Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Acta Neuropathol Commun ; 10(1): 75, 2022 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-35568882

RESUMEN

In the intermediate stages of amyotrophic lateral sclerosis (ALS), surviving motor neurons (MNs) that show intrinsic resistance to TDP-43 proteinopathy can partially compensate for the loss of their more disease-susceptible counterparts. Elucidating the mechanisms of this compensation may reveal approaches for attenuating motor impairment in ALS patients. In the rNLS8 mouse model of ALS-like pathology driven by doxycycline-regulated neuronal expression of human TDP-43 lacking a nuclear localization signal (hTDP-43ΔNLS), slow MNs are more resistant to disease than fast-fatigable (FF) MNs and can mediate recovery following transgene suppression. In the present study, we used a viral tracing strategy to show that these disease-resistant slow MNs sprout to reinnervate motor endplates of adjacent muscle fibers vacated by degenerated FF MNs. Moreover, we found that neuromuscular junctions within fast-twitch skeletal muscle (tibialis anterior, TA) reinnervated by SK3-positive slow MNs acquire resistance to axonal dieback when challenged with a second course of hTDP-43ΔNLS pathology. The selective resistance of reinnervated neuromuscular junctions was specifically induced by the unique pattern of reinnervation following TDP-43-induced neurodegeneration, as recovery from unilateral sciatic nerve crush did not produce motor units resistant to subsequent hTDP-43ΔNLS. Using cross-reinnervation and self-reinnervation surgery in which motor axons are disconnected from their target muscle and reconnected to a new muscle, we show that FF MNs remain hTDP-43ΔNLS-susceptible and slow MNs remain resistant, regardless of which muscle fibers they control. Collectively, these findings demonstrate that MN identity dictates the susceptibility of neuromuscular junctions to TDP-43 pathology and slow MNs can drive recovery of motor systems due to their remarkable resilience to TDP-43-driven degeneration. This study highlights a potential pathway for regaining motor function with ALS pathology in the advent of therapies that halt the underlying neurodegenerative process.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas de Unión al ADN , Proteinopatías TDP-43 , Esclerosis Amiotrófica Lateral/patología , Animales , Proteínas de Unión al ADN/metabolismo , Humanos , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Proteinopatías TDP-43/patología
2.
Acta Neuropathol Commun ; 9(1): 140, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34412701

RESUMEN

The microglial reaction is a hallmark of neurodegenerative conditions, and elements thereof may exert differential effects on disease progression, either worsening or ameliorating severity. In amyotrophic lateral sclerosis (ALS), a syndrome characterized by cytoplasmic aggregation of TDP-43 protein and atrophy of motor neurons in the cortex and spinal cord, the transcriptomic signatures of microglia during disease progression are incompletely understood. Here, we performed longitudinal RNAseq analysis of cortical and spinal cord microglia from rNLS8 mice, in which doxycycline-regulatable expression of human TDP-43 (hTDP-43) in the cytoplasm of neurons recapitulates many features of ALS. Transgene suppression in rNLS8 mice leads to functional, anatomical and electrophysiological resolution that is dependent on a microglial reaction that is concurrent with recovery rather than disease onset. We identified basal differences between the gene expression profiles of microglia dependent on localization in spinal cord or cortex. Microglia subjected to chronic hTDP-43 overexpression demonstrated transcriptomic changes in both locations. We noted strong upregulation of Apoe, Axl, Cd63, Clec7a, Csf1, Cst7, Igf1, Itgax, Lgals3, Lilrb4, Lpl and Spp1 during late disease and recovery. Importantly, we identified a distinct suite of differentially expressed genes associated with each phase of disease progression and recovery. Differentially expressed genes were associated with chemotaxis, phagocytosis, inflammation, and production of neuroprotective factors. These data provide new insights into the microglial reaction in TDP-43 proteinopathy. Genes differentially expressed during progression and recovery may provide insight into a unique instance in which the microglial reaction promotes functional recovery after neuronal insult.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Corteza Cerebral/metabolismo , Proteínas de Unión al ADN/genética , Microglía/metabolismo , Médula Espinal/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Corteza Cerebral/citología , Quimiotaxis/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Perfilación de la Expresión Génica , Humanos , Estudios Longitudinales , Ratones , Ratones Transgénicos , Enfermedades Neuroinflamatorias/genética , Neuroprotección/genética , Fagocitosis , RNA-Seq , Recuperación de la Función , Médula Espinal/citología , Proteinopatías TDP-43/genética , Proteinopatías TDP-43/metabolismo
3.
Br J Pharmacol ; 176(9): 1268-1281, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30767215

RESUMEN

BACKGROUND AND PURPOSE: Endocannabinoids are critically involved in brain reward functions, mediated by activation of CB1 receptors, reflecting their high density in the brain. However, the recent discovery of CB2 receptors in the brain, particularly in the midbrain dopamine neurons, has challenged this view and inspired us to re-examine the roles of both CB1 and CB2 receptors in the effects of cannabis. EXPERIMENTAL APPROACH: In the present study, we used the electrical intracranial self-stimulation paradigm to evaluate the effects of various cannabinoid drugs on brain reward in laboratory rats and the roles of CB1 and CB2 receptors activation in brain reward function(s). KEY RESULTS: Two mixed CB1 / CB2 receptor agonists, Δ9 -tetrahydrocannabinol (Δ9 -THC) and WIN55,212-2, produced biphasic effects-mild enhancement of brain-stimulation reward (BSR) at low doses but inhibition at higher doses. Pretreatment with a CB1 receptor antagonist (AM251) attenuated the low dose-enhanced BSR, while a CB2 receptor antagonist (AM630) attenuated high dose-inhibited BSR. To confirm these opposing effects, rats were treated with selective CB1 and CB2 receptor agonists. These compounds produced significant BSR enhancement and inhibition, respectively. CONCLUSIONS AND IMPLICATIONS: CB1 receptor activation produced reinforcing effects, whereas CB2 receptor activation was aversive. The subjective effects of cannabis depend on the balance of these opposing effects. These findings not only explain previous conflicting results in animal models of addiction but also explain why cannabis can be either rewarding or aversive in humans, as expression of CB1 and CB2 receptors may differ in the brains of different subjects.


Asunto(s)
Cannabinoides/farmacología , Cannabis/química , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo , Recompensa , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Masculino , Ratas , Ratas Long-Evans , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB2/genética
4.
Neurobiol Dis ; 124: 133-140, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30458231

RESUMEN

Therapeutic strategies are needed for the treatment of amyotrophic lateral sclerosis (ALS). One potential target is matrix metalloproteinase-9 (MMP-9), which is expressed only by fast motor neurons (MNs) that are selectively vulnerable to various ALS-relevant triggers. Previous studies have shown that reduction of MMP-9 function delayed motor dysfunction in a mouse model of familial ALS. However, given that the majority of ALS cases are sporadic, we propose preclinical testing in a mouse model which may be more clinically translatable: rNLS8 mice. In rNLS8 mice, neurodegeneration is triggered by the major pathological hallmark of ALS, TDP-43 mislocalization and aggregation. MMP-9 was targeted in 3 different ways in rNLS8 mice: by AAV9-mediated knockdown, using antisense oligonucleotide (ASO) technology, and by genetic modification. All 3 strategies preserved the motor unit during disease, as measured by MN counts, tibialis anterior (TA) muscle innervation, and physiological recordings from muscle. However, the strategies that reduced MMP-9 beyond the motor unit lead to premature deaths in a subset of rNLS8 mice. Therefore, selective targeting of MMP-9 in MNs could be beneficial in ALS, but side effects outside of the motor circuit may limit the most commonly used clinical targeting strategies.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Proteínas de Unión al ADN/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Femenino , Técnicas de Silenciamiento del Gen , Masculino , Metaloproteinasa 9 de la Matriz/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Esquelético/inervación , Músculo Esquelético/fisiopatología
5.
Mol Ther ; 27(1): 87-101, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30446391

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease selectively targeting motor neurons in the brain and spinal cord. The reasons for differential motor neuron susceptibility remain elusive. We developed a stem cell-based motor neuron assay to study cell-autonomous mechanisms causing motor neuron degeneration, with implications for ALS. A small-molecule screen identified cyclopiazonic acid (CPA) as a stressor to which stem cell-derived motor neurons were more sensitive than interneurons. CPA induced endoplasmic reticulum stress and the unfolded protein response. Furthermore, CPA resulted in an accelerated degeneration of motor neurons expressing human superoxide dismutase 1 (hSOD1) carrying the ALS-causing G93A mutation, compared to motor neurons expressing wild-type hSOD1. A secondary screen identified compounds that alleviated CPA-mediated motor neuron degeneration: three kinase inhibitors and tauroursodeoxycholic acid (TUDCA), a bile acid derivative. The neuroprotective effects of these compounds were validated in human stem cell-derived motor neurons carrying a mutated SOD1 allele (hSOD1A4V). Moreover, we found that the administration of TUDCA in an hSOD1G93A mouse model of ALS reduced muscle denervation. Jointly, these results provide insights into the mechanisms contributing to the preferential susceptibility of ALS motor neurons, and they demonstrate the utility of stem cell-derived motor neurons for the discovery of new neuroprotective compounds.


Asunto(s)
Neuronas Motoras/citología , Células Madre/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/genética , Humanos , Indoles/farmacología , Ratones , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Mutación , Células Madre/efectos de los fármacos , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Ácido Tauroquenodesoxicólico/farmacología
6.
Nat Neurosci ; 21(3): 329-340, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29463850

RESUMEN

Though motor neurons selectively degenerate in amyotrophic lateral sclerosis, other cell types are likely involved in this disease. We recently generated rNLS8 mice in which human TDP-43 (hTDP-43) pathology could be reversibly induced in neurons and expected that microglia would contribute to neurodegeneration. However, only subtle microglial changes were detected during disease in the spinal cord, despite progressive motor neuron loss; microglia still reacted to inflammatory triggers in these mice. Notably, after hTDP-43 expression was suppressed, microglia dramatically proliferated and changed their morphology and gene expression profiles. These abundant, reactive microglia selectively cleared neuronal hTDP-43. Finally, when microgliosis was blocked during the early recovery phase using PLX3397, a CSF1R and c-kit inhibitor, rNLS8 mice failed to regain full motor function, revealing an important neuroprotective role for microglia. Therefore, reactive microglia exert neuroprotective functions in this amyotrophic lateral sclerosis model, and definition of the underlying mechanism could point toward novel therapeutic strategies.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Neuronas Motoras/patología , Proteinopatías TDP-43/genética , Proteinopatías TDP-43/patología , Aminopiridinas/farmacología , Animales , Perfilación de la Expresión Génica , Gliosis/patología , Humanos , Inflamación/genética , Inflamación/patología , Ratones , Ratones Transgénicos , Músculo Esquelético/patología , Mutación/genética , Células Mieloides/patología , Pirroles/farmacología , Recuperación de la Función , Médula Espinal/patología , Superóxido Dismutasa-1/genética
7.
Acta Neuropathol Commun ; 4(1): 105, 2016 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-27687289

RESUMEN

In order to treat progressive paralysis in ALS patients, it is critical to develop a mouse that closely models human ALS in both pathology and also in the timing of these events. We have recently generated new TDP-43 bigenic mice (called rNLS8) with doxycycline (Dox)-suppressible expression of human TDP-43 (hTDP-43) harboring a defective nuclear localization signal (hTDP-43∆NLS) under the control of the NEFH promoter. Our previous studies characterized the pathology and disease course in young rNLS8 mice following induction of neuronal hTDP-43ΔNLS. We now seek to examine if the order and timing of pathologic events are changed in aged mice. We found that the expression of hTDP-43∆NLS in 12+ month old mice did not accelerate the appearance of neuromuscular abnormalities or motor neuron (MN) death in the lumbar spinal cord (SC), though disease progression was accelerated. However, following suppression of the transgene, important differences between young and aged rNLS8 mice emerged in functional motor recovery. We found that recovery was incomplete in aged mice relative to their younger treatment matched counterparts based on gross behavioral measures and physiological recordings from the animals' gastrocnemius (GC) muscles, despite muscle reinnervation by surviving MNs. This is likely because the reinnervation most often only resulted in partial nerve and endplate connections and the muscle's junctional folds were much more disorganized in aged rNLS8 mice. We believe that these studies will be an important basis for the future design and evaluation of therapies designed to slow denervation and promote re-innervation in adult ALS patients.

8.
J Neurosci ; 36(29): 7707-17, 2016 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-27445147

RESUMEN

UNLABELLED: Motor neurons (MNs) are the neuronal class that is principally affected in amyotrophic lateral sclerosis (ALS), but it is widely known that individual motor pools do not succumb to degeneration simultaneously. Because >90% of ALS patients have an accumulation of cytoplasmic TDP-43 aggregates in postmortem brain and spinal cord (SC), it has been suggested that these inclusions in a given population may trigger its death. We investigated seven MN pools in our new inducible rNLS8 transgenic (Tg) mouse model of TDP-43 proteinopathy and found striking differences in MN responses to TDP-43 pathology. Despite widespread neuronal expression of cytoplasmic human TDP-43, only MNs in the hypoglossal nucleus and the SC are lost after 8 weeks of transgene expression, whereas those in the oculomotor, trigeminal, and facial nuclei are spared. Within the SC, slow MNs survive to end stage, whereas fast fatigable MNs are lost. Correspondingly, axonal dieback occurs first from fast-twitch muscle fibers, whereas slow-twitch fibers remain innervated. Individual pools show differences in the downregulation of endogenous nuclear TDP-43, but this does not fully account for vulnerability to degenerate. After transgene suppression, resistant MNs sprout collaterals to reinnervate previously denervated neuromuscular junctions concurrently with expression of matrix metalloproteinase 9 (MMP-9), a marker of fast MNs. Therefore, although pathological TDP-43 is linked to MN degeneration, the process is not stochastic and mirrors the highly selective patterns of MN degeneration observed in ALS patients. SIGNIFICANCE STATEMENT: Because TDP-43 is the major pathological hallmark of amyotrophic lateral sclerosis (ALS), we generated mice in which mutant human TDP-43 expression causes progressive neuron loss. We show that these rNLS8 mice have a pattern of axonal dieback and cell death that mirrors that often observed in human patients. This finding demonstrates the diversity of motor neuron (MN) populations in their response to pathological TDP-43. Furthermore, we demonstrate that resistant MNs are able to compensate for the loss of their more vulnerable counterparts and change their phenotype in the process. These findings are important because using a mouse model that closely models human ALS in both the disease pathology and the pattern of degeneration is critical to studying and eventually treating progressive paralysis in ALS patients.


Asunto(s)
Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica/genética , Neuronas Motoras/fisiología , Recuperación de la Función/fisiología , Proteinopatías TDP-43/patología , Animales , Tronco Encefálico/patología , Muerte Celular/genética , Toxina del Cólera/metabolismo , Proteínas de Unión al ADN/metabolismo , Estimulación Eléctrica , Humanos , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Transgénicos , Microscopía Electrónica , Neuronas Motoras/ultraestructura , Músculo Esquelético/inervación , Músculo Esquelético/fisiología , Mutación/genética , Proteínas de Neurofilamentos/genética , Proteínas de Neurofilamentos/metabolismo , Médula Espinal/patología , Proteinopatías TDP-43/genética , Proteinopatías TDP-43/fisiopatología , Proteínas de Transporte Vesicular de Acetilcolina/genética , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo
9.
Acta Neuropathol ; 130(5): 643-60, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26197969

RESUMEN

Accumulation of phosphorylated cytoplasmic TDP-43 inclusions accompanied by loss of normal nuclear TDP-43 in neurons and glia of the brain and spinal cord are the molecular hallmarks of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP). However, the role of cytoplasmic TDP-43 in the pathogenesis of these neurodegenerative TDP-43 proteinopathies remains unclear, due in part to a lack of valid mouse models. We therefore generated new mice with doxycycline (Dox)-suppressible expression of human TDP-43 (hTDP-43) harboring a defective nuclear localization signal (∆NLS) under the control of the neurofilament heavy chain promoter. Expression of hTDP-43∆NLS in these 'regulatable NLS' (rNLS) mice resulted in the accumulation of insoluble, phosphorylated cytoplasmic TDP-43 in brain and spinal cord, loss of endogenous nuclear mouse TDP-43 (mTDP-43), brain atrophy, muscle denervation, dramatic motor neuron loss, and progressive motor impairments leading to death. Notably, suppression of hTDP-43∆NLS expression by return of Dox to rNLS mice after disease onset caused a dramatic decrease in phosphorylated TDP-43 pathology, an increase in nuclear mTDP-43 to control levels, and the prevention of further motor neuron loss. rNLS mice back on Dox also showed a significant increase in muscle innervation, a rescue of motor impairments, and a dramatic extension of lifespan. Thus, the rNLS mice are new TDP-43 mouse models that delineate the timeline of pathology development, muscle denervation and neuron loss in ALS/FTLD-TDP. Importantly, even after neurodegeneration and onset of motor dysfunction, removal of cytoplasmic TDP-43 and the concomitant return of nuclear TDP-43 led to neuron preservation, muscle re-innervation and functional recovery.


Asunto(s)
Esclerosis Amiotrófica Lateral/fisiopatología , Citoplasma/metabolismo , Proteínas de Unión al ADN/metabolismo , Degeneración Lobar Frontotemporal/fisiopatología , Recuperación de la Función/fisiología , Esclerosis Amiotrófica Lateral/patología , Animales , Atrofia , Encéfalo/metabolismo , Encéfalo/patología , Núcleo Celular/metabolismo , Núcleo Celular/patología , Citoplasma/patología , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Doxiciclina , Femenino , Degeneración Lobar Frontotemporal/patología , Humanos , Masculino , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Trastornos del Movimiento/patología , Trastornos del Movimiento/fisiopatología , Músculo Esquelético/inervación , Distribución Aleatoria , Médula Espinal/metabolismo , Médula Espinal/patología
10.
Biomaterials ; 35(15): 4477-88, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24589361

RESUMEN

Angiogenesis is crucial for the success of most tissue engineering strategies. The natural inflammatory response is a major regulator of vascularization, through the activity of different types of macrophages and the cytokines they secrete. Macrophages exist on a spectrum of diverse phenotypes, from "classically activated" M1 to "alternatively activated" M2 macrophages. M2 macrophages, including the subsets M2a and M2c, are typically considered to promote angiogenesis and tissue regeneration, while M1 macrophages are considered to be anti-angiogenic, although these classifications are controversial. Here we show that in contrast to this traditional paradigm, primary human M1 macrophages secrete the highest levels of potent angiogenic stimulators including VEGF; M2a macrophages secrete the highest levels of PDGF-BB, a chemoattractant for stabilizing pericytes, and also promote anastomosis of sprouting endothelial cells in vitro; and M2c macrophages secrete the highest levels of MMP9, an important protease involved in vascular remodeling. In a murine subcutaneous implantation model, porous collagen scaffolds were surrounded by a fibrous capsule, coincident with high expression of M2 macrophage markers, while scaffolds coated with the bacterial lipopolysaccharide were degraded by inflammatory macrophages, and glutaraldehyde-crosslinked scaffolds were infiltrated by substantial numbers of blood vessels, accompanied by high levels of M1 and M2 macrophages. These results suggest that coordinated efforts by both M1 and M2 macrophages are required for angiogenesis and scaffold vascularization, which may explain some of the controversy over which phenotype is the angiogenic phenotype.


Asunto(s)
Macrófagos/citología , Neovascularización Fisiológica , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Becaplermina , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana , Humanos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-sis/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
11.
Neuron ; 81(2): 333-48, 2014 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-24462097

RESUMEN

Selective neuronal loss is the hallmark of neurodegenerative diseases. In patients with amyotrophic lateral sclerosis (ALS), most motor neurons die but those innervating extraocular, pelvic sphincter, and slow limb muscles exhibit selective resistance. We identified 18 genes that show >10-fold differential expression between resistant and vulnerable motor neurons. One of these, matrix metalloproteinase-9 (MMP-9), is expressed only by fast motor neurons, which are selectively vulnerable. In ALS model mice expressing mutant superoxide dismutase (SOD1), reduction of MMP-9 function using gene ablation, viral gene therapy, or pharmacological inhibition significantly delayed muscle denervation. In the presence of mutant SOD1, MMP-9 expressed by fast motor neurons themselves enhances activation of ER stress and is sufficient to trigger axonal die-back. These findings define MMP-9 as a candidate therapeutic target for ALS. The molecular basis of neuronal diversity thus provides significant insights into mechanisms of selective vulnerability to neurodegeneration.


Asunto(s)
Metaloproteinasa 9 de la Matriz/metabolismo , Neuronas Motoras/metabolismo , Enfermedades Neurodegenerativas/genética , Potenciales de Acción/genética , Potenciales de Acción/fisiología , Factores de Edad , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Toxina del Cólera/metabolismo , Proteínas de Unión al ADN/metabolismo , Dependovirus/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Metaloproteinasa 9 de la Matriz/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Desnervación Muscular , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Enfermedades Neurodegenerativas/patología , Fosfopiruvato Hidratasa/metabolismo , Superóxido Dismutasa/genética , Factores de Transcripción/metabolismo , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA