RESUMEN
Extracellular vesicles (EVs) represent an attractive source of biomarkers due to their biomolecular cargo. The aim of this study was to identify candidate protein biomarkers from plasma-derived EVs of patients with liver cirrhosis (LC) and hepatocellular carcinoma (HCC). Plasma-derived EVs from healthy participants (HP), LC, and HCC patients (eight samples each) were subjected to label-free quantitative proteomic analysis using LC-MS/MS. A total of 248 proteins were identified, and differentially expressed proteins (DEPs) were obtained after pairwise comparison. We found that DEPs mainly involve complement cascade activation, coagulation pathways, cholesterol metabolism, and extracellular matrix components. By choosing a panel of up- and down-regulated proteins involved in cirrhotic and carcinogenesis processes, TGFBI, LGALS3BP, C7, SERPIND1, and APOC3 were found to be relevant for LC patients, while LRG1, TUBA1C, TUBB2B, ACTG1, C9, HP, FGA, FGG, FN1, PLG, APOB and ITIH2 were associated with HCC patients, which could discriminate both diseases. In addition, we identified the top shared proteins in both diseases, which included LCAT, SERPINF2, A2M, CRP, and VWF. Thus, our exploratory proteomic study revealed that these proteins might play an important role in the disease progression and represent a panel of candidate biomarkers for the prognosis and diagnosis of LC and HCC.
Asunto(s)
Biomarcadores de Tumor , Carcinoma Hepatocelular , Vesículas Extracelulares , Cirrosis Hepática , Neoplasias Hepáticas , Proteómica , Humanos , Carcinoma Hepatocelular/sangre , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/sangre , Neoplasias Hepáticas/metabolismo , Vesículas Extracelulares/metabolismo , Cirrosis Hepática/sangre , Cirrosis Hepática/metabolismo , Proteómica/métodos , Biomarcadores de Tumor/sangre , Masculino , Femenino , Persona de Mediana Edad , Espectrometría de Masas en Tándem , Proteoma/metabolismo , Cromatografía Liquida , Biomarcadores/sangreRESUMEN
Immune mediators affect multiple biological functions of intestinal epithelial cells (IECs) and, like Paneth and Paneth-like cells, play an important role in intestinal epithelial homeostasis. IFN-γ a prototypical proinflammatory cytokine disrupts intestinal epithelial homeostasis. However, the mechanism underlying the process remains unknown. In this study, using in vivo and in vitro models we demonstrate that IFN-γ is spontaneously secreted in the small intestine. Furthermore, we observed that this cytokine stimulates mitochondrial activity, ROS production, and Paneth and Paneth-like cell secretion. Paneth and Paneth-like secretion downstream of IFN-γ, as identified here, is mTORC1 and necroptosis-dependent. Thus, our findings revealed that the pleiotropic function of IFN-γ also includes the regulation of Paneth cell function in the homeostatic gut.
RESUMEN
BACKGROUND: The identification of biomarkers for the early diagnosis of nonalcoholic fatty liver disease (NAFLD) is urgently needed. Here, we aimed to identify NAFLD biomarkers in the early stages of steatosis (SS) and nonalcoholic steatohepatitis (NASH) based on differential gene expression from bioinformatics data. METHODS: A meta-analysis was performed from transcriptomic databases retrieved from public repositories containing data from biopsies of patients at various stages of NAFLD development. The status of the selected molecules was validated in the serum of patients with NAFLD by ELISA. RESULTS: We identified 121 differentially expressed genes (DEGs) associated with SS and 402 associated with NASH. Gene Ontology (GO) enrichment revealed that the altered genes were primarily associated with dysfunction of primary cellular processes, and pathway analyses were mainly related to cholesterol metabolism. We identified ACSS2, PCSK9, and CYP7A1 as candidate biomarkers for SS and ANGPTL3, CD36, CYP51A1, FASN, FAS, FDFT1, and LSS as candidate biomarkers for NASH. CONCLUSIONS: By experimental validation of bioinformatics data from patients with NAFLD, we identified promising biomarkers for detecting SS and NASH that might be useful for screening and diagnosing early NAFLD stages in humans.
Asunto(s)
Biomarcadores , Biología Computacional , Enfermedad del Hígado Graso no Alcohólico , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/sangre , Humanos , Biomarcadores/sangre , Masculino , Femenino , Proteína 3 Similar a la AngiopoyetinaRESUMEN
Hepatocellular carcinoma (HCC) is a tumor with minimal chance of cure due to underlying liver diseases, late diagnosis, and inefficient treatments. Thus, HCC treatment warrants the development of additional strategies. Lactoferrin (Lf) is a mammalian multifunctional iron-binding glycoprotein of the innate immune response and can be found as either a native low iron form (native-Lf) or a high iron form (holo-Lf). Bovine Lf (bLf), which shares many functions with human Lf (hLf), is safe for humans and has several anticancer activities, including chemotherapy boost in cancer. We found endogenous hLf is downregulated in HCC tumors compared with normal liver, and decreased hLf levels in HCC tumors are associated with shorter survival of HCC patients. However, the chemoprotective effect of 100% iron saturated holo-bLf on experimental hepatocarcinogenesis has not yet been determined. We aimed to evaluate the chemopreventive effects of holo-bLf in different HCC models. Remarkably, a single dose (200 mg kg-1) of holo-bLf was effective in preventing early carcinogenic events in a diethylnitrosamine induced HCC in vivo model, such as necrosis, ROS production, and the surge of facultative liver stem cells, and eventually, holo-bLf reduced the number of preneoplastic lesions. For an established HCC model, holo-bLf treatment significantly reduced HepG2 tumor burden in xenotransplanted mice. Finally, holo-bLf in combination with sorafenib, the advanced HCC first-line treatment, synergistically decreased HepG2 viability by arresting cells in the G0/G1 phase of the cell cycle. Our findings provide the first evidence suggesting that holo-bLf has the potential to prevent HCC or to be used in combination with treatments for established HCC.
Asunto(s)
Carcinoma Hepatocelular , Hierro , Lactoferrina , Neoplasias Hepáticas , Lactoferrina/farmacología , Lactoferrina/administración & dosificación , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/prevención & control , Neoplasias Hepáticas/tratamiento farmacológico , Bovinos , Hierro/metabolismo , Humanos , Ratones , MasculinoRESUMEN
Aging is characterized by increased reactive species, leading to redox imbalance, oxidative damage, and senescence. The adverse effects of alcohol consumption potentiate aging-associated alterations, promoting several diseases, including liver diseases. Nucleoredoxin (NXN) is a redox-sensitive enzyme that targets reactive oxygen species and regulates key cellular processes through redox protein-protein interactions. Here, we determine the effect of chronic alcohol consumption on NXN-dependent redox interactions in the liver of aged mice. We found that chronic alcohol consumption preferentially promotes the localization of NXN either into or alongside senescent cells, declines its interacting capability, and worsens the altered interaction ratio of NXN with FLII, MYD88, CAMK2A, and PFK1 proteins induced by aging. In addition, carbonylated protein and cell proliferation increased, and the ratios of collagen I and collagen III were inverted. Thus, we demonstrate an emerging phenomenon associated with altered redox homeostasis during aging, as shown by the declining capability of NXN to interact with partner proteins, which is enhanced by chronic alcohol consumption in the mouse liver. This evidence opens an attractive window to elucidate the consequences of both aging and chronic alcohol consumption on the downstream signaling pathways regulated by NXN-dependent redox-sensitive interactions.
RESUMEN
Liver diseases preceding the occurrence of hepatocellular carcinoma (HCC) play a crucial role in the progression and establishment of HCC, a malignancy ranked as the third deadliest cancer worldwide. Late diagnosis, alongside ineffective treatment, leads patients to a poor survival rate. This scenario argues for seeking novel alternatives for detecting liver alterations preceding the early occurrence of HCC. Experimental studies have reported that ABCC3 protein increases within HCC tumors but not in adjacent tissue. Therefore, we analyzed ABCC3 expression in public databases and investigated the presence of ABCC3 and its isoforms in plasma, urine and its release in extracellular vesicles (EVs) cargo from patients bearing cirrhosis and HCC. The UALCAN and GEPIA databases were used to analyze the expression of ABCC3 in HCC. The results were validated in a case-control study including 41 individuals bearing cirrhosis and HCC, and the levels of ABCC3 in plasma and urine samples, as well as EVs, were analyzed by ELISA and western blot. Our data showed that ABCC3 expression was higher in HCC tissues than in normal tissues and correlated with HCC grade and stage. ABCC3 protein levels were highly increased in both plasma and urine and correlated with liver disease progression and severity. The isoforms MRP3A and MRP3B of ABCC3 were significantly increased in both EVs and plasma/urine of patients bearing HCC. ABCC3 expression gradually increases in HCC tissues, and its protein levels are increased in both plasma and urine of patients with cirrhosis and HCC. MRP3A and MRP3B isoforms have the potential to be prognostic biomarkers of HCC.
RESUMEN
Hepatocellular carcinoma (HCC) is a type of liver cancer, in which CD44 isoforms have been proposed as markers to identify cancer stem cells (CSCs). However, it is unclear what characteristics are associated with CSCs that exclusively express CD44 isoforms. The objective of the present study was to determine the expression of CD44 isoforms and their properties in CSCs. Analysis of transcriptomic data from HCC patient samples identified CD44v8-10 as a potential marker in HCC. In SNU-423 cells, CD44 expression was detected in over 99% of cells, and two CD44 isoforms, namely, CD44std and CD44v9, were identified in this cell line. CD44 subpopulations, including both CD44v9+ (CD44v9) and CD44v9- (CD44std) cells, were obtained by purification using a magnetic cell separation kit for human CD44v9+ cancer stem cells. CD44v9 cells showed greater potential for colony and spheroid formation, whereas CD44std cells demonstrated significant migration and invasion capabilities. These findings suggested that CD44std and CD44v9 may be used to identify features in CSC populations and provide insights into their roles in HCC.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Biomarcadores de Tumor/metabolismo , Células Madre Neoplásicas/metabolismo , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Línea Celular Tumoral , Isoformas de Proteínas/metabolismoRESUMEN
Systemic sclerosis (SSc) is an autoimmune disease characterized by microvascular compromise and fibrosis. Pulmonary fibrosis, a prominent pulmonary complication in SSc, results in impaired lung function due to excessive accumulation of extracellular matrix components. This study aimed to investigate the effects of coadministration of 3'5-dimaleamylbenzoic acid (AD) and quercetin (Q) on key events in the development and maintenance of pulmonary fibrosis in a bleomycin (BLM)-induced SSc mouse model. The model was induced in CD1 mice through BLM administration using osmotic mini pumps. Subsequently, mice were treated with AD (6 mg/kg) plus Q (10 mg/kg) and sacrificed at 21 and 28 days post BLM administration. Histopathological analysis was performed by hematoxylin and eosin staining and Masson's trichrome staining. Immunohistochemistry was used to determine the expression of proliferation, proinflammatory, profibrotic and oxidative stress markers. The coadministration of AD and Q during the fibrotic phase of the BLM-induced SSc model led to attenuated histological alterations and pulmonary fibrosis, reflected in the recovery of alveolar spaces (30 %, p < 0.01) and decreased collagen deposits (50 %, p < 0.001). This effect was achieved by decreasing the expression of the proliferative markers cyclin D1 (87 %, p < 0.0001) and PCNA (43 %, p < 0.0001), inflammatory markers COX-2 (71 %, p < 0.0001) and iNOS (84 %, p < 0.0001), profibrotic markers α-SMA (80 %, p < 0.0001) and TGF-ß (81 %, p < 0.0001) and the lipid peroxidation marker 4-HNE (43 %, p < 0.01). The antifibrotic effect of this combined therapy is associated with the regulation of proliferation, inflammation and oxidative stress, mechanisms involved in the development and progression of the fibrotic process. Our novel therapeutic strategy is the first approach to propose the use of the combination of prooxidant and antioxidant compounds as a potential strategy for SSc-associated pulmonary fibrosis.
Asunto(s)
Fibrosis Pulmonar , Esclerodermia Sistémica , Ratones , Animales , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Quercetina/uso terapéutico , Quercetina/farmacología , Fibrosis , Colágeno/metabolismo , Bleomicina/efectos adversos , Esclerodermia Sistémica/metabolismo , Modelos Animales de Enfermedad , Pulmón/patologíaRESUMEN
Following an Assessment by the Autonomous University of Hidalgo State and the National Institute of Genomic Medicine, this erratum corrects the authorship of this article by adding Dulce María MORENO-GARCÍA as the first author.
RESUMEN
INTRODUCTION AND OBJECTIVES: Administration of carbon tetrachloride (CCl4), along with an hepatopathogenic diet, is widely employed as a chemical inducer to replicate human nonalcoholic steatohepatitis (NASH) in rodents; however, the role of the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome in this model remains unclear. We aimed to determine the relevance of NLRP3 inflammasome activation in the development of NASH induced by CCl4 along with an hepatopathogenic diet in male Wistar rats. MATERIALS AND METHODS: Animals were fed either a high fat, sucrose, and cholesterol diet (HFSCD) or a HFSCD plus intraperitoneal injections of low doses of CCl4 (400 mg/kg) once a week for 15 weeks. Liver steatosis, inflammation, fibrosis, and NLRP3 inflammasome activation were evaluated using biochemical, histological, ultrastructural, and immunofluorescence analyses, western blotting, and immunohistochemistry. RESULTS: Our experimental model reproduced several aspects of the human NASH pathophysiology. NLRP3 inflammasome activation was induced by the combined effect of HFSCD plus CCl4 and significantly increased levels of both proinflammatory and profibrogenic cytokines and collagen deposition in the liver; thus, NASH severity was higher in the HFSCD+CCl4 group than that in the HFSCD group, to which CCl4 was not administered. Hepatic stellate cells, the most profibrogenic cells, were activated by HFSCD plus CCl4, as indicated by elevated levels of α-smooth muscle actin. Thus, activation of the NLRP3 inflammasome, triggered by low doses of CCl4, exacerbates the severity of NASH. CONCLUSIONS: Our results indicate that NLRP3 inflammasome activation plays a key role and may be an important therapeutic target for NASH treatment.
Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratas , Animales , Masculino , Ratones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Inflamasomas/efectos adversos , Proteína con Dominio Pirina 3 de la Familia NLR , Ratas Wistar , Hígado/patología , Colesterol , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BLRESUMEN
Caffeine elicits protective effects against liver diseases, such as NASH; however, its mechanism of action involving the pyrin domain-containing-3 (NLRP3) inflammasome signaling pathway remains to be elucidated. This study aimed to evaluate the effect of caffeine on the NLRP3 inflammasome signaling pathway in a rat model of NASH. NASH was induced by feeding rats a high-fat, -sucrose, and -cholesterol diet (HFSCD) for 15 weeks along with a weekly low dose (400 mg/kg, i.p.) of CCl4. Caffeine was administered at 50 mg/kg p.o. The effects of HFSCD+CCl4 and caffeine on the liver were evaluated using biochemical, ultrastructural, histological, and molecular biological approaches. The HFSCD+CCl4-treated rats showed fat accumulation in the liver, elevated levels of inflammatory mediators, NLRP3 inflammasome activation, antioxidant dysregulation, and liver fibrosis. Caffeine reduced necrosis, cholestasis, oxidative stress, and fibrosis. Caffeine exhibited anti-inflammatory effects by attenuating NLRP3 inflammasome activation. Moreover, caffeine prevented increases in toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB) protein levels and mitigated the phosphorylation of mitogen-activated protein kinase (MAPK). Importantly, caffeine prevented the activation of hepatic stellate cells. This study is the first to report that caffeine ameliorates NASH by inhibiting NLRP3 inflammasome activation through the suppression of the TLR4/MAPK/NF-κB signaling pathway.
Asunto(s)
FN-kappa B , Enfermedad del Hígado Graso no Alcohólico , Animales , Cafeína/farmacología , Cafeína/uso terapéutico , Inflamasomas/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ratas , Transducción de Señal , Receptor Toll-Like 4/metabolismoRESUMEN
Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by parenchymal scarring, leading progressively to alveolar architecture distortion, respiratory failure, and eventually death. Currently, there is no effective treatment for IPF. Previously, 3'5-dimaleamylbenzoic acid (3'5-DMBA), a maleimide, demonstrated pro-apoptotic, anti-inflammatory, and anti-cancer properties; however, its potential therapeutic effects on IPF have not been addressed. Bleomycin (BLM) 100 U/kg was administered to CD1 mice through an osmotic minipump. After fourteen days of BLM administration, 3'5-DMBA (6 mg/kg or 10 mg/kg) and its vehicle carboxymethylcellulose (CMC) were administered intragastrically every two days until day 26. On day 28, all mice were euthanized. The 3'5-DMBA effect was assessed by histological and immunohistochemical staining, as well as by RT-qPCR. The redox status on lung tissue was evaluated by determining the glutathione content and the GSH/GSSG ratio. 3'5-DMBA treatment re-established typical lung histological features and decreased the expression of BLM-induced fibrotic markers: collagen, α-SMA, and TGF-ß1. Furthermore, 3'5-DMBA significantly reduced the expression of genes involved in fibrogenesis. In addition, it decreased reduced glutathione and increased oxidized glutathione content without promoting oxidative damage to lipids, as evidenced by the decrease in the lipid peroxidation marker 4-HNE. Therefore, 3'5-DMBA may be a promising candidate for IPF treatment.
Asunto(s)
Bleomicina , Fibrosis Pulmonar Idiopática , Animales , Antiinflamatorios/farmacología , Bleomicina/efectos adversos , Colágeno/metabolismo , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Factor de Crecimiento Transformador beta1/metabolismoRESUMEN
Hepatocellular carcinoma (HCC) is one of the deadliest cancers worldwide, often preceded by cirrhosis and usually diagnosed at advanced stages; therefore, identifying molecular changes at early stages is an attractive strategy for detection and timely treatment. Here, we investigated the progressive transcriptomic changes during experimental hepatocarcinogenesis to identify novel early tumor markers in an HCC model induced by chronic administration of sublethal doses of diethylnitrosamine. An analysis of differentially expressed genes showed that four processes associated with oxidation-reduction and detoxification were significantly over-represented during hepatocarcinogenesis progression, of which the Nuclear Factor, Erythroid 2 Like 2 pathway showed several dysregulated genes. Interestingly, we also identified 91 genes dysregulated at early HCC stages, but the expression of the indolethylamine N-methyltransferase gene (INMT), as well as the level of its encoding protein, were strongly downregulated. INMT was increased in perivenular hepatocytes of normal livers but decreased in livers of experimental HCC. Furthermore, a gene expression and survival analysis performed using data from the liver hepatocellular carcinoma project of The Cancer Genome Atlas Program revealed that INMT is also significantly downregulated in human HCC and is associated with poor overall survival. In conclusion, by performing a transcriptome analysis of the HCC progression, we identified that INMT is early downregulated in the rat hepatocarcinogenesis and is associated with poor prognosis in human HCC, suggesting that INMT downregulation may be a promising prognostic marker for HCC in high-risk populations.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Carcinogénesis/genética , Carcinoma Hepatocelular/patología , Regulación hacia Abajo , Humanos , Neoplasias Hepáticas/patología , Metiltransferasas/genética , RatasRESUMEN
Nucleoredoxin (NXN), an oxidoreductase enzyme, contributes to cellular redox homeostasis by regulating different signaling pathways in a redox-dependent manner. By interacting with seven proteins so far, namely disheveled (DVL), protein phosphatase 2A (PP2A), phosphofructokinase-1 (PFK1), translocation protein SEC63 homolog (SEC63), myeloid differentiation primary response gene-88 (MYD88), flightless-I (FLII), and calcium/calmodulin-dependent protein kinase II type alpha (CAMK2A), NXN is involved in the regulation of several key cellular processes, including proliferation, organogenesis, cell cycle progression, glycolysis, innate immunity and inflammation, motility, contraction, protein transport into the endoplasmic reticulum, neuronal plasticity, among others; as a result, NXN has been implicated in different pathologies, such as cancer, alcoholic and polycystic liver disease, liver fibrogenesis, obesity, Robinow syndrome, diabetes mellitus, Alzheimer's disease, and retinitis pigmentosa. Together, this evidence places NXN as a strong candidate to be a master redox regulator of cell physiology and as the hub of different redox-sensitive signaling pathways and associated pathologies. This review summarizes and discusses the current insights on NXN-dependent redox regulation and its implication in different pathologies.
RESUMEN
Hepatocellular carcinoma (HCC) is a health problem worldwide due to its high mortality rate, and the tumor microenvironment (TME) plays a key role in the HCC progression. The current ineffective therapies to fight the disease still warrant the development of preventive strategies. Quercetin has been shown to have different antitumor activities; however, its effect on TME components in preneoplastic lesions has not been fully investigated yet. Here, we aimed to evaluate the effect of quercetin (10 mg/kg) on TME components during the early stages of HCC progression induced in the rat. Histopathological and immunohistochemical analyses showed that quercetin decreases the size of preneoplastic lesions, glycogen and collagen accumulation, the expression of cancer stem cells and myofibroblasts markers, and that of the transporter ATP binding cassette subfamily C member 3 (ABCC3), a marker of HCC progression and multi-drug resistance. Our results strongly suggest that quercetin has the capability to reduce key components of TME, as well as the expression of ABCC3. Thus, quercetin can be an alternative treatment for inhibiting the growth of early HCC tumors.
RESUMEN
The activation of Nuclear Factor, Erythroid 2 Like 2 - Kelch Like ECH Associated Protein 1 (NRF2-KEAP1) signaling pathway plays a critical dual role by either protecting or promoting the carcinogenesis process. However, its activation or nuclear translocation during hepatocellular carcinoma (HCC) progression has not been addressed yet. This study characterizes the subcellular localization of both NRF2 and KEAP1 during diethylnitrosamine-induced hepatocarcinogenesis in the rat. NRF2-KEAP1 pathway was continuously activated along with the increased expression of its target genes, namely Nqo1, Hmox1, Gclc, and Ptgr1. Similarly, the nuclear translocation of NRF2, MAF, and KEAP1 increased in HCC cells from weeks 12 to 22 during HCC progression. Likewise, colocalization of NRF2 with KEAP1 was higher in the cell nuclei of HCC neoplastic nodules than in surrounding cells. Moreover, immunofluorescence analyses revealed that the interaction of KEAP1 with filamentous Actin was disrupted in HCC cells. This disruption may be contributing to the release and nuclear translocation of NRF2 since the cortical actin cytoskeleton serves as anchoring of KEAP1. In conclusion, this evidence indicates that NRF2 is progressively activated and promotes the progression of experimental HCC.
Asunto(s)
Carcinoma Hepatocelular/patología , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Neoplasias Hepáticas/patología , Factor 2 Relacionado con NF-E2/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/veterinaria , Núcleo Celular/metabolismo , Ciclooxigenasa 1/genética , Ciclooxigenasa 1/metabolismo , Dietilnitrosamina/toxicidad , Progresión de la Enfermedad , Proteína 1 Asociada A ECH Tipo Kelch/genética , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/veterinaria , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Factor 2 Relacionado con NF-E2/genética , Proteínas Proto-Oncogénicas c-maf/genética , Proteínas Proto-Oncogénicas c-maf/metabolismo , Ratas , Ratas Endogámicas F344RESUMEN
Hepatocellular carcinoma expressing hepatobiliary progenitor markers, is considered of poor prognosis. By using a hepatocarcinogenesis model, laser capture microdissection, and RNA-Sequencing analysis, we identified an expression profile in GGT/KRT19-positive experimental tumors; 438 differentially expressed genes were found in early and late nodules along with increased collagen deposition. Dysregulated genes were involved in Fatty Acid Metabolism, RXR function, and Hepatic Stellate Cells Activation. Downregulation of Slc27a5, Acsl1, and Cyp2e1, demonstrated that Retinoid X Receptor α (RXRα) function is compromised in GGT/KRT19-positive nodules. Since RXRα controls NRF2 pathway activation, we determined the expression of NRF2 targeted genes; Akr1b8, Akr7a3, Gstp1, Abcc3, Ptgr1, and Txnrd1 were upregulated, indicating NRF2 pathway activation. A comparative analysis in human HCC showed that SLC27A5, ACSL1, CYP2E1, and RXRα gene expression is mutually exclusive with KRT19 gene expression. Our results indicate that the downregulation of Slc27a5, Acsl1, Rxrα, and Cyp2e1 genes is an early event within GGT/KRT19-positive HCC.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/metabolismo , Ácidos Grasos , Humanos , Neoplasias Hepáticas/metabolismo , Receptor alfa X Retinoide/genética , Receptor alfa X Retinoide/metabolismo , TranscriptomaRESUMEN
Hepatocellular carcinoma (HCC), the most common primary liver cancer, arises after a long period of exposure to etiological factors. Nonalcoholic steatohepatitis (NASH) is ranked as the main risk factor for developing HCC; hence, experimental models of NASH leading to HCC have become key tools both to investigate the molecular mechanisms underlying the pathophysiology and to evaluate new putative drugs for treating chronic liver diseases in humans. Animal models of NASH induced by a high-fat diet (HFD) plus chemical inducers, such as the NASH-HCC (STAM), high-fat diet/diethylnitrosamine (HFD/DEN), choline-deficient high-fat diet/DEN (CDHFD/DEN), and Western diet/carbon tetrachloride (WD/CCl4) models, are promising because they exacerbate liver damage and significantly shorten the experimental time. In this review, we critically summarize and discuss the ability of these models to recapitulate the liver alterations that precede and lead to HCC progression, as well as the impact of the diet in promoting liver injury progression. We also emphasize the strengths and weaknesses of the models' ability to closely mimic the stages of liver injury development that occur in humans. Based on the molecular mechanisms induced by the currently available NASH models leading to HCC, we argue that although several NASH models have importantly contributed to describing the disease chronology, the progress in emulating the progression from NASH to HCC has been partial. Thus, the development of novel NASH/HCC models remains an unmet need.
Asunto(s)
Carcinoma Hepatocelular/diagnóstico , Modelos Animales de Enfermedad , Neoplasias Hepáticas/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Animales , Tetracloruro de Carbono , Carcinoma Hepatocelular/etiología , Dieta Alta en Grasa/efectos adversos , Dietilnitrosamina , Humanos , Hígado/patología , Neoplasias Hepáticas/etiología , Enfermedad del Hígado Graso no Alcohólico/etiologíaRESUMEN
Hepatocellular carcinoma (HCC), which is the most frequent primary liver malignancy, is ranked as the sixth most common cancer and the third leading cause of cancer-related deaths worldwide, with its incidence expected to continue rising. One of the reasons is that most patients are diagnosed at an advanced stage when therapeutic options are ineffective. The development of HCC is attributed to a chronic exposition to either one or a combination of low amounts of different hepatotoxins, such as in hepatitis virus infection, alcohol consumption, aflatoxin from contaminated foods, metabolic factors, and exposure to chemical carcinogens from tobacco smoke (Forner et al., 2018). Integrative studies combining exome sequencing, transcriptome analysis, and the genomic characterization of HCC have shown that these etiological factors may raise the frequency of particular genetic alterations, resulting in intra-tumor heterogeneity that presents a huge challenge for treatment. For example, mutations in the catenin ß-1 (CTNNB1) gene (a proto-oncogene in the WNT signaling pathway that encodes the ß|-catenin transcription factor) are strongly associated with alcohol-related HCC, whereas mutations in the telomerase reverse transcriptase (TERT) promoter and tumor protein p53 (TP53) genes are the most commonly observed in hepatitis B virus (HBV)|-associated HCC (Calderaro et al., 2017; Cancer Genome Atlas Research Network, 2017). The above findings emphasize the molecular diversity of HCC and the associations of different etiologies with distinct mechanisms in HCC progression. Consequently, prevention strategies are still attractive for HCC management.
Asunto(s)
Neoplasias Hepáticas Experimentales/prevención & control , Tenebrio , Animales , Dietilnitrosamina , Antígeno Ki-67/análisis , Larva , Neoplasias Hepáticas Experimentales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Pupa , beta Catenina/análisis , beta Catenina/genéticaRESUMEN
Chronic liver injury promotes the molecular alterations that precede the establishment of cancer. Usually, several decades of chronic insults are needed to develop the most common primary liver tumor known as hepatocellular carcinoma. As other cancer types, liver cancer cells are governed by a common set of rules collectively called the hallmarks of cancer. Although those rules have provided a conceptual framework for understanding the complex pathophysiology of established tumors, therapeutic options are still ineffective in advanced stages. Thus, the molecular alterations that precede the establishment of cancer remain an attractive target for therapeutic interventions. Here, we first summarize the chemopreventive interventions targeting the early liver carcinogenesis stages. After an integrative analysis on the plethora of molecular alterations regulated by anticancer agents, we then underline and discuss that two critical processes namely oxidative stress and genetic alterations, play the role of 'dirty work laborer' in the initial cell damage and drive the transformation of preneoplastic into neoplastic cells, respectively; besides, the activation of cellular senescence works as a key mechanism in attempting to prevent the onset and establishment of liver cancer. Whereas the detrimental effects of the binomial made up of oxidative stress and genetic alterations are either eliminated or reduced, senescence activation is promoted by anticancer agents. We argue that collectively, oxidative stress, genetic alterations, and senescence are key events that influence the fate of initiated cells and the establishment of the hallmarks of cancer.