Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cancer Immunol Immunother ; 73(11): 218, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235510

RESUMEN

Epigenetic modifications to DNA and chromatin control oncogenic and tumor-suppressive mechanisms in melanoma. Ezh2, the catalytic component of the Polycomb Repressive Complex 2 (PRC2), which mediates methylation of lysine 27 on histone 3 (H3K27me3), can regulate both melanoma initiation and progression. We previously found that mutant Ezh2Y641F interacts with the immune regulator Stat3 and together they affect anti-tumor immunity. However, given the numerous downstream targets and pathways affected by Ezh2, many mechanisms that determine its oncogenic activity remain largely unexplored. Using genetically engineered mouse models, we further investigated the role of pathways downstream of Ezh2 in melanoma carcinogenesis and identified significant enrichment in several autophagy signatures, along with increased expression of autophagy regulators, such as Atg7. In this study, we investigated the effect of Atg7 on melanoma growth and tumor immunity within the context of a wild-type or Ezh2Y641F epigenetic state. We found that the Atg7 locus is controlled by multiple Ezh2 and Stat3 binding sites, Atg7 expression is dependent on Stat3 expression, and that deletion of Atg7 slows down melanoma cell growth in vivo, but not in vitro. Atg7 deletion also results in increased CD8 + T cells in Ezh2Y641F melanomas and reduced myelosuppressive cell infiltration in the tumor microenvironment, particularly in Ezh2WT melanomas, suggesting a strong immune system contribution in the role of Atg7 in melanoma progression. These findings highlight the complex interplay between genetic mutations, epigenetic regulators, and autophagy in shaping tumor immunity in melanoma.


Asunto(s)
Proteína 7 Relacionada con la Autofagia , Proteína Potenciadora del Homólogo Zeste 2 , Factor de Transcripción STAT3 , Animales , Factor de Transcripción STAT3/metabolismo , Ratones , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Microambiente Tumoral/inmunología , Ratones Endogámicos C57BL , Regulación Neoplásica de la Expresión Génica , Melanoma/inmunología , Melanoma/metabolismo , Melanoma/genética , Melanoma/patología , Epigénesis Genética , Línea Celular Tumoral , Humanos , Autofagia/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo
2.
bioRxiv ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38915518

RESUMEN

Epigenetic modifications to DNA and chromatin control oncogenic and tumor suppressive mechanisms in melanoma. EZH2, the catalytic component of the Polycomb repressive complex 2 (PRC2), which mediates methylation of lysine 27 on histone 3 (H3K27me3), can regulate both melanoma initiation and progression. We previously found that mutant Ezh2 Y641F interacts with the immune regulator Stat3 and together they affect anti-tumor immunity. However, given the numerous downstream targets and pathways affected by EZH2, many mechanisms that determine its oncogenic activity remain largely unexplored. Using genetically engineered mouse models we further investigated the role of pathways downstream of EZH2 in melanoma carcinogenesis and identified significant enrichment in several autophagy signatures, along with increased expression of autophagy regulators, such as Atg7. In this study, we investigated the effect of Atg7 on melanoma growth and tumor immunity within the context of an Ezh2 Y641F epigenetic state. We found that expression of Atg7 is largely dependent on Stat3 expression and that deletion of Atg7 slows down melanoma cell growth in vivo, but not in vitro. Atg7 deletion also results in increased CD8+ T cells and reduced myelosuppressive cell infiltration in the tumor microenvironment, suggesting a strong immune system contribution in the role of Atg7 in melanoma progression. These findings highlight the complex interplay between genetic mutations, epigenetic regulators, and autophagy in shaping tumor immunity in melanoma.

3.
J Am Coll Health ; : 1-10, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38466319

RESUMEN

Objective: Describe the literature on suicide prevention initiatives (SPIs) in post-secondary settings internationally since 2010. Methods: A scoping review and bibliographic search were conducted across MEDLINE, PsycINFO, CINAHL, and Scopus. Two reviewers independently screened articles and extracted data in consultation with a community social work team. Included articles described SPIs in post-secondary settings. Secondary sources and articles unavailable in English were excluded. Results: After identifying 931 citations, 76 articles representing five continents were included. Included articles spanned 2010 to 2023. Most articles represented North America, used quantitative methods, and focused on gatekeepers. SPIs in post-secondary settings were characterized by standardized and commercially available training programs and a wide variety of 'in-house' initiatives unique to campus communities. Conclusions: The quantity of research on SPIs in post-secondary settings has not kept pace with escalating mental health issues and the extent to which suicide is an urgent public health issue for young adults.

4.
Nano Lett ; 23(20): 9272-9279, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37811908

RESUMEN

We present a novel method for fabricating highly customizable three-dimensional structures hosting quantum sensors based on nitrogen vacancy (NV) centers using two-photon polymerization. This approach overcomes challenges associated with structuring traditional single-crystal quantum sensing platforms and enables the creation of complex, fully three-dimensional, sensor assemblies with submicroscale resolutions (down to 400 nm) and large fields of view (>1 mm). By embedding NV center-containing nanoparticles in exemplary structures, we demonstrate high sensitivity optical sensing of temperature and magnetic fields at the microscale. Our work showcases the potential for integrating quantum sensors with advanced manufacturing techniques, facilitating the incorporation of sensors into existing microfluidic and electronic platforms, and opening new avenues for widespread utilization of quantum sensors in various applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA