential as a non-washing durable, spray-on fire retardant solution for textiles, combining safety with user comfort.

5.
J Adv Nurs ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39239802

RESUMEN

AIMS: This study aims to explore the practice of advance care planning (ACP) among Chinese oncology nurses and identify challenges influencing care provision. DESIGN: A sequential explanatory mixed-method design was employed, comprising a quantitative phase to assess communication practices, followed by a qualitative phase to explore the challenges faced in ACP. METHODS: The study employed convenience sampling, including 532 oncology nurses from seven hospitals in northern China. Quantitative data were collected through a cross-sectional survey and the ACP communication index from December 2021 to January 2022. The qualitative phase consisted of 19 interviews conducted between May and July 2022, which were thematically analysed to elucidate the challenges in ACP practices. RESULTS: Quantitative findings revealed a low frequency of ACP communication among Chinese oncology nurses. Qualitative analysis identified four themes: lack of optimal timing, passive engagement of patients or families, reluctance of healthcare professionals and unsupported policies. CONCLUSION: The study concluded that identified challenges compromise the effectiveness of ACP practices among Chinese oncology nurses. Inadequate communication, limited interdisciplinary collaboration and policy gaps contribute to nonstandardised ACP processes. IMPLICATIONS FOR THE PROFESSION AND/OR PATIENT CARE: The findings underscore the need for targeted interventions to enhance nurses' communication skills, foster interdisciplinary collaboration and provide policy support. Such interventions are pivotal to optimising end-of-life care in oncology settings and facilitating the integration of ACP into routine nursing practices. REPORTING METHODS: This study adhered to the Mixed Methods Article Reporting Standards. PATIENT OR PUBLIC CONTRIBUTION: No contributions from patients or the public were involved in this study.

6.
J Biomed Sci ; 31(1): 88, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237902

RESUMEN

BACKGROUND: Dysregulation of vascular homeostasis can induce cardiovascular diseases and increase global mortality rates. Although lineage tracing studies have confirmed the pivotal role of modulated vascular smooth muscle cells (VSMCs) in the progression of pathological vascular remodeling, the underlying mechanisms are still unclear. METHODS: The expression of Tudor-SN was determined in VSMCs of artery stenosis, PDGF-BB-treated VSMCs and atherosclerotic plaque. Loss- and gain-of-function approaches were used to explore the role of Tudor-SN in the modulation of VSMCs phenotype both in vivo and in vitro. RESULTS: In this study, we demonstrate that Tudor-SN expression is significantly elevated in injury-induced arteries, atherosclerotic plaques, and PDGF-BB-stimulated VSMCs. Tudor-SN deficiency attenuates, but overexpression aggravates the synthetic phenotypic switching of VSMCs and pathological vascular remodeling. Loss of Tudor-SN also reduces atherosclerotic plaque formation and increases plaque stability. Mechanistically, PTEN, the major regulator of the MAPK and PI3K-AKT signaling pathways, plays a vital role in Tudor-SN-mediated regulation on proliferation and migration of VSMCs. Tudor-SN facilitates the polyubiquitination and degradation of PTEN via NEDD4-1, thus exacerbating vascular remodeling under pathological conditions. BpV (HOpic), a specific inhibitor of PTEN, not only counteracts the protective effect of Tudor-SN deficiency on proliferation and migration of VSMCs, but also abrogates the negative effect of carotid artery injury-induced vascular remodeling in mice. CONCLUSIONS: Our findings reveal that Tudor-SN deficiency significantly ameliorated pathological vascular remodeling by reducing NEDD4-1-dependent PTEN polyubiquitination, suggesting that Tudor-SN may be a novel target for preventing vascular diseases.


Asunto(s)
Ubiquitina-Proteína Ligasas Nedd4 , Fosfohidrolasa PTEN , Ubiquitinación , Remodelación Vascular , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Ubiquitina-Proteína Ligasas Nedd4/genética , Animales , Ratones , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Músculo Liso Vascular/metabolismo , Masculino , Miocitos del Músculo Liso/metabolismo , Ratones Endogámicos C57BL
8.
RSC Adv ; 14(40): 29072-29082, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39282061

