Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
1.
Eur J Radiol ; 181: 111728, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39276400

RESUMEN

PURPOSE: To explore the potential differences in epicardial adipose tissue (EAT) volume and attenuation measurements between photon-counting detector (PCD) and energy-integrating detector (EID)-CT systems. METHODS: Fifty patients (mean age 69 ± 8 years, 41 male [82 %]) were prospectively enrolled for a research coronary CT angiography (CCTA) on a PCD-CT within 30 days after clinical EID-based CCTA. EID-CT acquisitions were reconstructed using a Bv40 kernel at 0.6 mm slice thickness. The PCD-CT acquisition was reconstructed at a down-sampled resolution (0.6 mm, Bv40; [PCD-DS]) and at ultra-high resolutions (PCD-UHR) with a 0.2 mm slice thickness and Bv40, Bv48, and Bv64 kernels. EAT segmentation was performed semi-automatically at about 1 cm intervals and interpolated to cover the whole epicardium within a threshold of -190 to -30 HU. A subgroup analysis was performed based on quartile groups created from EID-CT data and PCD-UHRBv48 data. Differences were measured using repeated-measures ANOVA and the Friedman test. Correlations were tested using Pearson's and Spearman's rho, and agreement using Bland-Altman plots. RESULTS: EAT volumes significantly differed between some reconstructions (e.g. EID-CT: 138 ml [IQR 100, 188]; PCD-DS: 147 ml [110, 206]; P<0.001). Overall, correlations between PCD-UHR and EID-CT EAT volumes were excellent, e.g. PCD-UHRBv48: r: 0.976 (95 % CI: 0.958, 0.987); P<0.001; with good agreement (mean bias: -9.5 ml; limits of agreement [LoA]: -40.6, 21.6). On the other hand, correlations regarding EAT attenuation was moderate, e.g. PCD-UHRBV48: r: 0.655 (95 % CI: 0.461, 0.790); P<0.001; mean bias: 6.5 HU; LoA: -2.0, 15.0. CONCLUSION: EAT attenuation and volume measurements demonstrated different absolute values between PCD-UHR, PCD-DS as well as EID-CT reconstructions, but showed similar tendencies on an intra-individual level. New protocols and threshold ranges need to be developed to allow comparison between PCD-CT and EID-CT data.

2.
Eur Radiol Exp ; 8(1): 101, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39196286

RESUMEN

BACKGROUND: Radiomics is not yet used in clinical practice due to concerns regarding its susceptibility to technical factors. We aimed to assess the stability and interscan and interreader reproducibility of myocardial radiomic features between energy-integrating detector computed tomography (EID-CT) and photon-counting detector CT (PCD-CT) in patients undergoing coronary CT angiography (CCTA) on both systems. METHODS: Consecutive patients undergoing clinically indicated CCTA on an EID-CT were prospectively enrolled for a PCD-CT CCTA within 30 days. Virtual monoenergetic images (VMI) at various keV levels and polychromatic images (T3D) were generated for PCD-CT, with image reconstruction parameters standardized between scans. Two readers performed myocardial segmentation and 110 radiomic features were compared intraindividually between EID-CT and PDC-CT series. The agreement of parameters was assessed using the intraclass correlation coefficient and paired t-test for the stability of the parameters. RESULTS: Eighteen patients (15 males) aged 67.6 ± 9.7 years (mean ± standard deviation) were included. Besides polychromatic PCD-CT reconstructions, 60- and 70-keV VMIs showed the highest feature stability compared to EID-CT (96%, 90%, and 92%, respectively). The interscan reproducibility of features was moderate even in the most favorable comparisons (median ICC 0.50 [interquartile range 0.20-0.60] for T3D; 0.56 [0.33-0.74] for 60 keV; 0.50 [0.36-0.62] for 70 keV). Interreader reproducibility was excellent for the PCD-CT series and good for EID-CT segmentations. CONCLUSION: Most myocardial radiomic features remain stable between EID-CT and PCD-CT. While features demonstrated moderate reproducibility between scanners, technological advances associated with PCD-CT may lead to greater reproducibility, potentially expediting future standardization efforts. RELEVANCE STATEMENT: While the use of PCD-CT may facilitate reduced interreader variability in radiomics analysis, the observed interscanner variations in comparison to EID-CT should be taken into account in future research, with efforts being made to minimize their impact in future radiomics studies. KEY POINTS: Most myocardial radiomic features resulted in being stable between EID-CT and PCD-CT on certain VMIs. The reproducibility of parameters between detector technologies was limited. PCD-CT improved interreader reproducibility of myocardial radiomic features.


Asunto(s)
Angiografía por Tomografía Computarizada , Humanos , Masculino , Femenino , Anciano , Reproducibilidad de los Resultados , Angiografía por Tomografía Computarizada/métodos , Estudios Prospectivos , Fotones , Angiografía Coronaria/métodos , Persona de Mediana Edad , Radiómica
3.
Eur Radiol Exp ; 8(1): 102, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39207565

RESUMEN

BACKGROUND: We compared ultra-high resolution (UHR), standard resolution (SR), and virtual non-calcium (VNCa) reconstruction for coronary artery stenosis evaluation using photon-counting computed tomography (PC-CT). METHODS: One vessel phantom (4-mm diameter) containing solid calcified lesions with 25% and 50% stenoses inside a thorax phantom with motion simulation underwent PC-CT using UHR (0.2-mm slice thickness) and SR (0.6-mm slice thickness) at heart rates of 60 beats per minute (bpm), 80 bpm, and 100 bpm. A paired t-test or Wilcoxon test with Bonferroni correction was used. RESULTS: For 50% stenosis, differences in percent mean diameter stenosis between UHR and SR at 60 bpm (51.0 vs 60.3), 80 bpm (51.7 vs 59.6), and 100 bpm (53.7 vs 59.0) (p ≤ 0.011), as well as between VNCa and SR at 60 bpm (50.6 vs 60.3), 80 bpm (51.5 vs 59.6), and 100 bpm (53.7 vs 59.0) were significant (p ≤ 0.011), while differences between UHR and VNCa at all heart rates (p ≥ 0.327) were not significant. For 25% stenosis, differences between UHR and SR at 60 bpm (28.0 vs 33.7), 80 bpm (28.4 vs 34.3), and VNCa vs SR at 60 bpm (29.1 vs 33.7) were significant (p ≤ 0.015), while differences for UHR vs SR at 100 bpm (29.9 vs 34.0), as well as for VNCa vs SR at 80 bpm (30.7 vs 34.3) and 100 bpm (33.1 vs 34.0) were not significant (p ≥ 0.028). CONCLUSION: Stenosis quantification accuracy with PC-CT improved using either UHR acquisition or VNCa reconstruction. RELEVANCE STATEMENT: PC-CT offers to scan with UHR mode and the reconstruction of VNCa images both of them could provide improved coronary stenosis quantification at increased heart rates, allowing a more accurate stenosis grading at low and high heart rates compared to SR. KEY POINTS: Evaluation of coronary stenosis with conventional CT is challenging at high heart rates. PC-CT allows for scanning with ECG-gated UHR and SR modes. UHR and VNCa images were compared in a dynamic phantom. UHR improves stenosis quantification up to 100 bpm. VNCa reconstruction improves stenosis evaluation up to 80 bpm.


Asunto(s)
Algoritmos , Estenosis Coronaria , Fantasmas de Imagen , Tomografía Computarizada por Rayos X , Estenosis Coronaria/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Humanos , Fotones , Procesamiento de Imagen Asistido por Computador/métodos
4.
Eur Radiol Exp ; 8(1): 89, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090380

RESUMEN

BACKGROUND: Lower extremity peripheral artery disease frequently presents with calcifications which reduces the accuracy of computed tomography (CT) angiography, especially below-the-knee. Photon-counting detector (PCD)-CT offers improved spatial resolution and less calcium blooming. We aimed to identify the optimal reconstruction parameters for PCD-CT angiography of the lower legs. METHODS: Tubes with different diameters (1-5 mm) were filled with different iodine concentrations and scanned in a water container. Images were reconstructed with 0.4 mm isotropic resolution using a quantitative kernel at all available sharpness levels (Qr36 to Qr76) and using different levels of quantum iterative reconstruction (QIR-2-4). Noise and image sharpness were determined for all reconstructions. Additionally, CT angiograms of 20 patients, reconstructed with a medium (Qr44), sharp (Qr60), and ultrasharp (Qr72) kernel at QIR-2-4, were evaluated by three readers assessing noise, delineation of plaques and vessel walls, and overall quality. RESULTS: In the phantom study, increased kernel sharpness led to higher image noise (e.g., 16, 38, 77 HU for Qr44, Qr60, Qr72, and QIR-3). Image sharpness increased with increasing kernel sharpness, reaching a plateau at the medium-high level 60. Higher QIR levels decreased image noise (e.g., 51, 38, 25 HU at QIR-2-4 and Qr60) without reducing vessel sharpness. The qualitative in vivo results confirmed these findings: the sharp kernel (Qr60) with the highest QIR yielded the best overall quality. CONCLUSION: The combination of a sharpness level optimized reconstruction kernel (Qr60) and the highest QIR level yield the best image quality for PCD-CT angiography of the lower legs when reconstructed at 0.4-mm resolution. RELEVANCE STATEMENT: Using high-resolution PCD-CT angiography with optimized reconstruction parameters might improve diagnostic accuracy and confidence in peripheral artery disease of the lower legs. KEY POINTS: Effective exploitation of the potential of PCD-CT angiography requires optimized reconstruction parameters. Too soft or too sharp reconstruction kernels reduce image quality. The highest level of quantum iterative reconstruction provides the best image quality.


Asunto(s)
Angiografía por Tomografía Computarizada , Fantasmas de Imagen , Fotones , Angiografía por Tomografía Computarizada/métodos , Humanos , Enfermedad Arterial Periférica/diagnóstico por imagen , Extremidad Inferior/diagnóstico por imagen , Extremidad Inferior/irrigación sanguínea , Masculino , Pierna/diagnóstico por imagen , Pierna/irrigación sanguínea , Femenino , Anciano , Persona de Mediana Edad
5.
Radiol Cardiothorac Imaging ; 6(4): e230328, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39023373

RESUMEN

Purpose To investigate the impact of plaque size and density on virtual noncontrast (VNC)-based coronary artery calcium scoring (CACS) using photon-counting detector CT and to provide safety net reconstructions for improved detection of subtle plaques in patients whose VNC-based CACS would otherwise be erroneously zero when compared with true noncontrast (TNC)-based CACS. Materials and Methods In this prospective study, CACS was evaluated in a phantom containing calcifications with different diameters (5, 3, and 1 mm) and densities (800, 400, and 200 mg/cm3) and in participants who underwent TNC and contrast-enhanced cardiac photon-counting detector CT (July 2021-March 2022). VNC images were reconstructed at different virtual monoenergetic imaging (55-80 keV) and quantum iterative reconstruction (QIR) levels (QIR,1-4). TNC scans at 70 keV with QIR off served as the reference standard. In vitro CACS was analyzed using standard settings (3.0-mm sections, kernel Qr36, 130-HU threshold). Calcification detectability and CACS of small and low-density plaques were also evaluated using 1.0-mm sections, kernel Qr44, and 120- or 110-HU thresholds. Safety net reconstructions were defined based on background Agatston scores and evaluated in vivo in TNC plaques initially nondetectable using standard VNC reconstructions. Results The in vivo cohort included 63 participants (57.8 years ± 15.5 [SD]; 37 [59%] male, 26 [41%] female). Correlation and agreement between standard CACSVNC and CACSTNC were higher in large- and medium-sized and high- and medium-density than in low-density plaques (in vitro: intraclass correlation coefficient [ICC] ≥ 0.90; r > 0.9 vs ICC = 0.20-0.48; r = 0.5-0.6). Small plaques were not detectable using standard VNC reconstructions. Calcification detectability was highest using 1.0-mm sections, kernel Qr44, 120- and 110-HU thresholds, and QIR level of 2 or less VNC reconstructions. Compared with standard VNC, using safety net reconstructions (55 keV, QIR 2, 110-HU threshold) for in vivo subtle plaque detection led to higher detection (increased by 89% [50 of 56]) and improved correlation and agreement of CACSVNC with CACSTNC (in vivo: ICC = 0.51-0.61; r = 0.6). Conclusion Compared with TNC-based calcium scoring, VNC-based calcium scoring was limited for small and low-density plaques but improved using safety net reconstructions, which may be particularly useful in patients with low calcium scores who would otherwise be treated based on potentially false-negative results. Keywords: Coronary Artery Calcium CT, Photon-Counting Detector CT, Virtual Noncontrast, Plaque Size, Plaque Density Supplemental material is available for this article. © RSNA, 2024.


Asunto(s)
Enfermedad de la Arteria Coronaria , Fantasmas de Imagen , Placa Aterosclerótica , Humanos , Masculino , Femenino , Estudios Prospectivos , Placa Aterosclerótica/diagnóstico por imagen , Placa Aterosclerótica/patología , Persona de Mediana Edad , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/patología , Anciano , Fotones , Vasos Coronarios/diagnóstico por imagen , Vasos Coronarios/patología , Calcificación Vascular/diagnóstico por imagen , Calcificación Vascular/patología , Tomografía Computarizada por Rayos X/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Angiografía Coronaria/métodos , Medios de Contraste
7.
Eur Radiol Exp ; 8(1): 70, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38890175

RESUMEN

BACKGROUND: The potential role of cardiac computed tomography (CT) has increasingly been demonstrated for the assessment of diffuse myocardial fibrosis through the quantification of extracellular volume (ECV). Photon-counting detector (PCD)-CT technology may deliver more accurate ECV quantification compared to energy-integrating detector CT. We evaluated the impact of reconstruction settings on the accuracy of ECV quantification using PCD-CT, with magnetic resonance imaging (MRI)-based ECV as reference. METHODS: In this post hoc analysis, 27 patients (aged 53.1 ± 17.2 years (mean ± standard deviation); 14 women) underwent same-day cardiac PCD-CT and MRI. Late iodine CT scans were reconstructed with different quantum iterative reconstruction levels (QIR 1-4), slice thicknesses (0.4-8 mm), and virtual monoenergetic imaging levels (VMI, 40-90 keV); ECV was quantified for each reconstruction setting. Repeated measures ANOVA and t-test for pairwise comparisons, Bland-Altman plots, and Lin's concordance correlation coefficient (CCC) were used. RESULTS: ECV values did not differ significantly among QIR levels (p = 1.000). A significant difference was observed throughout different slice thicknesses, with 0.4 mm yielding the highest agreement with MRI-based ECV (CCC = 0.944); 45-keV VMI reconstructions showed the lowest mean bias (0.6, 95% confidence interval 0.1-1.4) compared to MRI. Using the most optimal reconstruction settings (QIR4. slice thickness 0.4 mm, VMI 45 keV), a 63% reduction in mean bias and a 6% increase in concordance with MRI-based ECV were achieved compared to standard settings (QIR3, slice thickness 1.5 mm; VMI 65 keV). CONCLUSIONS: The selection of appropriate reconstruction parameters improved the agreement between PCD-CT and MRI-based ECV. RELEVANCE STATEMENT: Tailoring PCD-CT reconstruction parameters optimizes ECV quantification compared to MRI, potentially improving its clinical utility. KEY POINTS: • CT is increasingly promising for myocardial tissue characterization, assessing focal and diffuse fibrosis via late iodine enhancement and ECV quantification, respectively. • PCD-CT offers superior performance over conventional CT, potentially improving ECV quantification and its agreement with MRI-based ECV. • Tailoring PCD-CT reconstruction parameters optimizes ECV quantification compared to MRI, potentially improving its clinical utility.


Asunto(s)
Imagen por Resonancia Magnética , Miocardio , Tomografía Computarizada por Rayos X , Humanos , Femenino , Persona de Mediana Edad , Masculino , Tomografía Computarizada por Rayos X/métodos , Imagen por Resonancia Magnética/métodos , Miocardio/patología , Anciano , Fotones , Adulto , Procesamiento de Imagen Asistido por Computador/métodos , Corazón/diagnóstico por imagen
8.
Diagnostics (Basel) ; 14(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38732280

RESUMEN

This study evaluated a deep neural network (DNN) algorithm for automated aortic diameter quantification and aortic dissection detection in chest computed tomography (CT). A total of 100 patients (median age: 67.0 [interquartile range 55.3/73.0] years; 60.0% male) with aortic aneurysm who underwent non-enhanced and contrast-enhanced electrocardiogram-gated chest CT were evaluated. All the DNN measurements were compared to manual assessment, overall and between the following subgroups: (1) ascending (AA) vs. descending aorta (DA); (2) non-obese vs. obese; (3) without vs. with aortic repair; (4) without vs. with aortic dissection. Furthermore, the presence of aortic dissection was determined (yes/no decision). The automated and manual diameters differed significantly (p < 0.05) but showed excellent correlation and agreement (r = 0.89; ICC = 0.94). The automated and manual values were similar in the AA group but significantly different in the DA group (p < 0.05), similar in obese but significantly different in non-obese patients (p < 0.05) and similar in patients without aortic repair or dissection but significantly different in cases with such pathological conditions (p < 0.05). However, in all the subgroups, the automated diameters showed strong correlation and agreement with the manual values (r > 0.84; ICC > 0.9). The accuracy, sensitivity and specificity of DNN-based aortic dissection detection were 92.1%, 88.1% and 95.7%, respectively. This DNN-based algorithm enabled accurate quantification of the largest aortic diameter and detection of aortic dissection in a heterogenous patient population with various aortic pathologies. This has the potential to enhance radiologists' efficiency in clinical practice.

9.
Acad Radiol ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38734579

RESUMEN

RATIONALE AND OBJECTIVES: Coronary CT angiography (CCTA) has recently been established as a first-line test in patients with suspected coronary artery disease (CAD). Due to the increased use of CCTA, strategies to reduce radiation and contrast medium (CM) exposure are of high importance. The aim of this study was to evaluate the performance of automated tube voltage selection (ATVS)-adapted CM injection protocol for CCTA compared to a clinically established triphasic injection protocol in terms of image quality, radiation exposure, and CM administration MATERIAL AND METHODS: Patients undergoing clinically indicated CCTA were prospectively enrolled from July 2021 to July 2023. Patients underwent CCTA using a modified triphasic CM injection protocol tailored to the tube voltage by the ATVS algorithm, in a range of 70 to 130 kV with a 10 kV interval. The injection protocol consisted of two phases of mixed CM and saline boluses with different proportions to assure a voltage-specific iodine delivery rate, followed by a third phase of saline flush. This cohort was compared to a control group identified retrospectively and scanned on the same CT system but with a standard triphasic CM protocol. Radiation and contrast dose, subjective and objective image quality (contrast-to-noise-ratio [CNR] and signal-to-noise-ratio [SNR]) were compared between the two groups. RESULTS: The final population consisted of 120 prospective patients matched with 120 retrospective controls, with 20 patients in each kV group. The 120 kV group was excluded from the statistical analysis due to insufficient sample size. A significant CM reduction was achieved in the prospective group overall (46.0 [IQR 37.0-52.0] vs. 51.3 [IQR 40.1-73.0] mL, p < 0.001) and at all kV levels too (all pairwise p < 0.001). There were no significant differences in radiation dose (6.13 ± 4.88 vs. 5.97 ± 5.51 mSv, p = 0.81), subjective image quality (median score of 4 [3-5] vs. 4 [3-5], p = 0.40), CNR, and SNR in the aorta and the left anterior descending coronary artery (all p > 0.05). CONCLUSION: ATVS-adapted CM injection protocol allows for diagnostic quality CCTA with reduced CM volume while maintaining similar radiation exposure, subjective and objective image quality.

10.
Eur J Radiol ; 176: 111517, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38805884

RESUMEN

PURPOSE: To assess the impact of different quantum iterative reconstruction (QIR) levels on objective and subjective image quality of ultra-high resolution (UHR) coronary CT angiography (CCTA) images and to determine the effect of strength levels on stenosis quantification using photon-counting detector (PCD)-CT. METHOD: A dynamic vessel phantom containing two calcified lesions (25 % and 50 % stenosis) was scanned at heart rates of 60, 80 and 100 beats per minute with a PCD-CT system. In vivo CCTA examinations were performed in 102 patients. All scans were acquired in UHR mode (slice thickness0.2 mm) and reconstructed with four different QIR levels (1-4) using a sharp vascular kernel (Bv64). Image noise, signal-to-noise ratio (SNR), sharpness, and percent diameter stenosis (PDS) were quantified in the phantom, while noise, SNR, contrast-to-noise ratio (CNR), sharpness, and subjective quality metrics (noise, sharpness, overall image quality) were assessed in patient scans. RESULTS: Increasing QIR levels resulted in significantly lower objective image noise (in vitro and in vivo: both p < 0.001), higher SNR (both p < 0.001) and CNR (both p < 0.001). Sharpness and PDS values did not differ significantly among QIRs (all pairwise p > 0.008). Subjective noise of in vivo images significantly decreased with increasing QIR levels, resulting in significantly higher image quality scores at increasing QIR levels (all pairwise p < 0.001). Qualitative sharpness, on the other hand, did not differ across different levels of QIR (p = 0.15). CONCLUSIONS: The QIR algorithm may enhance the image quality of CCTA datasets without compromising image sharpness or accurate stenosis measurements, with the most prominent benefits at the highest strength level.


Asunto(s)
Angiografía por Tomografía Computarizada , Angiografía Coronaria , Estenosis Coronaria , Fantasmas de Imagen , Fotones , Relación Señal-Ruido , Humanos , Angiografía por Tomografía Computarizada/métodos , Masculino , Femenino , Angiografía Coronaria/métodos , Estenosis Coronaria/diagnóstico por imagen , Persona de Mediana Edad , Anciano , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Reproducibilidad de los Resultados , Algoritmos
11.
J Clin Imaging Sci ; 14: 7, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38628606

RESUMEN

Objectives: To assess the range of quantitative iodine values in renal cysts (RC) (with a few renal neoplasms [RNs] as a comparison) to develop an expected range of values for RC that can be used in future studies for their differentiation. Material and Methods: Consecutive patients (n = 140) with renal lesions who had undergone abdominal examination on a clinical photon-counting computed tomography (PCCT) were retrospectively included. Automated iodine quantification maps were reconstructed, and region of interest (ROI) measurements of iodine concentration (IC) (mg/cm3) were performed on whole renal lesions. In addition, for heterogeneous lesions, a secondary ROI was placed on the area most suspicious for malignancy. The discriminatory values of minimum, maximum, mean, and standard deviation for IC were compared using simple logistic regression and receiver operating characteristic curves (area under the curve [AUC]). Results: A total of 259 renal lesions (243 RC and 16 RN) were analyzed. There were significant differences between RC and RN for all IC measures with the best-performing metrics being mean and maximum IC of the entire lesion ROI (AUC 0.912 and 0.917, respectively) but also mean and minimum IC of the most suspicious area in heterogeneous lesions (AUC 0.983 and 0.992, respectively). Most RC fell within a range of low measured iodine values although a few had higher values. Conclusion: Automated iodine quantification maps reconstructed from clinical PCCT have a high diagnostic ability to differentiate RCs and neoplasms. The data from this pilot study can be used to help establish quantitative values for clinical differentiation of renal lesions.

12.
Lancet Digit Health ; 6(4): e261-e271, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38519154

RESUMEN

BACKGROUND: Artificial intelligence (AI) models in real-world implementation are scarce. Our study aimed to develop a CT angiography (CTA)-based AI model for intracranial aneurysm detection, assess how it helps clinicians improve diagnostic performance, and validate its application in real-world clinical implementation. METHODS: We developed a deep-learning model using 16 546 head and neck CTA examination images from 14 517 patients at eight Chinese hospitals. Using an adapted, stepwise implementation and evaluation, 120 certified clinicians from 15 geographically different hospitals were recruited. Initially, the AI model was externally validated with images of 900 digital subtraction angiography-verified CTA cases (examinations) and compared with the performance of 24 clinicians who each viewed 300 of these cases (stage 1). Next, as a further external validation a multi-reader multi-case study enrolled 48 clinicians to individually review 298 digital subtraction angiography-verified CTA cases (stage 2). The clinicians reviewed each CTA examination twice (ie, with and without the AI model), separated by a 4-week washout period. Then, a randomised open-label comparison study enrolled 48 clinicians to assess the acceptance and performance of this AI model (stage 3). Finally, the model was prospectively deployed and validated in 1562 real-world clinical CTA cases. FINDINGS: The AI model in the internal dataset achieved a patient-level diagnostic sensitivity of 0·957 (95% CI 0·939-0·971) and a higher patient-level diagnostic sensitivity than clinicians (0·943 [0·921-0·961] vs 0·658 [0·644-0·672]; p<0·0001) in the external dataset. In the multi-reader multi-case study, the AI-assisted strategy improved clinicians' diagnostic performance both on a per-patient basis (the area under the receiver operating characteristic curves [AUCs]; 0·795 [0·761-0·830] without AI vs 0·878 [0·850-0·906] with AI; p<0·0001) and a per-aneurysm basis (the area under the weighted alternative free-response receiver operating characteristic curves; 0·765 [0·732-0·799] vs 0·865 [0·839-0·891]; p<0·0001). Reading time decreased with the aid of the AI model (87·5 s vs 82·7 s, p<0·0001). In the randomised open-label comparison study, clinicians in the AI-assisted group had a high acceptance of the AI model (92·6% adoption rate), and a higher AUC when compared with the control group (0·858 [95% CI 0·850-0·866] vs 0·789 [0·780-0·799]; p<0·0001). In the prospective study, the AI model had a 0·51% (8/1570) error rate due to poor-quality CTA images and recognition failure. The model had a high negative predictive value of 0·998 (0·994-1·000) and significantly improved the diagnostic performance of clinicians; AUC improved from 0·787 (95% CI 0·766-0·808) to 0·909 (0·894-0·923; p<0·0001) and patient-level sensitivity improved from 0·590 (0·511-0·666) to 0·825 (0·759-0·880; p<0·0001). INTERPRETATION: This AI model demonstrated strong clinical potential for intracranial aneurysm detection with improved clinician diagnostic performance, high acceptance, and practical implementation in real-world clinical cases. FUNDING: National Natural Science Foundation of China. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Asunto(s)
Aprendizaje Profundo , Aneurisma Intracraneal , Humanos , Aneurisma Intracraneal/diagnóstico por imagen , Angiografía por Tomografía Computarizada , Inteligencia Artificial , Estudios Prospectivos , Angiografía Cerebral/métodos
13.
Radiology ; 310(2): e231956, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38376407

RESUMEN

Background Coronary CT angiography is a first-line test in coronary artery disease but is limited by severe calcifications. Photon-counting-detector (PCD) CT improves spatial resolution. Purpose To investigate the effect of improved spatial resolution on coronary stenosis assessment and reclassification. Materials and Methods Coronary stenoses were evaluated prospectively in a vessel phantom (in vitro) containing two stenoses (25%, 50%), and retrospectively in patients (in vivo) who underwent ultrahigh-spatial-resolution cardiac PCD CT (from July 2022 to April 2023). Images were reconstructed at standard resolution (section thickness, 0.6 mm; increment, 0.4 mm; Bv44 kernel), high spatial resolution (section thickness, 0.4 mm; increment, 0.2 mm; Bv44 kernel), and ultrahigh spatial resolution (section thickness, 0.2; increment, 0.1 mm; Bv64 kernel). Percentages of diameter stenosis (DS) were compared between reconstructions. In vitro values were compared with the manufacturer specifications of the phantom and patient results were assessed regarding effects on Coronary Artery Disease Reporting and Data System (CAD-RADS) reclassification. Results The in vivo sample included 114 patients (mean age, 68 years ± 9 [SD]; 71 male patients). In vitro percentage DS measurements were more accurate with increasing spatial resolution for both 25% and 50% stenoses (mean bias for standard resolution, high spatial resolution, and ultrahigh spatial resolution, respectively: 10.1%, 8.0%, and 2.3%; P < .001). In vivo results confirmed decreasing median percentage DS with increasing spatial resolution for calcified stenoses (n = 161) (standard resolution, high spatial resolution, and ultrahigh spatial resolution, respectively: 41.5% [IQR, 27.3%-58.2%], 34.8% [IQR, 23.7%-55.1%], and 26.7% [IQR, 18.6%-44.3%]; P < .001), whereas noncalcified (n = 13) and mixed plaques (n = 19) did not show evidence of a difference (P ≥ .88). Ultrahigh-spatial-resolution reconstructions led to reclassification of 62 of 114 (54.4%) patients to lower CAD-RADS category than that assigned using standard resolution. Conclusion In vivo and in vitro coronary stenosis assessment improved for calcified stenoses by using ultrahigh-spatial-resolution PCD CT reconstructions, leading to lower percentage DS compared with standard resolution and clinically relevant rates of reclassification. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by McCollough in this issue.


Asunto(s)
Enfermedad de la Arteria Coronaria , Estenosis Coronaria , Humanos , Masculino , Anciano , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Constricción Patológica , Angiografía por Tomografía Computarizada , Estudios Retrospectivos , Estenosis Coronaria/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Angiografía Coronaria
14.
AJR Am J Roentgenol ; 222(3): e2330481, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38197760

RESUMEN

BACKGROUND. Calcium blooming causes stenosis overestimation on coronary CTA. OBJECTIVE. The purpose of this article was to evaluate the impact of virtual monoenergetic imaging (VMI) reconstruction level on coronary artery stenosis quantification using photon-counting detector (PCD) CT. METHODS. A phantom containing two custom-made vessels (representing 25% and 50% stenosis) underwent PCD CT acquisitions without and with simulated cardiac motion. A retrospective analysis was performed of 33 patients (seven women, 26 men; mean age, 71.3 ± 9.0 [SD] years; 64 coronary artery stenoses) who underwent coronary CTA by PCD CT followed by invasive coronary angiography (ICA). Scans were reconstructed at nine VMI energy levels (40-140 keV). Percentage diameter stenosis (PDS) was measured, and bias was determined from the ground-truth stenosis percentage in the phantom and ICA-derived quantitative coronary angiography measurements in patients. Extent of blooming artifact was measured in the phantom and in calcified and mixed plaques in patients. RESULTS. In the phantom, PDS decreased for 25% stenosis from 59.9% (40 keV) to 13.4% (140 keV) and for 50% stenosis from 81.6% (40 keV) to 42.3% (140 keV). PDS showed lowest bias for 25% stenosis at 90 keV (bias, 1.4%) and for 50% stenosis at 100 keV (bias, -0.4%). Blooming artifacts decreased for 25% stenosis from 61.5% (40 keV) to 35.4% (140 keV) and for 50% stenosis from 82.7% (40 keV) to 52.1% (140 keV). In patients, PDS for calcified plaque decreased from 70.8% (40 keV) to 57.3% (140 keV), for mixed plaque decreased from 69.8% (40 keV) to 56.3% (140 keV), and for noncalcified plaque was 46.6% at 40 keV and 54.6% at 140 keV. PDS showed lowest bias for calcified plaque at 100 keV (bias, 17.2%), for mixed plaque at 140 keV (bias, 5.0%), and for noncalcified plaque at 40 keV (bias, -0.5%). Blooming artifacts decreased for calcified plaque from 78.4% (40 keV) to 48.6% (140 keV) and for mixed plaque from 73.1% (40 keV) to 44.7% (140 keV). CONCLUSION. For calcified and mixed plaque, stenosis severity measurements and blooming artifacts decreased at increasing VMI reconstruction levels. CLINICAL IMPACT. PCD CT with VMI reconstruction helps overcome current limitations in stenosis quantification on coronary CTA.


Asunto(s)
Estenosis Coronaria , Placa Aterosclerótica , Masculino , Humanos , Femenino , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Angiografía por Tomografía Computarizada/métodos , Estudios Retrospectivos , Constricción Patológica , Tomografía Computarizada por Rayos X/métodos , Estenosis Coronaria/diagnóstico por imagen
15.
Eur Radiol ; 34(3): 1692-1703, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37658887

RESUMEN

OBJECTIVES: 2D real-time (RT) phase-contrast (PC) MRI is a promising alternative to conventional PC MRI, which overcomes problems due to irregular heartbeats or poor respiratory control. This study aims to evaluate a prototype compressed sensing (CS)-accelerated 2D RT-PC MRI technique with shared velocity encoding (SVE) for accurate beat-to-beat flow measurements. METHODS: The CS RT-PC technique was implemented using a single-shot fast RF-spoiled gradient echo with SVE by symmetric velocity encoding, and acquired with a temporal resolution of 51-56.5 ms in 1-5 heartbeats. Both aortic dissection phantom (n = 8) and volunteer (n = 7) studies were conducted using the prototype CS RT (CS, R = 8), the conventional (GRAPPA, R = 2), and the fully sampled PC sequences on a 3T clinical system. Flow parameters including peak velocity, peak flow rate, net flow rate, and maximum velocity were calculated to compare the performance between different methods using linear regression, intraclass correlation (ICC), and Bland-Altman analyses. RESULTS: Comparisons of the flow measurements at all locations in the phantoms demonstrated an excellent correlation (all R2 ≥ 0.93) and agreement (all ICC ≥ 0.97) with negligible means of differences. In healthy volunteers, a similarly good correlation (all R2 ≥ 0.80) and agreement (all ICC ≥ 0.90) were observed; however, CS RT slightly underestimated the maximum velocities and flow rates (~ 12%). CONCLUSION: The highly accelerated CS RT-PC technique is feasible for the evaluation of flow patterns without requiring breath-holding, and it allows for rapid flow assessment in patients with arrhythmia or poor breath-hold capacity. CLINICAL RELEVANCE STATEMENT: The free-breathing real-time flow MRI technique offers improved spatial and temporal resolutions, as well as the ability to image individual cardiac cycles, resulting in superior image quality compared to the conventional PC technique when imaging patients with arrhythmias, especially those with atrial fibrillation. KEY POINTS: • The highly accelerated prototype CS RT-PC MRI technique with improved temporal resolution by the concept of SVE is feasible for beat-to-beat flow evaluation without requiring breath-holding. • The results of the phantom and in vivo quantitative flow evaluation show the ability of the prototype CS RT-PC technique to obtain reliable flow measurements similarly to the conventional PC MRI. • With less than 12% underestimation, excellent agreements between the two techniques were shown for the measurements of peak velocities and flow rates.


Asunto(s)
Fibrilación Atrial , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Velocidad del Flujo Sanguíneo , Reproducibilidad de los Resultados
16.
J Cardiovasc Comput Tomogr ; 18(1): 18-25, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37867127

RESUMEN

BACKGROUND: Coronary low-attenuation plaque (LAP) burden is a strong predictor of myocardial infarction in patients with stable chest pain. We aimed to assess the relationship between LAP burden and circulating levels of high-sensitivity cardiac troponin T (hs-cTnT), and to explore the potential underlying etiology in patients undergoing clinically indicated coronary CT angiography (CCTA). METHODS: A comprehensive metabolic and lipid panel, as well as C-reactive protein (CRP) and hs-cTnT tests were obtained from consecutive patients with stable chest pain at the time of CCTA. Qualitative and quantitative coronary plaque analysis, CT-derived fractional flow reserve (FFR) calculation, and pericoronary adipose tissue (PCAT) attenuation measurement around the right coronary artery were performed on CCTA images. Linear regression analyses were performed to identify independent associations with hs-cTnT concentration and mediation analysis was used to assess whether ischemia or markers of inflammation mediate hs-cTnT elevation. RESULTS: In total, 114 patients (56.3 â€‹± â€‹10.6 years, 44.7 â€‹% female) were enrolled. In multivariable analysis, age (ߠ​= â€‹0.04 [95%CI: 0.02; 0.06], p â€‹< â€‹0.001), female sex (ߠ​= â€‹-0.77 [95%CI: -1.20; 0.33], p â€‹< â€‹0.001), and LAP burden (ߠ​= â€‹0.03 [95%CI: 0.001; 0.06], p â€‹= â€‹0.04) were independently associated with hs-cTnT levels. Mediation analysis, on the other hand, did not identify a significant mediating effect of lesion-specific ischemia based on CT-FFR, circulating CRP levels, or PCAT values between LAP burden and hs-cTnT levels (all p â€‹> â€‹0.05). CONCLUSION: Although ischemia and inflammation have previously been proposed to mediate the association between LAP burden and hs-cTnT levels, our results did not confirm the role of these pathophysiological pathways in patients with stable chest pain.


Asunto(s)
Enfermedad de la Arteria Coronaria , Reserva del Flujo Fraccional Miocárdico , Infarto del Miocardio , Placa Aterosclerótica , Humanos , Femenino , Masculino , Troponina , Análisis de Mediación , Biomarcadores , Valor Predictivo de las Pruebas , Angiografía Coronaria/métodos , Dolor en el Pecho , Angiografía por Tomografía Computarizada/métodos , Troponina T , Síndrome , Inflamación , Enfermedad de la Arteria Coronaria/diagnóstico por imagen
17.
J Thorac Imaging ; 39(2): 93-100, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37889562

RESUMEN

PURPOSE: To evaluate a novel deep learning (DL)-based automated coronary labeling approach for structured reporting of coronary artery disease according to the guidelines of the Society of Cardiovascular Computed Tomography (CT) on coronary CT angiography (CCTA). PATIENTS AND METHODS: A retrospective cohort of 104 patients (60.3 ± 10.7 y, 61% males) who had undergone prospectively electrocardiogram-synchronized CCTA were included. Coronary centerlines were automatically extracted, labeled, and validated by 2 expert readers according to Society of Cardiovascular CT guidelines. The DL algorithm was trained on 706 radiologist-annotated cases for the task of automatically labeling coronary artery centerlines. The architecture leverages tree-structured long short-term memory recurrent neural networks to capture the full topological information of the coronary trees by using a two-step approach: a bottom-up encoding step, followed by a top-down decoding step. The first module encodes each sub-tree into fixed-sized vector representations. The decoding module then selectively attends to the aggregated global context to perform the local assignation of labels. To assess the performance of the software, percentage overlap was calculated between the labels of the algorithm and the expert readers. RESULTS: A total number of 1491 segments were identified. The artificial intelligence-based software approach yielded an average overlap of 94.4% compared with the expert readers' labels ranging from 87.1% for the posterior descending artery of the right coronary artery to 100% for the proximal segment of the right coronary artery. The average computational time was 0.5 seconds per case. The interreader overlap was 96.6%. CONCLUSIONS: The presented fully automated DL-based coronary artery labeling algorithm provides fast and precise labeling of the coronary artery segments bearing the potential to improve automated structured reporting for CCTA.


Asunto(s)
Enfermedad de la Arteria Coronaria , Estenosis Coronaria , Aprendizaje Profundo , Masculino , Humanos , Femenino , Angiografía por Tomografía Computarizada/métodos , Inteligencia Artificial , Estudios Retrospectivos , Angiografía Coronaria/métodos , Tomografía Computarizada por Rayos X/métodos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen
18.
J Thorac Imaging ; 39(2): 127-135, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37982533

RESUMEN

BACKGROUND: Cardiac magnetic resonance imaging protocols have been adapted to fit the needs for faster, more efficient acquisitions, resulting in the development of highly accelerated, compressed sensing-based (CS) sequences. The aim of this study was to evaluate intersoftware and interacquisition differences for postprocessing software applied to both CS and conventional cine sequences. MATERIALS AND METHODS: A total of 106 individuals (66 healthy volunteers, 40 patients with dilated cardiomyopathy, 51% female, 38±17 y) underwent cardiac magnetic resonance at 3T with retrospectively gated conventional cine and CS sequences. Postprocessing was performed using 2 commercially available software solutions and 1 research prototype from 3 different developers. The agreement of clinical and feature-tracking strain parameters between software solutions and acquisition types was assessed by Bland-Altmann analyses and intraclass correlation coefficients. Differences between softwares and acquisitions were assessed using Kruskal-Wallis analysis of variances. In addition, receiver operating characteristic curve-derived cutoffs were used to evaluate whether sequence-specific cutoffs influence disease classification. RESULTS: There were significant intersoftware ( P <0.002 for all except LV end-diastolic volume per body surface area) and interacquisition differences ( P <0.02 for all except end-diastolic volume per body surface area from Neosoft, left ventricular mass per body surface area from cvi42 and TrufiStrain and global circumferential strain from Neosoft). However, the intraclass correlation coefficients between acquisitions were strong-to-excellent for all parameters (all ≥0.81). In comparing individual softwares to a pooled mean, Bland-Altmann analyses revealed smaller magnitudes of bias for cine acquisition than for CS acquisition. In addition, the application of conventional cutoffs to CS measurements did not result in the false reclassification of patients. CONCLUSION: Significantly lower magnitudes of strain and volumetric parameters were observed in retrospectively gated CS acquisitions, despite strong-to-excellent agreement amongst software solutions and acquisition types. It remains important to be aware of the acquisition type in the context of follow-up examinations, where different cutoffs might lead to misclassifications.


Asunto(s)
Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Cinemagnética , Humanos , Femenino , Masculino , Estudios Retrospectivos , Imagen por Resonancia Cinemagnética/métodos , Interpretación de Imagen Asistida por Computador/métodos , Reproducibilidad de los Resultados , Ventrículos Cardíacos , Función Ventricular Izquierda
19.
J Cardiovasc Comput Tomogr ; 18(1): 69-74, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38097408

RESUMEN

BACKGROUND: We sought to compare the degree of maximal stenosis and the rate of invasive coronary angiography (ICA) recommendations in patients who underwent coronary CT angiography (CCTA) with photon-counting detector CT (PCD-CT) versus those who underwent CCTA with whole heart coverage energy-integrating detector CT (EID-CT). METHODS: In our retrospective single-center study, we included consecutive patients with suspected CAD who underwent CCTA performed with either PCD-CT or a 280-slice EID-CT. The degree of coronary stenosis was classified as no CAD, minimal (1-24 â€‹%), mild (25-49 â€‹%), moderate (50-69 â€‹%), severe stenosis (70-99 â€‹%), or occlusion. RESULTS: A total of 812 consecutive patients were included in the analysis, 401 patients scanned with EID-CT and 411 patients with PCD-CT (mean age: 58.4 â€‹± â€‹12.4 years, 45.4 â€‹% female). Despite the higher total coronary artery calcium score (CACS) in the PCD-CT group (10 [interquartile range (IQR) â€‹= â€‹0-152.8] vs 1 [IQR â€‹= â€‹0-94], p â€‹< â€‹0.001), obstructive CAD was more frequently reported in the EID-CT vs PCD-CT group (no CAD: 28.7 â€‹% vs 26.0 â€‹%, minimal: 23.2 â€‹% vs 30.9 â€‹%, mild: 19.7 â€‹% vs 23.4 â€‹%, moderate: 14.5 â€‹% vs 9.7 â€‹%, severe: 11.5 â€‹% vs 8.5 â€‹% and occlusion: 2.5 â€‹% vs 1.5 â€‹%, respectively, p â€‹= â€‹0.025). EID-CT was independently associated with downstream ICA (OR â€‹= â€‹2.76 [95%CI â€‹= â€‹1.58-4.97] p â€‹< â€‹0.001) in the overall patient population, in patients with CACS<400 (OR â€‹= â€‹2.18 [95%CI â€‹= â€‹1.13-4.39] p â€‹= â€‹0.024) and in patients with CACS≥400 (OR â€‹= â€‹3.83 [95%CI â€‹= â€‹1.42-11.05] p â€‹= â€‹0.010). CONCLUSION: In patients who underwent CCTA with PCD-CT the number of subsequent ICAs was lower as compared to patients who were scanned with EID-CT. This difference was greater in patients with extensive coronary calcification.


Asunto(s)
Angiografía por Tomografía Computarizada , Tomografía Computarizada por Rayos X , Humanos , Femenino , Persona de Mediana Edad , Anciano , Masculino , Angiografía Coronaria , Estudios Retrospectivos , Constricción Patológica , Estudios Prospectivos , Valor Predictivo de las Pruebas , Derivación y Consulta , Fantasmas de Imagen
20.
Int J Cardiol ; 399: 131684, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38151162

RESUMEN

BACKGROUND: Coronary computed tomography angiography (CCTA)-based fractional flow reserve (CT-FFR) allows for noninvasive determination of the functional severity of anatomic lesions in patients with coronary artery disease. The aim of this study was to intra-individually compare CT-FFR between photon-counting detector (PCD) and conventional energy-integrating detector (EID) CT systems. METHODS: In this single-center prospective study, subjects who underwent clinically indicated CCTA on an EID-CT system were recruited for a research CCTA on PCD-CT within 30 days. Image reconstruction settings were matched as closely as possible between EID-CT (Bv36 kernel, iterative reconstruction strength level 3, slice thickness 0.5 mm) and PCD-CT (Bv36 kernel, quantum iterative reconstruction level 3, virtual monoenergetic level 55 keV, slice thickness 0.6 mm). CT-FFR was measured semi-automatically using a prototype on-site machine learning algorithm by two readers. CT-FFR analysis was performed per-patient and per-vessel, and a CT-FFR ≤ 0.75 was considered hemodynamically significant. RESULTS: A total of 22 patients (63.3 ± 9.2 years; 7 women) were included. Median time between EID-CT and PCD-CT was 5.5 days. Comparison of CT-FFR values showed no significant difference and strong agreement between EID-CT and PCD-CT in the per-vessel analysis (0.88 [0.74-0.94] vs. 0.87 [0.76-0.93], P = 0.096, mean bias 0.02, limits of agreement [LoA] -0.14/0.19, r = 0.83, ICC = 0.92), and in the per-patient analysis (0.81 [0.60-0.86] vs. 0.76 [0.64-0.86], P = 0.768, mean bias 0.02, LoA -0.15/0.19, r = 0.90, ICC = 0.93). All included patients were classified into the same category (CT-FFR > 0.75 vs ≤0.75) with both CT systems. CONCLUSIONS: CT-FFR evaluation is feasible with PCD-CT and it shows a strong agreement with EID-CT-based evaluation when images are similarly reconstructed.


Asunto(s)
Angiografía por Tomografía Computarizada , Reserva del Flujo Fraccional Miocárdico , Humanos , Femenino , Angiografía por Tomografía Computarizada/métodos , Estudios Prospectivos , Tomografía Computarizada por Rayos X/métodos , Angiografía Coronaria/métodos , Fantasmas de Imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA