Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Discov Nano ; 18(1): 79, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37382742

RESUMEN

In this work, we demonstrated Ga2O3-based power MOSFETs grown on c-plane sapphire substrates using in-situ TEOS doping for the first time. The ß-Ga2O3:Si epitaxial layers were formed by the metalorganic chemical vapor deposition (MOCVD) with a TEOS as a dopant source. The depletion-mode Ga2O3 power MOSFETs are fabricated and characterized, showing the increase of the current, transconductance, and breakdown voltage at 150 °C. In addition, the sample with the TEOS flow rate of 20 sccm exhibited a breakdown voltage of more than 400 V at RT and 150 °C, indicating that the in-situ Si doping by TEOS in MOCVD is a promising method for Ga2O3 power MOSFETs.

2.
Nanomaterials (Basel) ; 12(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36364533

RESUMEN

We fabricated a gas sensor with a wide-bandgap ZnGa2O4 (ZGO) epilayer grown on a sapphire substrate by metalorganic chemical vapor deposition. The ZGO presented (111), (222) and (333) phases demonstrated by an X-ray diffraction system. The related material characteristics were also measured by scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. This ZGO gas sensor was used to detect nitric oxide (NO) in the parts-per-billion range. In this study, the structure effect on the response of the NO gas sensor was studied by altering the sensor dimensions. Two approaches were adopted to prove the dimension effect on the sensing mechanism. In the first approach, the sensing area of the sensors was kept constant while both channel length (L) and width (W) were varied with designed dimensions (L × W) of 60 × 200, 80 × 150, and 120 ×100 µm2. In the second, the dimensions of the sensing area were altered (60, 40, and 20 µm) with W kept constant. The performance of the sensors was studied with varying gas concentrations in the range of 500 ppb~10 ppm. The sensor with dimensions of 20 × 200 µm2 exhibited a high response of 11.647 in 10 ppm, and 1.05 in 10 ppb for NO gas. The sensor with a longer width and shorter channel length exhibited the best response. The sensing mechanism was provided to explain the above phenomena. Furthermore, the reaction between NO and the sensor surface was simulated by O exposure of the ZGO surface in air and calculated by first principles.

3.
Sci Rep ; 11(1): 10914, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34035419

RESUMEN

In this paper, thin film AlGaInP LED chips with a 50 µm thick composite metal substrate (Copper-Invar-Copper; CIC) were obtained by the wet etching process. The pattern of the substrate was done by the backside of the AlGaInP LED/CIC. There was no delamination or cracking phenomenon of the LED epilayer which often occurs by laser or mechanical dicing. The chip area was 1140 µm × 1140 µm and the channel length was 360 µm. The structure of the CIC substrate was a sandwich structure and consisted of Cu as the top and bottom layers, with a thickness of 10 µm, respectively. The middle layer was Invar with a 30% to 70% ratio of Ni and Fe and a total thickness of 30 µm. The chip pattern was successfully obtained by the wet etching process. Concerning the device performance after etching, high-performance LED/CIC chips were obtained. They had a low leakage current, high output power and a low red shift phenomenon as operated at a high injected current. After the development and fabrication of the copper-based composite substrate for N-side up thin-film AlGaInP LED/CIC chips could be diced by wet etching. The superiority of wet etching process for the AlGaInP LED/CIC chips is over that of chips obtained by mechanical or laser dicing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA