RESUMEN
α-glucosidase, a pharmacological target for type 2 diabetes mellitus (T2DM), is present in the intestinal brush border membrane and catalyzes the hydrolysis of sugar linkages during carbohydrate digestion. Since α-glucosidase inhibitors (AGIs) modulate intestinal metabolism, they may influence oxidative stress and glycolysis inhibition, potentially addressing intestinal dysfunction associated with T2DM. Herein, we report on a study of an ortho-carbonyl substituted hydroquinone series, whose members differ only in the number and position of methyl groups on a common scaffold, on radical-scavenging activities (ORAC assay) and correlate them with some parameters obtained by density functional theory (DFT) analysis. These compounds' effect on enzymatic activity, their molecular modeling on α-glucosidase, and their impact on the mitochondrial respiration and glycolysis of the intestinal Caco-2 cell line were evaluated. Three groups of compounds, according their effects on the Caco-2 cells metabolism, were characterized: group A (compounds 2, 3, 5, 8, 9, and 10) reduces the glycolysis, group B (compounds 1 and 6) reduces the basal mitochondrial oxygen consumption rate (OCR) and increases the extracellular acidification rate (ECAR), suggesting that it induces a metabolic remodeling toward glycolysis, and group C (compounds 4 and 7) increases the glycolysis lacking effect on OCR. Compounds 5 and 10 were more potent as α-glucosidase inhibitors (AGIs) than acarbose, a well-known AGI with clinical use. Moreover, compound 5 was an OCR/ECAR inhibitor, and compound 10 was a dual agent, increasing the proton leak-driven OCR and inhibiting the maximal electron transport flux. Additionally, menadione-induced ROS production was prevented by compound 5 in Caco-2 cells. These results reveal that slight structural variations in a hydroquinone scaffold led to diverse antioxidant capability, α-glucosidase inhibition, and the regulation of mitochondrial bioenergetics in Caco-2 cells, which may be useful in the design of new drugs for T2DM and metabolic syndrome.
Asunto(s)
Antioxidantes , Metabolismo Energético , Inhibidores de Glicósido Hidrolasas , Hidroquinonas , alfa-Glucosidasas , Humanos , Células CACO-2 , alfa-Glucosidasas/metabolismo , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/metabolismo , Hidroquinonas/farmacología , Hidroquinonas/química , Metabolismo Energético/efectos de los fármacos , Glucólisis/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacosRESUMEN
Urease, a pivotal enzyme in nitrogen metabolism, plays a crucial role in various microorganisms, including the pathogenic Helicobacter pylori. Inhibiting urease activity offers a promising approach to combating infections and associated ailments, such as chronic kidney diseases and gastric cancer. However, identifying potent urease inhibitors remains challenging due to resistance issues that hinder traditional approaches. Recently, machine learning (ML)-based models have demonstrated the ability to predict the bioactivity of molecules rapidly and effectively. In this study, we present ML models designed to predict urease inhibitors by leveraging essential physicochemical properties. The methodological approach involved constructing a dataset of urease inhibitors through an extensive literature search. Subsequently, these inhibitors were characterized based on physicochemical properties calculations. An exploratory data analysis was then conducted to identify and analyze critical features. Ultimately, 252 classification models were trained, utilizing a combination of seven ML algorithms, three attribute selection methods, and six different strategies for categorizing inhibitory activity. The investigation unveiled discernible trends distinguishing urease inhibitors from non-inhibitors. This differentiation enabled the identification of essential features that are crucial for precise classification. Through a comprehensive comparison of ML algorithms, tree-based methods like random forest, decision tree, and XGBoost exhibited superior performance. Additionally, incorporating the "chemical family type" attribute significantly enhanced model accuracy. Strategies involving a gray-zone categorization demonstrated marked improvements in predictive precision. This research underscores the transformative potential of ML in predicting urease inhibitors. The meticulous methodology outlined herein offers actionable insights for developing robust predictive models within biochemical systems.
Asunto(s)
Inhibidores Enzimáticos , Aprendizaje Automático , Ureasa , Ureasa/antagonistas & inhibidores , Ureasa/química , Ureasa/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Helicobacter pylori/enzimología , Helicobacter pylori/efectos de los fármacos , Algoritmos , HumanosRESUMEN
Helicobacter pylori (Hp) infections pose a global health challenge demanding innovative therapeutic strategies by which to eradicate them. Urease, a key Hp virulence factor hydrolyzes urea, facilitating bacterial survival in the acidic gastric environment. In this study, a multi-methodological approach combining pharmacophore- and structure-based virtual screening, molecular dynamics simulations, and MM-GBSA calculations was employed to identify novel inhibitors for Hp urease (HpU). A refined dataset of 8,271,505 small molecules from the ZINC15 database underwent pharmacokinetic and physicochemical filtering, resulting in 16% of compounds for pharmacophore-based virtual screening. Molecular docking simulations were performed in successive stages, utilizing HTVS, SP, and XP algorithms. Subsequent energetic re-scoring with MM-GBSA identified promising candidates interacting with distinct urease variants. Lys219, a residue critical for urea catalysis at the urease binding site, can manifest in two forms, neutral (LYN) or carbamylated (KCX). Notably, the evaluated molecules demonstrated different interaction and energetic patterns in both protein variants. Further evaluation through ADMET predictions highlighted compounds with favorable pharmacological profiles, leading to the identification of 15 candidates. Molecular dynamics simulations revealed comparable structural stability to the control DJM, with candidates 5, 8 and 12 (CA5, CA8, and CA12, respectively) exhibiting the lowest binding free energies. These inhibitors suggest a chelating capacity that is crucial for urease inhibition. The analysis underscores the potential of CA5, CA8, and CA12 as novel HpU inhibitors. Finally, we compare our candidates with the chemical space of urease inhibitors finding physicochemical similarities with potent agents such as thiourea.
Asunto(s)
Helicobacter pylori , Helicobacter pylori/metabolismo , Ureasa/metabolismo , Simulación de Dinámica Molecular , Simulación del Acoplamiento Molecular , Urea/farmacologíaRESUMEN
This work proposes the design of ß-keto esters as antibacterial compounds. The design was based on the structure of the autoinducer of bacterial quorum sensing, N-(3-oxo-hexanoyl)-l-homoserine lactone (3-oxo-C6-HSL). Eight ß-keto ester analogues were synthesised with good yields and were spectroscopically characterised, showing that the compounds were only present in their ß-keto ester tautomer form. We carried out a computational analysis of the reactivity and ADME (absorption, distribution, metabolism, and excretion) properties of the compounds as well as molecular docking and molecular dynamics calculations with the LasR and LuxS quorum-sensing (QS) proteins, which are involved in bacterial resistance to antibiotics. The results show that all the compounds exhibit reliable ADME properties and that only compound 7 can present electrophile toxicity. The theoretical reactivity study shows that compounds 6 and 8 present a differential local reactivity regarding the rest of the series. Compound 8 presents the most promising potential in terms of its ability to interact with the LasR and LuxS QS proteins efficiently according to its molecular docking and molecular dynamics calculations. An initial in vitro antimicrobial screening was performed against the human pathogenic bacteria Pseudomonas aeruginosa and Staphylococcus aureus as well as the phytopathogenic bacteria Pseudomonas syringae and Agrobacterium tumefaciens. Compounds 6 and 8 exhibit the most promising results in the in vitro antimicrobial screening against the panel of bacteria studied.