Your browser doesn't support javascript.
loading
Machine Learning-Driven Classification of Urease Inhibitors Leveraging Physicochemical Properties as Effective Filter Criteria.
Morales, Natalia; Valdés-Muñoz, Elizabeth; González, Jaime; Valenzuela-Hormazábal, Paulina; Palma, Jonathan M; Galarza, Christian; Catagua-González, Ángel; Yáñez, Osvaldo; Pereira, Alfredo; Bustos, Daniel.
Afiliación
  • Morales N; Magíster en Ciencias de la Computación, Universidad Católica del Maule, Talca 3460000, Chile.
  • Valdés-Muñoz E; Doctorado en Biotecnología Traslacional, Centro de Biotecnología de los Recursos Naturales, Universidad Católica del Maule, Talca 3480094, Chile.
  • González J; Magíster en Ciencias de la Computación, Universidad Católica del Maule, Talca 3460000, Chile.
  • Valenzuela-Hormazábal P; Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile.
  • Palma JM; Facultad de Ingeniería, Universidad de Talca, Curicó 3344158, Chile.
  • Galarza C; Departamento de Matemáticas, Facultad de Ciencias Naturales y Matemáticas, Escuela Superior Politécnica del Litoral, Guayaquil EC090903, Ecuador.
  • Catagua-González Á; Departamento de Matemáticas, Facultad de Ciencias Naturales y Matemáticas, Escuela Superior Politécnica del Litoral, Guayaquil EC090903, Ecuador.
  • Yáñez O; Núcleo de Investigación en Data Science, Facultad de Ingeniería y Negocios, Universidad de las Américas, Santiago 7500000, Chile.
  • Pereira A; Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago 8420524, Chile.
  • Bustos D; Laboratorio de Bioinformática y Química Computacional, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3480094, Chile.
Int J Mol Sci ; 25(8)2024 Apr 13.
Article en En | MEDLINE | ID: mdl-38673888
ABSTRACT
Urease, a pivotal enzyme in nitrogen metabolism, plays a crucial role in various microorganisms, including the pathogenic Helicobacter pylori. Inhibiting urease activity offers a promising approach to combating infections and associated ailments, such as chronic kidney diseases and gastric cancer. However, identifying potent urease inhibitors remains challenging due to resistance issues that hinder traditional approaches. Recently, machine learning (ML)-based models have demonstrated the ability to predict the bioactivity of molecules rapidly and effectively. In this study, we present ML models designed to predict urease inhibitors by leveraging essential physicochemical properties. The methodological approach involved constructing a dataset of urease inhibitors through an extensive literature search. Subsequently, these inhibitors were characterized based on physicochemical properties calculations. An exploratory data analysis was then conducted to identify and analyze critical features. Ultimately, 252 classification models were trained, utilizing a combination of seven ML algorithms, three attribute selection methods, and six different strategies for categorizing inhibitory activity. The investigation unveiled discernible trends distinguishing urease inhibitors from non-inhibitors. This differentiation enabled the identification of essential features that are crucial for precise classification. Through a comprehensive comparison of ML algorithms, tree-based methods like random forest, decision tree, and XGBoost exhibited superior performance. Additionally, incorporating the "chemical family type" attribute significantly enhanced model accuracy. Strategies involving a gray-zone categorization demonstrated marked improvements in predictive precision. This research underscores the transformative potential of ML in predicting urease inhibitors. The meticulous methodology outlined herein offers actionable insights for developing robust predictive models within biochemical systems.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ureasa / Inhibidores Enzimáticos / Aprendizaje Automático Límite: Humans Idioma: En Revista: Int J Mol Sci Año: 2024 Tipo del documento: Article País de afiliación: Chile Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ureasa / Inhibidores Enzimáticos / Aprendizaje Automático Límite: Humans Idioma: En Revista: Int J Mol Sci Año: 2024 Tipo del documento: Article País de afiliación: Chile Pais de publicación: Suiza