RESUMEN

Sulfur, as a crucial chemical raw, poses increased combustion-explosion risks when mixed with other hazardous substances due to its dual nature as both an oxidant and a reducing agent. Additionally, sulfur-induced combustion and explosions can result in environmental pollution. Combustion-explosion suppression technology plays a crucial role in industrial production by effectively preventing hazardous chemical explosion incidents. This research investigates the combustion-explosion suppression of black powder, a common hazardous chemical containing sulfur, by utilizing two solid-based blast suppressants, NH4H2PO4 and NaHCO3. On this basis, examining changes in the oxidation states of sulfur and explaining the mechanisms of combustion-explosion suppression through the examination of combustion-explosion products. Additionally, numerical calculations are employed to analyze the evolution patterns of gaseous and solid-phase products throughout the entire combustion-explosion process. Research indicates that NaHCO3 exhibits a more effective combustion-explosion suppression effect on black powder compared to NH4H2PO4, which attributed to the valence state transformation of sulfur and the reduction of carbon oxidation. Furthermore, with the enhancement of combustion-explosion suppression effect, K2S, which a pollutes the environment, is gradually transform converted into potassium fertilizer K2SO4, which benefits plants. These results offer new insights into the research of combustion-explosion suppression of sulfur-containing substances and environmental protection strategies.

10.
Heliyon ; 10(17): e36820, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39263157

RESUMEN

Traumatic brain injury (TBI) is a leading cause of disability and death. Thus, timely and effective secondary brain injury intervention is crucial, with potential to improve the prognosis of TBI. Oxidative stress contributes to post-traumatic secondary cognitive impairment, and the reduction of post-traumatic oxidative stress effectively enhances cognitive function. Phosphoglycerate-mutating enzyme 5 (PGAM5), a member of the phosphoglycerate transporter enzyme family, is upregulated in TBI and induces mitochondrial autophagy. This further exacerbates damage following TBI. The present study focused on the small molecule drug, LFHP-1c, which is a novel inhibitor of PGAM5. The present study used an in vivo mouse model incorporating a controlled cortical impact-induced TBI, to examine the impact of LFHP-1c on oxidative stress and cognitive function. The present study aimed to determine the impact of LFHP-1c on the PGAM5-Kelch-like ECH-associated protein 1 (KEAP1)- nuclear factor erythroid 2-related factor 2 (NRF2) ternary complex within the TBI context. Results of the present study indicated that LFHP-1c suppresses PGAM5 expression and inhibits the development of the PGAM5-KEAP1-NRF2 ternary complex, thereby promoting the release of NRF2 and KEAP1. This in turn promotes the entry of NRF2 into the nucleus following TBI, leading to increased expression of anti-oxidative stress downstream factors, such as heme oxygenase-1, glutathione peroxidase 1 and superoxide dismutase 1. In addition, LFHP-1c also released KEAP1, leading to mitochondrial Rho GTPase 2 degradation and reducing perinuclear aggregation of mitochondria in the cell, which reduced oxidative stress and ultimately improved cognitive function after TBI.

11.
Adv Mater ; : e2409877, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39279578

RESUMEN

Low-density magnesium (Mg) alloys are excellent engineering materials, and can significantly reduce energy consumption by replacing existing steel and aluminum materials. However, Mg species are susceptible to corrosion, especially in harsh environments (high-temperature or acidic), severely limiting the range of practical applications. Here, 2D covalent organic framework (COF) is synthesized with pore diameters ranging from 1.5 to 2.9 nm to obtain ultrafast nanofluidic channels. Loaded with silver (Ag+) ions, 2-mercaptobenzimidazole (2-MB) inhibitors are immobilized in the COF channels through the silver bridges. Based on the strong metal-complexing capability, Ag+ ions precipitated with various corrosive media (Cl-, Br-, I-, SO3 2-, S2-, S2O3 2- SO4 2-, CO3 2-, PO4 3-); meanwhile, the 2-MB inhibitors are rapidly released through the nanofluidic channels, forming a passivation film as a corrosion barrier to protect the Mg substrate. After integration with commercial polyethersulfone (PES), the COF-based coating exhibits high repairing capability achieving 100% damage restoration within 7 h, outperforming all existing coatings of Mg alloys. Notably, the coating shows almost complete protection of Mg alloys after being treated in respective 473 K, acidic (pH ≈4.0), and alkaline (pH ≈10.0) environments.

12.
Open Forum Infect Dis ; 11(9): ofae464, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39229285

RESUMEN

Elevated levels of Epstein-Barr virus (EBV) gp350 and gH/gL antibodies have been associated with a lower risk of developing nasopharyngeal carcinoma (NPC), although the evidence remains inconclusive and unexplained. We conducted a longitudinal study within a high-risk Taiwanese cohort, analyzing total immunoglobulin against EBV-gp350 and -gH/gL in blood and EBV DNA shedding in saliva. Contrary to our hypothesis-that elevated levels of antibodies previously shown to be associated with a lower NPC risk should result in a decrease in EBV shedding in saliva-higher anti-gp350 antibodies at baseline were significantly associated with detectable EBV DNA in saliva at follow-up (odds ratio [OR], 1.99 [95% confidence interval {CI}, 1.03-3.97]; P = .04). Higher anti-EBV-gH/gL antibodies at baseline were not significantly associated with risk of detectable EBV DNA at follow-up (OR, 0.69 [95% CI, .35-1.32]; P = .26). These findings underscore the complexity of virus-host interactions and emphasize the need for further investigations into their role in EBV-associated diseases.

13.
Plant Sci ; : 112264, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39277047

RESUMEN

Ethylene regulates fruit ripening, and in Zanthoxylum bungeanum, fruit color deepened with increasing of ethylene during fruit ripening. However, the molecular mechanism of this physiological process was still unclear. In this study, through the combined analysis of transcriptome and metabolome, it was found that ethylene release was consistent with anthocyanin synthesis, and ethylene response factors (ERFs) were significantly related to anthocyanin biosynthesis during the fruit ripening of Z. bungeanum. Ethylene treatment significantly induced fruit coloration and promoted anthocyanin synthesis and the expression of ZbERF3. Furthermore, Yeast one-hybrid assays and Luciferase reporter assays demonstrated that ZbERF3 directly bound to the promoter of ZbMYB17 and transcriptionally activated its expression. What's more, it was demonstrated that ZbMYB17 directly bound to the promoter of ZbANS, promoting anthocyanin biosynthesis. Overall, this study revealed the mechanism of ERF and MYB synergistically regulating the coloration of Z. bungeanum fruit.

14.
Eur J Pharmacol ; : 176995, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39277096

RESUMEN

Androgen dependence is a key feature of prostate cancer, and androgen deprivation is effective in treating prostate cancer. However, the disease often worsens and develops into castration-resistant prostate cancer after short-term control. The current study aimed to explore the mechanism of the synergistic action of 18ß-glycyrrhetinic acid (18ß-GA) and enzalutamide (ENZ) against prostate cancer. Our findings showed that 18ß-GA significantly inhibited the expression of OATP2B1 and the transport of dehydroepiandrosterone sulfate (DHEAS) in LNCap and 22RV1 cells. It also downregulated the expression of androgen receptor (AR) to some extent. ENZ strongly inhibited AR expression, but it did not affect OATP2B1-mediated uptake of DHEAS. Compared to the effects of 18ß-GA and ENZ alone, the combination of 18ß-GA and ENZ significantly enhanced the inhibitory effects on AR, prostate-specific antigen (PSA) expression, tumor cell proliferation, and migration. The results obtained in castrated model mice matched the findings of in vitro experiments. 18ß-GA significantly reduced the uptake of DHEAS mediated by OATP2B1 in mouse tumor tissues and cooperated with ENZ to further inhibit the expression of AR and PSA, combat the growth of tumor cells, and promote the apoptosis of tumor cells. In conclusion, 18ß-GA considerably decreased the uptake of DHEAS and androgen production in cells by inhibiting the transport function of OATP2B1, while ENZ inhibited the nuclear translocation of AR and reduced the expression of AR. The combination of 18ß-GA and ENZ can simultaneously inhibit androgen production and AR expression and exhibit a synergistic effect against castration and prostate cancer progression.

15.
Food Res Int ; 195: 114964, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39277265

RESUMEN

To explore the volatile characteristics of Z. bungeanum fruits during different developmental stages, the dynamical changes of volatile organic compounds (VOCs) were detected by E-nose, GC-MS and GC-IMS, respectively. The results showed that terpenes, alcohols, esters and aldehydes played the important roles in the aroma formation of Z. bungeanum. Meanwhile, these VOCs also exhibited the high abundance levels among five growth stages of Z. bungeanum. According to the analysis of odor activity value (OAV) and relative odor activity value (ROAV), 37 VOCs can be recognized as the important aroma compounds. Thereinto, ß-myrcene and linalool were the most key aroma compounds. Multi-factor analysis exhibited that the combination of GC-MS and GC-IMS was a better strategy to clarify the volatile characteristics comprehensively. Using the above combined VOC datasets, six positively correlated modules and 32 hub VOCs were finally identified by weighted correlation network analysis among five growth stages of Z. bungeanum.


Asunto(s)
Nariz Electrónica , Frutas , Cromatografía de Gases y Espectrometría de Masas , Odorantes , Compuestos Orgánicos Volátiles , Zanthoxylum , Compuestos Orgánicos Volátiles/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Frutas/química , Frutas/crecimiento & desarrollo , Zanthoxylum/química , Odorantes/análisis , Monoterpenos Acíclicos/análisis , Terpenos/análisis
16.
Ecotoxicol Environ Saf ; 285: 117033, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278000

RESUMEN

Due to the continuous production of industrial wastes and the excessive use of chemical fertilizers and pesticides, severe cadmium (Cd) pollution in soil has occurred globally. This study investigated the impacts of incorporating zinc oxide nanoparticles (ZnONPs) into hydroponically grown lettuce (Lactuca sativa) under cadmium stress conditions, to seek effective methods to minimize Cd buildup in green leafy vegetables. The results showed that 1 mg/L of Cd significantly inhibited lettuce growth, decreasing in leaves (29 %) and roots (33 %) biomass. However, when lettuce was exposed to 2.5 mg/L ZnONPs under cadmium stress, the growth, chlorophyll content, net photosynthetic rate (Pn), stomatal conductance (Gs), actual photochemical efficiency of PSII (φPSII), and activity of key enzymes in photosynthesis were all significantly enhanced. Furthermore, ZnONPs significantly decreased the accumulation of Cd in lettuce leaves (36 %) and roots (13 %). They altered the subcellular distribution and chemical morphology of Cd in lettuce by modifying the composition of cell walls (such as pectin content) and the levels of phenolic compounds, resulting in a reduction of 27 % in Cd translocation from roots to leaves. RNA sequencing yielded 45.9 × 107 and 53.4 × 107 clean reads from plant leaves and roots in control (T0), Cd (T1), Cd+ZnONPs (T2), and ZnONPs (T3) treatment groups respectively, and 3614 and 1873 differentially expressed genes (DEGs) were identified. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis identified photosynthesis, carbon fixation, and phenylpropanoid metabolism as the main causes of ZnONPs-mediated alleviation of Cd stress in lettuce. Specifically, the DEGs identified included 12 associated with photosystem I, 13 with photosystem II and 23 DEGs with the carbon fixation pathway of photosynthesis. Additionally, DEGs related to phenylalanine ammonia-lyase, caffeoyl CoA 3-O-methyltransferase, peroxidase, 4-coumarate-CoA ligase, hydroxycinnamoyl transferase, and cytochrome P450 proteins were also identified. Therefore, further research is recommended to elucidate the molecular mechanisms by which ZnONPs reduce Cd absorption in lettuce through phenolic acid components in the phenylpropanoid metabolism pathway. Overall, treatments with ZnONPs are recommended to effectively reduce Cd accumulation in the edible portion of lettuce.

17.
Polymers (Basel) ; 16(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39274094

RESUMEN

Modern polymer coatings possess tremendous multifunctionalities and have attracted immense research interest in recent decades. However, with the expeditious development of technologies and industries, there is a vast demand for the flame retardancy and electrical conductivity of engineered polymer coatings. Traditional functional materials that render the polymer coatings with these properties require a sophisticated fabrication process, and their high mass gains can be a critical issue for weight-sensitive applications. In recent years, massive research has been conducted on a newly emerged two-dimensional (2D) nanosize material family, MXene. Due to the excellent electrical conductivity, flame retardancy, and lightweightness, investigations have been launched to synthesise MXene-based polymer coatings. Consequently, we performed a step-by-step review of MXene-involved polymer coatings, from solely attaching MXene to the substrate surface to the multilayered coating of modified MXene with other components. This review examines the performances of the fire safety enhancement and electrical conductivity as well as the feasibility of the manufacturing procedures of the as-prepared polymer composites. Additionally, the fabricated polymer coatings' dual property mechanisms are well-demonstrated. Finally, the prospect of MXene participating in polymer coatings to render flame retardancy and electrical conductivity is forecasted.

18.
Materials (Basel) ; 17(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39274625

RESUMEN

Al-Mg alloys are widely used as important engineering structural materials in aerospace engineering, transportation systems, and structural constructions due to their low density, high specific strength, corrosion resistance, welding capability, fatigue strength, and cost-effectiveness. However, the conventional Al-Mg alloys can no longer fully satisfy the demands of practical production due to difficulties caused by many defects. The high strength of Al-Mg alloys as non-heat treatment precipitation-strengthened alloys is achieved primarily by solid solution strengthening along with work hardening rather than precipitation strengthening. Therefore, severe plastic deformation (SPD) techniques can be often used to produce ultrafine-grained structures to fabricate ultra-high strength aluminum alloys. However, this approach often achieves the strengthening of material at the cost of reduced ductility. This paper comprehensively summarizes the various approaches of ultrafine/nanocrystalline materials for enhancing their plasticity, elaborates on the creation of a bimodal microstructure within the alloy, and discusses the formation of a nanotwin microstructure within the alloy and the incorporation of dispersed nanoparticles. The mechanisms underlying both the strengthening and toughening during large plastic deformation in aluminum alloys are summarized, and the future research direction of high-performance ultrafine crystalline and nanocrystalline Al-Mg aluminum alloys is prospected.

19.
Psychiatry Res Neuroimaging ; 344: 111887, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39236484

RESUMEN

Empirical findings suggest reduced cortico-striatal structural connectivity in patients with major depressive disorder (MDD). However, the relationship between the abnormal structural covariance and one-year outcome of first-episode drug-naive patients has not been evaluated. This longitudinal study aimed to identify specific changes of ventral striatum-related brain structural covariance and grey matter volume in forty-two first-episode patients with major depression disorder compared with thirty-seven healthy controls at the baseline and the one-year follow-up conditions. At the baseline, patients showed decreased structural covariance between the left ventral striatum and the bilateral superior frontal gyrus (SFG), bilateral middle frontal gyrus (MFG), right supplementary motor area (SMA) and left precentral gyrus and increased grey matter volume at the left fusiform and left parahippocampus. At the one-year follow-up, patients showed decreased structural covariance between the left ventral striatum and the right SFG, right MFG, left precentral gyrus and left postcentral gyrus, and increased structural covariance between the right ventral striatum and the right amygdala, right hippocampus, right parahippocampus, right superior temporal pole, right insula and right olfactory bulb and decreased volume at the left SMA compared with controls. These findings suggest that specific ventral striatum connectivity changes contribute to the early brain development of the MDD.


Asunto(s)
Trastorno Depresivo Mayor , Sustancia Gris , Imagen por Resonancia Magnética , Estriado Ventral , Humanos , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Masculino , Estriado Ventral/diagnóstico por imagen , Estriado Ventral/patología , Femenino , Adulto , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/patología , Estudios de Seguimiento , Estudios Longitudinales , Adulto Joven
20.
BMC Public Health ; 24(1): 2484, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267000

RESUMEN

BACKGROUND: Chlamydia and gonorrhea notifications are rapidly rising in men who have sex with men (MSM). Currently, there are limited data on the prevalence of chlamydia and gonorrhea across various anatomical sites. Our study aimed to explore the prevalence, association and changing trends of urethral and rectal chlamydia and gonorrhea among MSM in Guangdong Province, China. METHODS: We analyzed data among MSM attending sexually transmitted infections (STI) clinics in the Guangdong governmental sentinel network between 2018 and 2022. Chi-square tests were used to compare the difference, Join-point regressions for analyzing changing trends, and multivariate logistic regressions for examining associated factors. RESULTS: We included 4856 men in the analysis. Rectal chlamydia significantly increased from 13.8% to 26.4% over the past 5 years (average annual percentage change [AAPC] 19.2%, 95%CI 1.0-40.6, p = 0.043). After adjusting for covariates, chlamydia infection positively associated with main venue used to seek sexual partners (aOR = 2.31, 95%CI 1.17-4.55), having regular sexual partners in the past 6 months (aOR = 3.32, 95%CI 1.95-5.64), receiving HIV counselling and testing services (aOR = 2.94, 95%CI 1.67-5.17), receiving peer education (aOR = 1.80, 95%CI 1.14-2.83), infection with syphilis (aOR = 2.02, 95%CI 1.02-4.01) and infection with gonorrhea (aOR 7.04, 95% CI 3.01-16.48). Gonorrhea infection positively associated with having regular sexual partners in the past 6 months (aOR = 3.48.95%CI 1.16-10.49), and infection with chlamydia (aOR 7.03, 95% CI 2.99-16.51). CONCLUSIONS: To conclude, our findings reveal a high prevalence of chlamydia infections among MSM, particularly in the rectal area. Comprehensive chlamydia and gonorrhea health services are necessary for MSM to improve sexual health.


Asunto(s)
Infecciones por Chlamydia , Gonorrea , Homosexualidad Masculina , Humanos , Gonorrea/epidemiología , Masculino , Infecciones por Chlamydia/epidemiología , China/epidemiología , Adulto , Homosexualidad Masculina/estadística & datos numéricos , Adulto Joven , Prevalencia , Adolescente , Persona de Mediana Edad , Uretra/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA