Your browser doesn't support javascript.
loading
Small Groups, Big Impact: Eliminating Li+ Traps in Single-Ion Conducting Polymer Electrolytes.
Borzutzki, Kristina; Dong, Dengpan; Wölke, Christian; Kruteva, Margarita; Stellhorn, Annika; Winter, Martin; Bedrov, Dmitry; Brunklaus, Gunther.
Afiliación
  • Borzutzki K; Helmholtz-Institute Münster, IEK-12, Forschungszentrum Jülich, Corrensstr. 46, 48149 Münster, Germany.
  • Dong D; Department of Materials Science and Engineering, University of Utah, 122 S. Central Campus Dr., Rm. 304, Salt Lake City, UT 84112, USA.
  • Wölke C; Helmholtz-Institute Münster, IEK-12, Forschungszentrum Jülich, Corrensstr. 46, 48149 Münster, Germany.
  • Kruteva M; Jülich Centre for Neutron Science (JCNS-1) and Institute for Complex Systems (ICS-1), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
  • Stellhorn A; Jülich Centre for Neutron Science (JCNS-1) and Institute for Complex Systems (ICS-1), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
  • Winter M; Helmholtz-Institute Münster, IEK-12, Forschungszentrum Jülich, Corrensstr. 46, 48149 Münster, Germany; University of Münster, MEET Battery Research Center, Institute of Physical Chemistry, Corrensstr. 46, 48149 Münster, Germany.
  • Bedrov D; Department of Materials Science and Engineering, University of Utah, 122 S. Central Campus Dr., Rm. 304, Salt Lake City, UT 84112, USA. Electronic address: d.bedrov@utah.edu.
  • Brunklaus G; Helmholtz-Institute Münster, IEK-12, Forschungszentrum Jülich, Corrensstr. 46, 48149 Münster, Germany. Electronic address: g.brunklaus@fz-juelich.de.
iScience ; 23(8): 101417, 2020 Aug 21.
Article en En | MEDLINE | ID: mdl-32798969
Single-ion conducting polymer electrolytes exhibit great potential for next-generation high-energy-density Li metal batteries, although the lack of sufficient molecular-scale insights into lithium transport mechanisms and reliable understanding of key correlations often limit the scope of modification and design of new materials. Moreover, the sensitivity to small variations of polymer chemical structures (e.g., selection of specific linkages or chemical groups) is often overlooked as potential design parameter. In this study, combined molecular dynamics simulations and experimental investigations reveal molecular-scale correlations among variations in polymer structures and Li+ transport capabilities. Based on polyamide-based single-ion conducting quasi-solid polymer electrolytes, it is demonstrated that small modifications of the polymer backbone significantly enhance the Li+ transport while governing the resulting membrane morphology. Based on the obtained insights, tailored materials with significantly improved ionic conductivity and excellent electrochemical performance are achieved and their applicability in LFP||Li and NMC||Li cells is successfully demonstrated.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: IScience Año: 2020 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: IScience Año: 2020 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Estados Unidos