Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39000816

RESUMEN

This paper experimentally demonstrates a mode localization sensing approach using a single two-axis orthogonal resonator. The resonator consists of concentric multi-rings connected by elliptic springs that enable two orthogonal oscillation modes. By electrostatically tuning the anisotropic stiffness between the two axes, the effective coupling stiffness between the modes can be precisely controlled down to near-zero values. This allows the sensitivity of mode localization sensing to be tuned over a wide range. An order of magnitude enhancement in sensitivity is experimentally achieved by reducing the coupling stiffness towards zero. The resonator's simple single-mass structure offers advantages over conventional coupled resonator designs for compact, tunable mode localization sensors. Both positive and negative values of coupling stiffness are demonstrated, enabling maximum sensitivity at the point where coupling crosses through zero. A method for decomposing overlapping resonance peaks is introduced to accurately measure the amplitude ratios of the localized modes even at high sensitivities. The electrostatic tuning approach provides a new option for realizing variable sensitivity mode localization devices using a simplified resonator geometry.

2.
Sensors (Basel) ; 23(6)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36991650

RESUMEN

In this paper, we report a multi-ring disk resonator with elliptic spokes for compensating the aniso-elasticity of (100) single crystal silicon. The structural coupling between each ring segments can be controlled by replacing the straight beam spokes with the elliptic spokes. The degeneration of two n = 2 wineglass modes could be realized by optimizing the design parameters of the elliptic spokes. The mode-matched resonator could be obtained when the design parameter, aspect ratio of the elliptic spokes was 25/27. The proposed principle was demonstrated by both numerical simulation and experiment. A frequency mismatch as small as 1330 ± 900 ppm could be experimentally demonstrated, which was much smaller than that of the conventional disk resonator, which achieved as high as 30,000 ppm.

3.
Micromachines (Basel) ; 13(8)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-36014143

RESUMEN

Heterogeneous integration of micro-electro mechanical systems (MEMS) and complementary metal oxide semiconductor (CMOS) integrated circuits (ICs) by 3D stacking or wafer bonding is an emerging approach to advance the functionality of microdevices. Aluminum (Al) has been of interest as one of the wafer bonding materials due to its low cost and compatibility with CMOS processes. However, Al wafer bonding typically requires a high temperature of 450 °C or more due to the stable native oxide which presents on the Al surface. In this study, a wafer bonding technique for heterogeneous integration using electroplated Al bonding frame is demonstrated. The bonding mechanism relies on the mechanical deformation of the electroplated Al bonding frame through a localized bonding pressure by the groove structures on the counter wafer, i.e., press marking. The native oxide on the surface was removed and a fresh Al surface at the bonding interface was released through such a large mechanical deformation. The wafer bonding was demonstrated at the bonding temperatures of 250-450 °C. The influence of the bonding temperature to the quality of the bonded substrates was investigated. The bonding shear strength of 8-100 MPa was obtained, which is comparable with the other Al bonding techniques requiring high bonding temperature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA