Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Small ; 17(51): e2104356, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34791798

RESUMEN

Oxygen diffusivity and surface exchange kinetics underpin the ionic, electronic, and catalytic functionalities of complex multivalent oxides. Towards understanding and controlling the kinetics of oxygen transport in emerging technologies, it is highly desirable to reveal the underlying lattice dynamics and ionic activities related to oxygen variation. In this study, the evolution of oxygen content is identified in real-time during the progress of a topotactic phase transition in La0.7 Sr0.3 MnO3-δ epitaxial thin films, both at the surface and throughout the bulk. Using polarized neutron reflectometry, a quantitative depth profile of the oxygen content gradient is achieved, which, alongside atomic-resolution scanning transmission electron microscopy, uniquely reveals the formation of a novel structural phase near the surface. Surface-sensitive X-ray spectroscopies further confirm a significant change of the electronic structure accompanying the transition. The anisotropic features of this novel phase enable a distinct oxygen diffusion pathway in contrast to conventional observation of oxygen motion at moderate temperatures. The results provide insights furthering the design of solid oxygen ion conductors within the framework of topotactic phase transitions.

2.
iScience ; 23(8): 101417, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32798969

RESUMEN

Single-ion conducting polymer electrolytes exhibit great potential for next-generation high-energy-density Li metal batteries, although the lack of sufficient molecular-scale insights into lithium transport mechanisms and reliable understanding of key correlations often limit the scope of modification and design of new materials. Moreover, the sensitivity to small variations of polymer chemical structures (e.g., selection of specific linkages or chemical groups) is often overlooked as potential design parameter. In this study, combined molecular dynamics simulations and experimental investigations reveal molecular-scale correlations among variations in polymer structures and Li+ transport capabilities. Based on polyamide-based single-ion conducting quasi-solid polymer electrolytes, it is demonstrated that small modifications of the polymer backbone significantly enhance the Li+ transport while governing the resulting membrane morphology. Based on the obtained insights, tailored materials with significantly improved ionic conductivity and excellent electrochemical performance are achieved and their applicability in LFP||Li and NMC||Li cells is successfully demonstrated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA