Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
medRxiv ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39252907

RESUMEN

Variable expressivity of disease-associated variants implies a role for secondary variants that modify clinical features. We assessed the effects of modifier variants towards clinical outcomes of 2,252 individuals with primary variants. Among 132 families with the 16p12.1 deletion, distinct rare and common variant classes conferred risk for specific developmental features, including short tandem repeats for neurological defects and SNVs for microcephaly, while additional disease-associated variants conferred multiple genetic diagnoses. Within disease and population cohorts of 773 individuals with the 16p12.1 deletion, we found opposing effects of secondary variants towards clinical features across ascertainments. Additional analysis of 1,479 probands with other primary variants, such as 16p11.2 deletion and CHD8 variants, and 1,084 without primary variants, showed that phenotypic associations differed by primary variant context and were influenced by synergistic interactions between primary and secondary variants. Our study provides a paradigm to dissect the genomic architecture of complex disorders towards personalized treatment.

2.
Eur Heart J ; 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39217446

RESUMEN

BACKGROUND AND AIMS: Deep learning applied to electrocardiograms (ECG-AI) is an emerging approach for predicting atrial fibrillation or flutter (AF). This study introduces an ECG-AI model developed and tested at a tertiary cardiac centre, comparing its performance with clinical and AF polygenic scores (PGS). METHODS: ECG in sinus rhythm from the Montreal Heart Institute were analysed, excluding those from patients with preexisting AF. The primary outcome was incident AF at 5 years. An ECG-AI model was developed by splitting patients into non-overlapping datasets: 70% for training, 10% for validation, and 20% for testing. Performance of ECG-AI, clinical models and PGS was assessed in the test dataset. The ECG-AI model was externally validated in the Medical Information Mart for Intensive Care-IV (MIMIC-IV) hospital dataset. RESULTS: A total of 669,782 ECGs from 145,323 patients were included. Mean age was 61±15 years, and 58% were male. The primary outcome was observed in 15% of patients and the ECG-AI model showed an area under the receiver operating characteristic curve (AUC) of 0.78. In time-to-event analysis including the first ECG, ECG-AI inference of high risk identified 26% of the population with a 4.3-fold increased risk of incident AF (95% confidence interval 4.02-4.57). In a subgroup analysis of 2,301 patients, ECG-AI outperformed CHARGE-AF (AUC=0.62) and PGS (AUC=0.59). Adding PGS and CHARGE-AF to ECG-AI improved goodness-of-fit (likelihood ratio test p<0.001), with minimal changes to the AUC (0.76-0.77). In the external validation cohort (mean age 59±18 years, 47% male, median follow-up 1.1 year) ECG-AI model performance= remained consistent (AUC=0.77). CONCLUSIONS: ECG-AI provides an accurate tool to predict new-onset AF in a tertiary cardiac centre, surpassing clinical and polygenic scores.

5.
Europace ; 26(8)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39073570

RESUMEN

Atrial fibrillation (AF) prediction and screening are of important clinical interest because of the potential to prevent serious adverse events. Devices capable of detecting short episodes of arrhythmia are now widely available. Although it has recently been suggested that some high-risk patients with AF detected on implantable devices may benefit from anticoagulation, long-term management remains challenging in lower-risk patients and in those with AF detected on monitors or wearable devices as the development of clinically meaningful arrhythmia burden in this group remains unknown. Identification and prediction of clinically relevant AF is therefore of unprecedented importance to the cardiologic community. Family history and underlying genetic markers are important risk factors for AF. Recent studies suggest a good predictive ability of polygenic risk scores, with a possible additive value to clinical AF prediction scores. Artificial intelligence, enabled by the exponentially increasing computing power and digital data sets, has gained traction in the past decade and is of increasing interest in AF prediction using a single or multiple lead sinus rhythm electrocardiogram. Integrating these novel approaches could help predict AF substrate severity, thereby potentially improving the effectiveness of AF screening and personalizing the management of patients presenting with conditions such as embolic stroke of undetermined source or subclinical AF. This review presents current evidence surrounding deep learning and polygenic risk scores in the prediction of incident AF and provides a futuristic outlook on possible ways of implementing these modalities into clinical practice, while considering current limitations and required areas of improvement.


Asunto(s)
Fibrilación Atrial , Aprendizaje Automático , Fibrilación Atrial/genética , Fibrilación Atrial/diagnóstico , Humanos , Medición de Riesgo , Factores de Riesgo , Herencia Multifactorial , Valor Predictivo de las Pruebas , Predisposición Genética a la Enfermedad , Electrocardiografía , Fenotipo
6.
medRxiv ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39006410

RESUMEN

POPDC2 encodes for the Popeye domain-containing protein 2 which has an important role in cardiac pacemaking and conduction, due in part to its cAMP-dependent binding and regulation of TREK-1 potassium channels. Loss of Popdc2 in mice results in sinus pauses and bradycardia and morpholino knockdown of popdc2 in zebrafish results in atrioventricular (AV) block. We identified bi-allelic variants in POPDC2 in 4 families that presented with a phenotypic spectrum consisting of sinus node dysfunction, AV conduction defects and hypertrophic cardiomyopathy. Using homology modelling we show that the identified POPDC2 variants are predicted to diminish the ability of POPDC2 to bind cAMP. In in vitro electrophysiological studies we demonstrated that, while co-expression of wild-type POPDC2 with TREK-1 increased TREK-1 current density, POPDC2 variants found in the patients failed to increase TREK-1 current density. While patient muscle biopsy did not show clear myopathic disease, it showed significant reduction of the expression of both POPDC1 and POPDC2, suggesting that stability and/or membrane trafficking of the POPDC1-POPDC2 complex is impaired by pathogenic variants in any of the two proteins. Single-cell RNA sequencing from human hearts demonstrated that co-expression of POPDC1 and 2 was most prevalent in AV node, AV node pacemaker and AV bundle cells. Sinoatrial node cells expressed POPDC2 abundantly, but expression of POPDC1 was sparse. Together, these results concur with predisposition to AV node disease in humans with loss-of-function variants in POPDC1 and POPDC2 and presence of sinus node disease in POPDC2, but not in POPDC1 related disease in human. Using population-level genetic data of more than 1 million individuals we showed that none of the familial variants were associated with clinical outcomes in heterozygous state, suggesting that heterozygous family members are unlikely to develop clinical manifestations and therefore might not necessitate clinical follow-up. Our findings provide evidence for POPDC2 as the cause of a novel Mendelian autosomal recessive cardiac syndrome, consistent with previous work showing that mice and zebrafish deficient in functional POPDC2 display sinus and AV node dysfunction.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38970599

RESUMEN

BACKGROUND: Idiopathic ventricular fibrillation (IVF) can be associated with undetected distinct conditions such as microstructural cardiomyopathic alterations (MiCM) or Purkinje (Purk) activities with structurally normal hearts. OBJECTIVE: This study sought to evaluate the characteristics of recurrent VF recorded on implantable defibrillator electrograms, associated with these substrates. METHODS: This was a multicenter collaboration study. At 32 centers, we selected patients with an initial diagnosis of IVF and recurrent arrhythmia at follow-up without antiarrhythmic drugs, in whom mapping demonstrated Purk or MiCM substrate. We analyzed variables related to previous ectopy, sinus rate preceding VF, trigger, and initial VF cycle lengths. Logistic regression with cross validation was used to evaluate the performance of criteria to discriminate Purk or MiCM substrates. RESULTS: Among 95 patients (35 women, age 35 ± 11 years) meeting the inclusion criteria, IVF was associated with MiCM in 41 and Purk in 54 patients. A total of 117 arrhythmia recurrences including 91% VF were recorded on defibrillator. Three variables were mostly discriminant. Sinus tachycardia (≤570 ms) was more frequent in MiCM (35.9% vs 13.4%, P = 0.014) whereas short-coupled (<350 ms) triggers were most frequent in Purk-related VF (95.5% vs 23.1%, P = 0.001), which also had shorter VFCLs (182 ± 15 ms vs 215 ± 24 ms, P < 0.001).The multivariable combination provided the highest prediction (accuracy = 0.93 ± 0.05, range 0.833-1.000), discriminating 81% of IVF substrates with a high probability (>80%). Ectopy were inconsistently present before VF. CONCLUSIONS: Characteristics of arrhythmia recurrences on implantable cardioverter- defibrillator provide phenotypic markers of the distinct and hidden substrates underlying IVF. These findings have significant clinical and genetic implications.

8.
JACC Clin Electrophysiol ; 10(8): 1794-1809, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38842971

RESUMEN

BACKGROUND: There is limited information on the mode of arrhythmia initiation in idiopathic ventricular fibrillation (IVF). A non-pause-dependent mechanism has been suggested to be the rule. OBJECTIVES: The aim of this study was to assess the mode and characteristics of initiation of polymorphic ventricular tachycardia (PVT) in patients with short or long-coupled PVT/IVF included in THESIS (THerapy Efficacy in Short or long-coupled idiopathic ventricular fibrillation: an International Survey), a multicenter study involving 287 IVF patients treated with drugs or radiofrequency ablation. METHODS: We reviewed the initiation of 410 episodes of ≥1 PVT triplet in 180 patients (58.3% females; age 39.6 ± 13.6 years) with IVF. The incidence of pause-dependency arrhythmia initiation (prolongation by >20 ms of the preceding cycle length) was assessed. RESULTS: Most arrhythmias (n = 295; 72%) occurred during baseline supraventricular rhythm without ambient premature ventricular complexes (PVCs), whereas 106 (25.9%) occurred during baseline rhythm including PVCs. Nine (2.2%) arrhythmias occurred during atrial/ventricular pacing and were excluded from further analysis. Mode of PVT initiation was pause-dependent in 45 (15.6%) and 64 (60.4%) of instances in the first and second settings, respectively, for a total of 109 of 401 (27.2%). More than one type of pause-dependent and/or non-pause-dependent initiation (mean: 2.6) occurred in 94.4% of patients with ≥4 events. Coupling intervals of initiating PVCs were <350 ms, 350-500 ms, and >500 ms in 76.6%, 20.72%, and 2.7% of arrhythmia initiations, respectively. CONCLUSIONS: Pause-dependent initiation occurred in more than a quarter of arrhythmic episodes in IVF patients. PVCs having long (between 350 and 500 ms) and very long (>500 ms) coupling intervals were observed at the initiation of nearly a quarter of PVT episodes.


Asunto(s)
Fibrilación Ventricular , Humanos , Femenino , Fibrilación Ventricular/epidemiología , Masculino , Persona de Mediana Edad , Adulto , Taquicardia Ventricular/fisiopatología , Ablación por Catéter , Adulto Joven , Electrocardiografía
9.
Can J Cardiol ; 40(9): 1503-1523, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38880398

RESUMEN

Numerous guidelines on the diagnosis and management of hypertrophic cardiomyopathy (HCM) have been published, by learned societies, over the past decade. Although helpful they are often long and less adapted to nonexperts. This writing panel was challenged to produce a document that grew as much from years of practical experience as it did from the peer-reviewed literature. As such, rather than produce yet another set of guidelines, we aim herein to deliver a concentrate of our own experiential learning and distill for the reader the essence of effective and appropriate HCM care. This Clinical Practice Update on HCM is therefore aimed at general cardiologists and other cardiovascular practitioners rather than for HCM specialists. We set the stage with a description of the condition and its clinical presentation, discuss the central importance of "obstruction" and how to look for it, review the role of cardiac magnetic resonance imaging, reflect on the appropriate use of genetic testing, review the treatment options for symptomatic HCM-crucially including cardiac myosin inhibitors, and deal concisely with practical issues surrounding risk assessment for sudden cardiac death, and management of the end-stage HCM patient. Uniquely, we have captured the pediatric experience on our panel to discuss appropriate differences in the management of younger patients with HCM. We ask the reader to remember that this document represents expert consensus opinion rather than dogma and to use their best judgement when dealing with the HCM patient in front of them.


Asunto(s)
Cardiomiopatía Hipertrófica , Sociedades Médicas , Humanos , Cardiomiopatía Hipertrófica/terapia , Cardiomiopatía Hipertrófica/diagnóstico , Canadá , Manejo de la Enfermedad , Cardiología , Muerte Súbita Cardíaca/prevención & control , Muerte Súbita Cardíaca/etiología , Guías de Práctica Clínica como Asunto , Pruebas Genéticas/métodos
10.
JAMA ; 332(3): 204-213, 2024 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-38900490

RESUMEN

Importance: Sudden death and cardiac arrest frequently occur without explanation, even after a thorough clinical evaluation. Calcium release deficiency syndrome (CRDS), a life-threatening genetic arrhythmia syndrome, is undetectable with standard testing and leads to unexplained cardiac arrest. Objective: To explore the cardiac repolarization response on an electrocardiogram after brief tachycardia and a pause as a clinical diagnostic test for CRDS. Design, Setting, and Participants: An international, multicenter, case-control study including individual cases of CRDS, 3 patient control groups (individuals with suspected supraventricular tachycardia; survivors of unexplained cardiac arrest [UCA]; and individuals with genotype-positive catecholaminergic polymorphic ventricular tachycardia [CPVT]), and genetic mouse models (CRDS, wild type, and CPVT were used to define the cellular mechanism) conducted at 10 centers in 7 countries. Patient tracings were recorded between June 2005 and December 2023, and the analyses were performed from April 2023 to December 2023. Intervention: Brief tachycardia and a subsequent pause (either spontaneous or mediated through cardiac pacing). Main Outcomes and Measures: Change in QT interval and change in T-wave amplitude (defined as the difference between their absolute values on the postpause sinus beat and the last beat prior to tachycardia). Results: Among 10 case patients with CRDS, 45 control patients with suspected supraventricular tachycardia, 10 control patients who experienced UCA, and 3 control patients with genotype-positive CPVT, the median change in T-wave amplitude on the postpause sinus beat (after brief ventricular tachycardia at ≥150 beats/min) was higher in patients with CRDS (P < .001). The smallest change in T-wave amplitude was 0.250 mV for a CRDS case patient compared with the largest change in T-wave amplitude of 0.160 mV for a control patient, indicating 100% discrimination. Although the median change in QT interval was longer in CRDS cases (P = .002), an overlap between the cases and controls was present. The genetic mouse models recapitulated the findings observed in humans and suggested the repolarization response was secondary to a pathologically large systolic release of calcium from the sarcoplasmic reticulum. Conclusions and Relevance: There is a unique repolarization response on an electrocardiogram after provocation with brief tachycardia and a subsequent pause in CRDS cases and mouse models, which is absent from the controls. If these findings are confirmed in larger studies, this easy to perform maneuver may serve as an effective clinical diagnostic test for CRDS and become an important part of the evaluation of cardiac arrest.


Asunto(s)
Electrocardiografía , Humanos , Ratones , Estudios de Casos y Controles , Masculino , Animales , Femenino , Adulto , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/fisiopatología , Taquicardia Ventricular/etiología , Paro Cardíaco/etiología , Paro Cardíaco/diagnóstico , Calcio/metabolismo , Calcio/sangre , Taquicardia Supraventricular/diagnóstico , Taquicardia Supraventricular/fisiopatología , Taquicardia Supraventricular/etiología , Persona de Mediana Edad , Modelos Animales de Enfermedad , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/etiología , Adolescente , Adulto Joven , Canal Liberador de Calcio Receptor de Rianodina/genética
11.
Circ Genom Precis Med ; 17(3): e004320, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38804128

RESUMEN

BACKGROUND: Substantial data support a heritable basis for supraventricular tachycardias, but the genetic determinants and molecular mechanisms of these arrhythmias are poorly understood. We sought to identify genetic loci associated with atrioventricular nodal reentrant tachycardia (AVNRT) and atrioventricular accessory pathways or atrioventricular reciprocating tachycardia (AVAPs/AVRT). METHODS: We performed multiancestry meta-analyses of genome-wide association studies to identify genetic loci for AVNRT (4 studies) and AVAP/AVRT (7 studies). We assessed evidence supporting the potential causal effects of candidate genes by analyzing relations between associated variants and cardiac gene expression, performing transcriptome-wide analyses, and examining prior genome-wide association studies. RESULTS: Analyses comprised 2384 AVNRT cases and 106 489 referents, and 2811 AVAP/AVRT cases and 1,483 093 referents. We identified 2 significant loci for AVNRT, which implicate NKX2-5 and TTN as disease susceptibility genes. A transcriptome-wide association analysis supported an association between reduced predicted cardiac expression of NKX2-5 and AVNRT. We identified 3 significant loci for AVAP/AVRT, which implicate SCN5A, SCN10A, and TTN/CCDC141. Variant associations at several loci have been previously reported for cardiac phenotypes, including atrial fibrillation, stroke, Brugada syndrome, and electrocardiographic intervals. CONCLUSIONS: Our findings highlight gene regions associated with ion channel function (AVAP/AVRT), as well as cardiac development and the sarcomere (AVAP/AVRT and AVNRT) as important potential effectors of supraventricular tachycardia susceptibility.


Asunto(s)
Estudio de Asociación del Genoma Completo , Taquicardia Supraventricular , Humanos , Taquicardia Supraventricular/genética , Predisposición Genética a la Enfermedad , Taquicardia por Reentrada en el Nodo Atrioventricular/genética , Polimorfismo de Nucleótido Simple , Conectina/genética , Transcriptoma
12.
Eur Heart J ; 45(26): 2320-2332, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38747976

RESUMEN

BACKGROUND AND AIMS: Brugada syndrome (BrS) is an inherited arrhythmia with a higher disease prevalence and more lethal arrhythmic events in Asians than in Europeans. Genome-wide association studies (GWAS) have revealed its polygenic architecture mainly in European populations. The aim of this study was to identify novel BrS-associated loci and to compare allelic effects across ancestries. METHODS: A GWAS was conducted in Japanese participants, involving 940 cases and 1634 controls, followed by a cross-ancestry meta-analysis of Japanese and European GWAS (total of 3760 cases and 11 635 controls). The novel loci were characterized by fine-mapping, gene expression, and splicing quantitative trait associations in the human heart. RESULTS: The Japanese-specific GWAS identified one novel locus near ZSCAN20 (P = 1.0 × 10-8), and the cross-ancestry meta-analysis identified 17 association signals, including six novel loci. The effect directions of the 17 lead variants were consistent (94.1%; P for sign test = 2.7 × 10-4), and their allelic effects were highly correlated across ancestries (Pearson's R = .91; P = 2.9 × 10-7). The genetic risk score derived from the BrS GWAS of European ancestry was significantly associated with the risk of BrS in the Japanese population [odds ratio 2.12 (95% confidence interval 1.94-2.31); P = 1.2 × 10-61], suggesting a shared genetic architecture across ancestries. Functional characterization revealed that a lead variant in CAMK2D promotes alternative splicing, resulting in an isoform switch of calmodulin kinase II-δ, favouring a pro-inflammatory/pro-death pathway. CONCLUSIONS: This study demonstrates novel susceptibility loci implicating potentially novel pathogenesis underlying BrS. Despite differences in clinical expressivity and epidemiology, the polygenic architecture of BrS was substantially shared across ancestries.


Asunto(s)
Síndrome de Brugada , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Síndrome de Brugada/genética , Japón/epidemiología , Masculino , Europa (Continente)/epidemiología , Predisposición Genética a la Enfermedad/genética , Femenino , Población Blanca/genética , Persona de Mediana Edad , Pueblo Asiatico/genética , Estudios de Casos y Controles , Adulto , Polimorfismo de Nucleótido Simple/genética
14.
Can J Cardiol ; 40(4): 540-553, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38551553

RESUMEN

Important progress has been made toward unravelling the complex genetics underlying atrial fibrillation (AF). Initial studies were aimed to identify monogenic causes; however, it has become increasingly clear that the most common predisposing genetic substrate for AF is polygenic. Despite intensive investigations, there is robust evidence for rare variants for only a limited number of genes and cases. Although the current yield for genetic testing in early onset AF might be modest, there is an increasing appreciation that genetic culprits for potentially life-threatening ventricular cardiomyopathies and channelopathies might initially present with AF. The potential clinical significance of this recognition is highlighted by evidence that suggests that identification of a pathogenic or likely pathogenic rare variant in a patient with early onset AF is associated with an increased risk of death. These findings suggest that it might be warranted to screen patients with early onset AF for these potentially more sinister cardiac conditions. Beyond facilitating the early identification of genetic culprits associated with potentially malignant phenotypes, insight into underlying AF genetic substrates might improve the selection of patients for existing therapies and guide the development of novel ones. Herein, we review the evidence that links genetic factors to AF, then discuss an approach to using genetic testing for early onset AF patients in the present context, and finally consider the potential value of genetic testing in the foreseeable future. Although further work might be necessary before recommending uniform integration of genetic testing in cases of early onset AF, ongoing research increasingly highlights its potential contributions to clinical care.


Asunto(s)
Fibrilación Atrial , Humanos , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/genética , Pruebas Genéticas , Medición de Riesgo
15.
JAMA Cardiol ; 9(4): 377-384, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38446445

RESUMEN

Importance: Congenital long QT syndrome (LQTS) is associated with syncope, ventricular arrhythmias, and sudden death. Half of patients with LQTS have a normal or borderline-normal QT interval despite LQTS often being detected by QT prolongation on resting electrocardiography (ECG). Objective: To develop a deep learning-based neural network for identification of LQTS and differentiation of genotypes (LQTS1 and LQTS2) using 12-lead ECG. Design, Setting, and Participants: This diagnostic accuracy study used ECGs from patients with suspected inherited arrhythmia enrolled in the Hearts in Rhythm Organization Registry (HiRO) from August 2012 to December 2021. The internal dataset was derived at 2 sites and an external validation dataset at 4 sites within the HiRO Registry; an additional cross-sectional validation dataset was from the Montreal Heart Institute. The cohort with LQTS included probands and relatives with pathogenic or likely pathogenic variants in KCNQ1 or KCNH2 genes with normal or prolonged corrected QT (QTc) intervals. Exposures: Convolutional neural network (CNN) discrimination between LQTS1, LQTS2, and negative genetic test results. Main Outcomes and Measures: The main outcomes were area under the curve (AUC), F1 scores, and sensitivity for detecting LQTS and differentiating genotypes using a CNN method compared with QTc-based detection. Results: A total of 4521 ECGs from 990 patients (mean [SD] age, 42 [18] years; 589 [59.5%] female) were analyzed. External validation within the national registry (101 patients) demonstrated the CNN's high diagnostic capacity for LQTS detection (AUC, 0.93; 95% CI, 0.89-0.96) and genotype differentiation (AUC, 0.91; 95% CI, 0.86-0.96). This surpassed expert-measured QTc intervals in detecting LQTS (F1 score, 0.84 [95% CI, 0.78-0.90] vs 0.22 [95% CI, 0.13-0.31]; sensitivity, 0.90 [95% CI, 0.86-0.94] vs 0.36 [95% CI, 0.23-0.47]), including in patients with normal or borderline QTc intervals (F1 score, 0.70 [95% CI, 0.40-1.00]; sensitivity, 0.78 [95% CI, 0.53-0.95]). In further validation in a cross-sectional cohort (406 patients) of high-risk patients and genotype-negative controls, the CNN detected LQTS with an AUC of 0.81 (95% CI, 0.80-0.85), which was better than QTc interval-based detection (AUC, 0.74; 95% CI, 0.69-0.78). Conclusions and Relevance: The deep learning model improved detection of congenital LQTS from resting ECGs and allowed for differentiation between the 2 most common genetic subtypes. Broader validation over an unselected general population may support application of this model to patients with suspected LQTS.


Asunto(s)
Aprendizaje Profundo , Síndrome de QT Prolongado , Humanos , Femenino , Adulto , Masculino , Estudios Transversales , Síndrome de QT Prolongado/diagnóstico , Síndrome de QT Prolongado/genética , Electrocardiografía , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/genética , Arritmias Cardíacas/complicaciones , Genotipo
16.
Eur Heart J ; 45(7): 538-548, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38195003

RESUMEN

BACKGROUND AND AIMS: Implantable cardioverter-defibrillators (ICDs) are critical for preventing sudden cardiac death (SCD) in arrhythmogenic right ventricular cardiomyopathy (ARVC). This study aims to identify cross-continental differences in utilization of primary prevention ICDs and survival free from sustained ventricular arrhythmia (VA) in ARVC. METHODS: This was a retrospective analysis of ARVC patients without prior VA enrolled in clinical registries from 11 countries throughout Europe and North America. Patients were classified according to whether they received treatment in North America or Europe and were further stratified by baseline predicted VA risk into low- (<10%/5 years), intermediate- (10%-25%/5 years), and high-risk (>25%/5 years) groups. Differences in ICD implantation and survival free from sustained VA events (including appropriate ICD therapy) were assessed. RESULTS: One thousand ninety-eight patients were followed for a median of 5.1 years; 554 (50.5%) received a primary prevention ICD, and 286 (26.0%) experienced a first VA event. After adjusting for baseline risk factors, North Americans were more than three times as likely to receive ICDs {hazard ratio (HR) 3.1 [95% confidence interval (CI) 2.5, 3.8]} but had only mildly increased risk for incident sustained VA [HR 1.4 (95% CI 1.1, 1.8)]. North Americans without ICDs were at higher risk for incident sustained VA [HR 2.1 (95% CI 1.3, 3.4)] than Europeans. CONCLUSIONS: North American ARVC patients were substantially more likely than Europeans to receive primary prevention ICDs across all arrhythmic risk strata. A lower rate of ICD implantation in Europe was not associated with a higher rate of VA events in those without ICDs.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Desfibriladores Implantables , Humanos , Desfibriladores Implantables/efectos adversos , Displasia Ventricular Derecha Arritmogénica/complicaciones , Displasia Ventricular Derecha Arritmogénica/epidemiología , Displasia Ventricular Derecha Arritmogénica/terapia , Estudios Retrospectivos , Arritmias Cardíacas/epidemiología , Arritmias Cardíacas/terapia , Arritmias Cardíacas/etiología , Muerte Súbita Cardíaca/epidemiología , Muerte Súbita Cardíaca/prevención & control , Muerte Súbita Cardíaca/etiología , Factores de Riesgo , América del Norte/epidemiología , Europa (Continente)/epidemiología
17.
Circ Genom Precis Med ; 16(6): e004200, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38014537

RESUMEN

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is an important cause of sudden cardiac death associated with heterogeneous phenotypes, but there is no systematic framework for classifying morphology or assessing associated risks. Here, we quantitatively survey genotype-phenotype associations in HCM to derive a data-driven taxonomy of disease expression. METHODS: We enrolled 436 patients with HCM (median age, 60 years; 28.8% women) with clinical, genetic, and imaging data. An independent cohort of 60 patients with HCM from Singapore (median age, 59 years; 11% women) and a reference population from the UK Biobank (n=16 691; mean age, 55 years; 52.5% women) were also recruited. We used machine learning to analyze the 3-dimensional structure of the left ventricle from cardiac magnetic resonance imaging and build a tree-based classification of HCM phenotypes. Genotype and mortality risk distributions were projected on the tree. RESULTS: Carriers of pathogenic or likely pathogenic variants for HCM had lower left ventricular mass, but greater basal septal hypertrophy, with reduced life span (mean follow-up, 9.9 years) compared with genotype negative individuals (hazard ratio, 2.66 [95% CI, 1.42-4.96]; P<0.002). Four main phenotypic branches were identified using unsupervised learning of 3-dimensional shape: (1) nonsarcomeric hypertrophy with coexisting hypertension; (2) diffuse and basal asymmetrical hypertrophy associated with outflow tract obstruction; (3) isolated basal hypertrophy; and (4) milder nonobstructive hypertrophy enriched for familial sarcomeric HCM (odds ratio for pathogenic or likely pathogenic variants, 2.18 [95% CI, 1.93-2.28]; P=0.0001). Polygenic risk for HCM was also associated with different patterns and degrees of disease expression. The model was generalizable to an independent cohort (trustworthiness, M1: 0.86-0.88). CONCLUSIONS: We report a data-driven taxonomy of HCM for identifying groups of patients with similar morphology while preserving a continuum of disease severity, genetic risk, and outcomes. This approach will be of value in understanding the causes and consequences of disease diversity.


Asunto(s)
Cardiomiopatía Hipertrófica Familiar , Cardiomiopatía Hipertrófica , Humanos , Femenino , Persona de Mediana Edad , Masculino , Fenotipo , Genotipo , Hipertrofia/complicaciones
18.
JACC Clin Electrophysiol ; 9(12): 2494-2503, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37804262

RESUMEN

BACKGROUND: There is growing evidence that mitral valve prolapse (MVP) is associated with otherwise unexplained cardiac arrest (UCA). However, reports are hindered by the absence of a systematic ascertainment of alternative diagnoses. OBJECTIVES: This study reports the prevalence and characteristics of MVP in a large cohort of patients with UCA. METHODS: Patients were enrolled following an UCA, defined as cardiac arrest with no coronary artery disease, preserved left ventricular ejection fraction, and no apparent explanation on electrocardiogram. A comprehensive evaluation was performed, and patients were diagnosed with idiopathic ventricular fibrillation (IVF) if no cause was found. Echocardiography reports were reviewed for MVP. Patients with MVP were divided into 2 groups: those with IVF (AMVP) and those with an alternative diagnosis (nonarrhythmic MVP). Patient characteristics were then compared. The long-term outcomes of AMVP were reported. RESULTS: Among 571 with an initially UCA, 34 patients had MVP (6%). The prevalence of definite MVP was significantly higher in patients with IVF than those with an alternative diagnosis (24 of 366 [6.6%] vs 5 of 205 [2.4%]; P = 0.03). Bileaflet prolapse was significantly associated with AMVP (18 of 23 [78%] vs 1 of 8 [12.5%]; P = 0.001; OR: 25.2). The proportion of patients with AMVP who received appropriate implantable cardioverter-defibrillator therapies over a median follow-up of 42 months was 21.1% (4 of 19). CONCLUSIONS: MVP is associated with otherwise UCA (IVF), with a prevalence of 6.6%. Bileaflet prolapse appears to be a feature of AMVP, although future studies need to ascertain its independent association. A significant proportion of patients with AMVP received appropriate implantable cardioverter-defibrillator therapies during follow-up.


Asunto(s)
Paro Cardíaco , Prolapso de la Válvula Mitral , Humanos , Prolapso de la Válvula Mitral/complicaciones , Prolapso de la Válvula Mitral/epidemiología , Prolapso de la Válvula Mitral/diagnóstico , Prevalencia , Volumen Sistólico , Función Ventricular Izquierda , Paro Cardíaco/etiología , Paro Cardíaco/complicaciones , Prolapso
19.
Genome Med ; 15(1): 86, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872640

RESUMEN

BACKGROUND: As the availability of genomic testing grows, variant interpretation will increasingly be performed by genomic generalists, rather than domain-specific experts. Demand is rising for laboratories to accurately classify variants in inherited cardiac condition (ICC) genes, including secondary findings. METHODS: We analyse evidence for inheritance patterns, allelic requirement, disease mechanism and disease-relevant variant classes for 65 ClinGen-curated ICC gene-disease pairs. We present this information for the first time in a structured dataset, CardiacG2P, and assess application in genomic variant filtering. RESULTS: For 36/65 gene-disease pairs, loss of function is not an established disease mechanism, and protein truncating variants are not known to be pathogenic. Using the CardiacG2P dataset as an initial variant filter allows for efficient variant prioritisation whilst maintaining a high sensitivity for retaining pathogenic variants compared with two other variant filtering approaches. CONCLUSIONS: Access to evidence-based structured data representing disease mechanism and allelic requirement aids variant filtering and analysis and is a pre-requisite for scalable genomic testing.


Asunto(s)
Pruebas Genéticas , Variación Genética , Humanos , Bases de Datos Genéticas , Genómica , Patrón de Herencia
20.
CJC Open ; 5(8): 611-618, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37720184

RESUMEN

Patients with new-onset left bundle branch block (LBBB) after transcatheter aortic valve implantation (TAVI) are at risk of developing delayed high-degree atrioventricular block. Management of new-onset LBBB post-TAVI remains controversial. In the Comparison of a Clinical Monitoring Strategy Versus Electrophysiology-Guided Algorithmic Approach in Patients With a New LBBB After TAVI (COME-TAVI) trial, consenting patients with new-onset LBBB that persists on day 2 after TAVI, meeting exclusion/inclusion criteria, are randomized to an electrophysiological study (EPS)-guided approach or 30-day electrocardiographic monitoring. In the EPS-guided approach, patients with a His to ventricle (HV) interval ≥ 65 ms undergo permanent pacemaker implantation. Patients randomized to noninvasive monitoring receive a wearable continuous electrocardiographic recording and transmitting device for 30 days. Follow-up will be performed at 3, 6, and 12 months. The primary endpoint is a composite outcome designed to capture net clinical benefit. The endpoint incorporates major consequences of both strategies in patients with new-onset LBBB after TAVI, as follows: (i) sudden cardiac death; (ii) syncope; (iii) atrioventricular conduction disorder requiring a pacemaker (for a class I or IIa indication); and (iv) complications related to the pacemaker or EPS. The trial incorporates a Bayesian design with a noninformative prior, outcome-adaptive randomization (initially 1:1), and 2 prespecified interim analyses once 25% and 50% of the anticipated number of primary endpoints are reached. The trial is event-driven, with an anticipated upper limit of 452 patients required to reach 77 primary outcome events over 12 months of follow-up. In summary, the aim of this Bayesian multicentre randomized trial is to compare 2 management strategies in patients with new-onset LBBB post-TAVI-an EPS-guided approach vs noninvasive 30-day monitoring. Trial registration number: NCT03303612.


Les patients chez qui un bloc de branche gauche (BBG) est récemment apparu à la suite de l'implantation valvulaire aortique par cathéter (IVAC) présentent un risque de bloc auriculoventriculaire de haut degré tardif. La prise en charge d'un BBG récemment apparu après une IVAC demeure controversée. Dans le cadre de l'essai COME-TAVI (Comparison of a ClinicalMonitoring Strategy VersusElectrophysiology-Guided Algorithmic Approach in Patients With a New LBBB AfterTAVI, ou comparaison d'une stratégie de surveillance clinique, par rapport à une approche guidée par étude électrophysiologique et fondée sur un algorithme, chez des patients présentant un BBG d'apparition récente à la suite d'une IVAC), des patients qui présentent un BBG d'apparition récente persistant le 2e jour après une IVAC, qui répondent aux critères d'admissibilité et qui ont donné leur consentement sont répartis aléatoirement pour être suivis à l'aide d'une approche guidée par une étude électrophysiologique (EEP) ou faire l'objet d'une surveillance électrocardiographique d'une durée de 30 jours. Un stimulateur cardiaque est implanté chez les patients du groupe de l'EEP dont l'intervalle HV (temps de conduction dans le tronc du faisceau de His jusqu'aux ventricules) est ≥ 65 ms. Les patients du groupe de surveillance non invasive reçoivent un dispositif portable d'enregistrement et de transmission continue de données électrocardiographiques pour une période de 30 jours. Le suivi sera réalisé aux 3e, 6e et 12e mois. Le critère d'évaluation principal est un paramètre composite conçu afin de saisir le bienfait clinique net. Il comprend les conséquences majeures des deux stratégies chez les patients présentant un BBG d'apparition récente après une IVAC, comme suit : (i) mort subite d'origine cardiaque; (ii) syncope; (iii) trouble de la conduction auriculoventriculaire nécessitant la pose d'un stimulateur cardiaque (pour une indication de classe I ou IIa); et (iv) complications relatives au stimulateur cardiaque ou à l'EEP. L'essai intègre une conception bayésienne avec une répartition aléatoire (dans un rapport initial de 1:1) antérieure non informative adaptée aux résultats et deux analyses intermédiaires définies au préalable lorsque 25 % et 50 % du nombre anticipé des critères d'évaluation principaux seront atteints. L'essai est axé sur les événements, et la limite supérieure anticipée pour atteindre 77 événements relatifs aux critères d'évaluation principaux sur 12 mois de suivi est de 452 patients. En résumé, l'objectif de cet essai bayésien multicentrique à répartition aléatoire est de comparer deux stratégies de prise en charge de patients présentant un BBG d'apparition récente après une IVAC, soit une approche guidée par une EEP, par rapport à une surveillance non invasive de 30 jours. Trial registration number: NCT03303612.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA