Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cytotherapy ; 26(5): 444-455, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38363248

RESUMEN

BACKGROUND AIMS: Coronavirus disease 2019 (COVID-19) is characterized by a broad spectrum of clinical manifestations with the potential to progress to multiple organ dysfunction in severe cases. Extracellular vesicles (EVs) carry a range of biological cargoes, which may be used as biomarkers of disease state. METHODS: An exploratory secondary analysis of the SARITA-2 and SARITA-1 datasets (randomized clinical trials on patients with mild and moderate/severe COVID-19) was performed. Serum-derived EVs were used for proteomic analysis to identify enriched biological processes and key proteins, thus providing insights into differences in disease severity. Serum-derived EVs were separated from patients with COVID-19 by size exclusion chromatography and nanoparticle tracking analysis was used to determine particle concentration and diameter. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was performed to identify and quantify protein signatures. Bioinformatics and multivariate statistical analysis were applied to distinguish candidate proteins associated with disease severity (mild versus moderate/severe COVID-19). RESULTS: No differences were observed in terms of the concentration and diameter of enriched EVs between mild (n = 14) and moderate/severe (n = 30) COVID-19. A total of 414 proteins were found to be present in EVs, of which 360 were shared while 48 were uniquely present in severe/moderate compared to mild COVID-19. The main biological signatures in moderate/severe COVID-19 were associated with platelet degranulation, exocytosis, complement activation, immune effector activation, and humoral immune response. Von Willebrand factor, serum amyloid A-2 protein, histone H4 and H2A type 2-C, and fibrinogen ß-chain were the most differentially expressed proteins between severity groups. CONCLUSION: Exploratory proteomic analysis of serum-derived EVs from patients with COVID-19 detected key proteins related to immune response and activation of coagulation and complement pathways, which are associated with disease severity. Our data suggest that EV proteins may be relevant biomarkers of disease state and prognosis.


Asunto(s)
COVID-19 , Vesículas Extracelulares , Proteómica , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Humanos , COVID-19/sangre , COVID-19/diagnóstico , COVID-19/inmunología , Vesículas Extracelulares/metabolismo , Proteómica/métodos , Femenino , Masculino , Persona de Mediana Edad , Biomarcadores/sangre , Anciano , Adulto , Espectrometría de Masas en Tándem , Cromatografía Liquida
2.
Front Cell Dev Biol ; 11: 1206049, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37576604

RESUMEN

Background: Leishmaniasis results in a wide spectrum of clinical manifestations, ranging from skin lesions at the site of infection to disseminated lesions in internal organs, such as the spleen and liver. While the ability of Leishmania-infected host cells to migrate may be important to lesion distribution and parasite dissemination, the underlying mechanisms and the accompanying role of host cells remain poorly understood. Previously published work has shown that Leishmania infection inhibits macrophage migration in a 2-dimensional (2D) environment by altering actin dynamics and impairing the expression of proteins involved in plasma membrane-extracellular matrix interactions. Although it was shown that L. infantum induces the 2D migration of dendritic cells, in vivo cell migration primarily occurs in 3-dimensional (3D) environments. The present study aimed to investigate the migration of macrophages and dendritic cells infected by Leishmania using a 3-dimensional environment, as well as shed light on the mechanisms involved in this process. Methods: Following the infection of murine bone marrow-derived macrophages (BMDM), human macrophages and human dendritic cells by L. amazonensis, L. braziliensis, or L. infantum, cellular migration, the formation of adhesion complexes and actin polymerization were evaluated. Results: Our results indicate that Leishmania infection inhibited 3D migration in both BMDM and human macrophages. Reduced expression of proteins involved in adhesion complex formation and alterations in actin dynamics were also observed in Leishmania-infected macrophages. By contrast, increased human dendritic cell migration in a 3D environment was found to be associated with enhanced adhesion complex formation and increased actin dynamics. Conclusion: Taken together, our results show that Leishmania infection inhibits macrophage 3D migration, while enhancing dendritic 3D migration by altering actin dynamics and the expression of proteins involved in plasma membrane extracellular matrix interactions, suggesting a potential association between dendritic cells and disease visceralization.

3.
Sci Rep ; 12(1): 15774, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36131006

RESUMEN

Heterogeneous chemical processes occupy a pivotal position in many fields of applied chemistry. Monitoring reaction kinetics in such heterogeneous systems together with challenges associated with ex-situ analytical methodologies can lead to inaccurate information about the nature of the catalyst surfaces as well as information about the steps involved. The present work explores the possibility of kinetic measurements of chemical reactions and adsorption processes of homogeneous and heterogeneous systems through the variation of RGB intensities of digital images using a smartphone combined with a program written in Python to accelerate and facilitate data acquisition. In order to validate the method proposed, the base promoted hydrolysis of 4-nitrophenyl acetate was initially investigated. The rate constants obtained through RGB analysis (0.01854 min-1) is almost identical to that using traditional UV-Vis spectroscopy (0.01848 min-1). The proposed method was then applied to monitor the kinetics of three heterogeneous processes: (1) reduction of 4-nitrophenolate in the presence of dispersed Pd/C; (2) decomposition of methyl orange with TiO2; and (3) adsorption of rhodamine on montmorillonite. In general, the method via digital images showed high reproducibility and analytical frequency, allowing the execution of simultaneous analyses, with an accuracy comparable to UV-Vis spectrophotometry. The method developed herein is a practical and valuable alternative for obtaining kinetic data of heterogeneous reactions and processes where a color change is involved, bypassing sampling collection and processing which decreases analytical frequency and may lead to data errors.


Asunto(s)
Bentonita , Teléfono Inteligente , Cinética , Reproducibilidad de los Resultados , Rodaminas
4.
An Acad Bras Cienc ; 94(suppl 3): e20210943, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35894375

RESUMEN

Species distribution mapping methods have their advantages and limitations concerning their use on theoretical and/or applied macroecological approaches. However, it remains underexplored how the estimates of community ecology metrics vary across the distributions generated by different mapping methods. Here, we mapped the distribution patterns of the anuran beta diversity in the Atlantic Forest and Cerrado hotspots generated by three mapping methods: point-to-grid (PTG), extent-of-occurrence (EOO), and ecological niche modelling (ENM) maps, so we were able to compare the congruence of the local contribution to beta diversity index (LCBD) among them, as well as their turnover and nestedness components. PTGs generated the most divergent LCBD values probably due to the more resolved spatial scale in which species' presence are considered, so EEO and ENM generated similar beta diversity estimates for both hotspots. High LCBD values in the Cerrado were recorded in ecotone regions, whereas in the Atlantic Forest the highest beta diversity values were found along the Atlantic coast. The structure of beta diversity of PTG showed way too high values of importance for the turnover component compared to the EEO and ENM maps, which also recorded higher importance for the turnover than for the nestedness component.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Anuros , Bosques
5.
Front Cardiovasc Med ; 9: 864837, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35757326

RESUMEN

Aim: Previous studies showed that granulocyte-colony stimulating factor (G-CSF) improved heart function in a mice model of Chronic Chagas Cardiomyopathy (CCC). Herein, we report the interim results of the safety and efficacy of G-CSF therapy vs. placebo in adults with Chagas cardiomyopathy. Methods: Patients with CCC, New York Heart Association (NYHA) functional class II to IV and left ventricular ejection fraction (LVEF) 50% or below were included. A randomization list using blocks of 2 and 4 and an allocation rate of 1:1 was generated by R software which was stratified by functional class. Double blinding was done to both arms and assessors were masked to allocations. All patients received standard heart failure treatment for 2 months before 1:1 randomization to either the G-CSF (10 mcg/kg/day subcutaneously) or placebo group (1 mL of 0.9% saline subcutaneously). The primary endpoint was either maintenance or improvement of NYHA class from baseline to 6-12 months after treatment, and intention-to-treat analysis was used. Results: We screened 535 patients with CCC in Salvador, Brazil, of whom 37 were randomized. Overall, baseline characteristics were well-balanced between groups. Most patients had NYHA class II heart failure (86.4%); low mean LVEF was 32 ± 7% in the G-CSF group and 33 ± 10% in the placebo group. Frequency of primary endpoint was 78% (95% CI 0.60-0.97) vs. 66% (95% CI 0.40-0.86), p = 0.47, at 6 months and 68% (95% CI 0.43-0.87) vs. 72% (95% CI 0.46-0.90), p = 0.80, at 12 months in placebo and G-CSF groups, respectively. G-CSF treatment was safe, without any related serious adverse events. There was no difference in mortality between both arms, with five deaths (18.5%) in treatment vs. four (12.5%) in the placebo arm. Exploratory analysis demonstrated that the maximum rate of oxygen consumption during exercise (VO2 max) showed an improving trend in the G-CSF group. Conclusion: G-CSF therapy was safe and well-tolerated in 12 months of follow-up. Although prevention of symptom progression could not be demonstrated in the present study, our results support further investigation of G-CSF therapy in Chagas cardiomyopathy patients. Clinical Trial Registration: [www.ClinicalTrials.gov], identifier [NCT02154269].

6.
Front Pharmacol ; 13: 858190, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35479309

RESUMEN

Agathisflavone is a flavonoid with anti-neuroinflammatory and myelinogenic properties, being also capable to induce neurogenesis. This study evaluated the therapeutic effects of agathisflavone-both as a pharmacological therapy administered in vivo and as an in vitro pre-treatment aiming to enhance rat mesenchymal stem cells (r)MSCs properties-in a rat model of acute spinal cord injury (SCI). Adult male Wistar rats (n = 6/group) underwent acute SCI with an F-2 Fogarty catheter and after 4 h were treated daily with agathisflavone (10 mg/kg ip, for 7 days), or administered with a single i.v. dose of 1 × 106 rMSCs either unstimulated cells (control) or pretreated with agathisflavone (1 µM, every 2 days, for 21 days in vitro). Control rats (n = 6/group) were treated with a single dose methylprednisolone (MP, 60 mg/kg ip). BBB scale was used to evaluate the motor functions of the animals; after 7 days of treatment, the SCI area was analyzed after H&E staining, and RT-qPCR was performed to analyze the expression of neurotrophins and arginase. Treatment with agathisflavone alone or with of 21-day agathisflavone-treated rMSCs was able to protect the injured spinal cord tissue, being associated with increased expression of NGF, GDNF and arginase, and reduced macrophage infiltrate. In addition, treatment of animals with agathisflavone alone was able to protect injured spinal cord tissue and to increase expression of neurotrophins, modulating the inflammatory response. These results support a pro-regenerative effect of agathisflavone that holds developmental potential for clinical applications in the future.

7.
Microorganisms ; 9(6)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34207943

RESUMEN

Leishmania, an intracellular parasite species, causes lesions on the skin and in the mucosa and internal organs. The dissemination of infected host cells containing Leishmania is crucial to parasite survival and the establishment of infection. Migratory phenomena and the mechanisms underlying the dissemination of Leishmania-infected human dendritic cells (hDCs) remain poorly understood. The present study aimed to investigate differences among factors involved in hDC migration by comparing infection with visceral leishmaniasis (VL) induced by Leishmaniainfantum with diverse clinical forms of tegumentary leishmaniasis (TL) induced by Leishmaniabraziliensis or Leishmania amazonensis. Following the infection of hDCs by isolates obtained from patients with different clinical forms of Leishmania, the formation of adhesion complexes, actin polymerization, and CCR7 expression were evaluated. We observed increased hDC migration following infection with isolates of L. infantum (VL), as well as disseminated (DL) and diffuse (DCL) forms of cutaneous leishmaniasis (CL) caused by L. braziliensis and L. amazonensis, respectively. Increased expression of proteins involved in adhesion complex formation and actin polymerization, as well as higher CCR7 expression, were seen in hDCs infected with L. infantum, DL and DCL isolates. Together, our results suggest that hDCs play an important role in the dissemination of Leishmania parasites in the vertebrate host.

8.
Front Fungal Biol ; 2: 805502, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37744114

RESUMEN

Paracoccidioides sp.-Herpes simplex virus (HSV) co-infection was not reported until now and malabsorption syndrome is a rare complication of the acute/subacute form (AF) of paracoccidioidomycosis (PCM), characterized by life-threatening abnormalities, such as fat and protein loss, lymphopenia, ascites, and intense immunosuppression. A 21-year-old woman presented the PCM AF with intense involvement of the abdominal and intestinal lymphoid organs, which leads to the malabsorption syndrome and severe immunosuppression. This patient developed a fatal-disseminated HSV infection associated with the paracoccidioidal disease. This case demonstrates that, in addition to the antigen-specific immunosuppression, some PCM patients can present a generalized cell-mediated immune depression and endogenous infection of latent microorganisms. On the best of our knowledge, this is the first report of an association between PCM and HSV infection.

9.
Front Cell Infect Microbiol ; 10: 558324, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33251156

RESUMEN

Zika virus (ZIKV), a member of the Flaviviridae family, was brought into the spotlight due to its widespread and increased pathogenicity, including Guillain-Barré syndrome and microcephaly. Neural progenitor cells (NPCs), which are multipotent cells capable of differentiating into the major neural phenotypes, are very susceptible to ZIKV infection. Given the complications of ZIKV infection and potential harm to public health, effective treatment options are urgently needed. Betulinic acid (BA), an abundant terpenoid of the lupane group, displays several biological activities, including neuroprotective effects. Here we demonstrate that Sox2+ NPCs, which are highly susceptible to ZIKV when compared to their neuronal counterparts, are protected against ZIKV-induced cell death when treated with BA. Similarly, the population of Sox2+ and Casp3+ NPCs found in ZIKV-infected cerebral organoids was significantly higher in the presence of BA than in untreated controls. Moreover, well-preserved structures were found in BA-treated organoids in contrast to ZIKV-infected controls. Bioinformatics analysis indicated Akt pathway activation by BA treatment. This was confirmed by phosphorylated Akt analysis, both in BA-treated NPCs and brain organoids, as shown by immunoblotting and immunofluorescence analyses, respectively. Taken together, these data suggest a neuroprotective role of BA in ZIKV-infected NPCs.


Asunto(s)
Microcefalia , Células-Madre Neurales , Infección por el Virus Zika , Virus Zika , Humanos , Triterpenos Pentacíclicos , Infección por el Virus Zika/tratamiento farmacológico , Ácido Betulínico
10.
J Org Chem ; 85(7): 4663-4671, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32155066

RESUMEN

A density functional theory (DFT) computational analysis, using the ωB97X-D functional, of a rapid amide cleavage in 2-carboxyphthalanilic acid (2CPA), where the amide group is flanked by two catalytic carboxyls, reveals key mechanistic information: (a) General base catalysis by a carboxylate coupled to general acid catalysis by a carboxyl is not operative. (b) Nucleophilic attack by a carboxylate on the amide carbonyl coupled to general acid catalysis at the amide oxygen can also be ruled out. (c) A mechanistic pathway that remains viable involves general acid proton delivery to the amide nitrogen by a carboxyl, while the other carboxylate engages in nucleophilic attack upon the amide carbonyl; a substantially unchanged amide carbonyl in the transition state; two concurrent bond-forming events; and a spatiotemporal-base rate acceleration. This mechanism is supported by molecular dynamic simulations which confirm a persistent key intramolecular hydrogen bonding. These theoretical conclusions, although not easily verified by experiment, are consistent with a bell-shaped pH/rate profile but are at odds with hydrolysis mechanisms in the classic literature.

11.
Stem Cells Int ; 2018: 9108681, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30140292

RESUMEN

Mesenchymal stem/stromal cells (MSCs) have been investigated for the treatment of diseases that affect the cardiovascular system, including Chagas disease. MSCs are able to promote their beneficial actions through the secretion of proregenerative and immunomodulatory factors, including insulin-like growth factor-1 (IGF-1), which has proregenerative actions in the heart and skeletal muscle. Here, we evaluated the therapeutic potential of IGF-1-overexpressing MSCs (MSC_IGF-1) in a mouse model of chronic Chagas disease. C57BL/6 mice were infected with Colombian strain Trypanosoma cruzi and treated with MSCs, MSC_IGF-1, or vehicle (saline) six months after infection. RT-qPCR analysis confirmed the presence of transplanted cells in both the heart and skeletal muscle tissues. Transplantation of either MSCs or MSC_IGF-1 reduced the number of inflammatory cells in the heart when compared to saline controls. Moreover, treatment with MSCs or MSC_IGF-1 significantly reduced TNF-α, but only MSC treatment reduced IFN-γ production compared to the saline group. Skeletal muscle sections of both MSC- and MSC_IGF-1-treated mice showed a reduction in fibrosis compared to saline controls. Importantly, the myofiber area was reduced in T. cruzi-infected mice, and this was recovered after treatment with MSC_IGF-1. Gene expression analysis in the skeletal muscle showed a higher expression of pro- and anti-inflammatory molecules in MSC_IGF-1-treated mice compared to MSCs alone, which significantly reduced the expression of TNF-α and IL-1ß. In conclusion, our results indicate the therapeutic potential of MSC_IGF-1, with combined immunomodulatory and proregenerative actions to the cardiac and skeletal muscles.

12.
Front Immunol ; 9: 1449, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30013550

RESUMEN

Genetic modification of mesenchymal stem cells (MSCs) is a promising strategy to improve their therapeutic effects. Granulocyte-colony stimulating factor (G-CSF) is a growth factor widely used in the clinical practice with known regenerative and immunomodulatory actions, including the mobilization of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs). Here we evaluated the therapeutic potential of MSCs overexpressing G-CSF (MSC_G-CSF) in a model of inflammatory cardiomyopathy due to chronic Chagas disease. C57BL/6 mice were treated with wild-type MSCs, MSC_G-CSF, or vehicle (saline) 6 months after infection with Trypanosoma cruzi. Transplantation of MSC_G-CSF caused an increase in the number of circulating leukocytes compared to wild-type MSCs. Moreover, G-CSF overexpression caused an increase in migration capacity of MSCs to the hearts of infected mice. Transplantation of either MSCs or MSC_G-CSF improved exercise capacity, when compared to saline-treated chagasic mice. MSC_G-CSF mice, however, were more potent than MSCs in reducing the number of infiltrating leukocytes and fibrosis in the heart. Similarly, MSC_G-CSF-treated mice presented significantly lower levels of inflammatory mediators, such as IFNγ, TNFα, and Tbet, with increased IL-10 production. A marked increase in the percentage of Tregs and MDSCs in the hearts of infected mice was seen after administration of MSC_G-CSF, but not MSCs. Moreover, Tregs were positive for IL-10 in the hearts of T. cruzi-infected mice. In vitro analysis showed that recombinant hG-CSF and conditioned medium of MSC_G-CSF, but not wild-type MSCs, induce chemoattraction of MDSCs in a transwell assay. Finally, MDSCs purified from hearts of MSC_G-CSF transplanted mice inhibited the proliferation of activated splenocytes in a co-culture assay. Our results demonstrate that G-CSF overexpression by MSCs potentiates their immunomodulatory effects in our model of Chagas disease and suggest that mobilization of suppressor cell populations such as Tregs and MDSCs as a promising strategy for the treatment of chronic Chagas disease. Finally, our results reinforce the therapeutic potential of genetic modification of MSCs, aiming at increasing their paracrine actions.

13.
Cytotechnology ; 70(2): 577-591, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28866844

RESUMEN

Mesenchymal stem cells (MSC) are promising tools in the fields of cell therapy and regenerative medicine. In addition to their differentiation potential, MSC have the ability to secrete bioactive molecules that stimulate tissue regeneration. Thus, the overexpression of cytokines and growth factors may enhance the therapeutic effects of MSC. Here we generated and characterized mouse bone marrow MSC lines overexpressing hG-CSF or hIGF-1. MSC lines overexpressing hG-CSF or hIGF-1 were generated through lentiviral vector mediated gene transfer. The expression of hG-CSF or hIGF-1 genes in the clones produced was quantified by qRT-PCR, and the proteins were detected in the cell supernatants by ELISA. The cell lines displayed cell surface markers and differentiation potential into adipocytes, osteocytes and chondrocytes similar to the control MSC cell lines, indicating the conservation of their phenotype even after genetic modification. IGF-1 and G-CSF transgenic cells maintained immunosuppressive activity. Finally, we performed a comparative gene expression analysis by qRT-PCR array in the cell lines expressing hIGF-1 and hG-CSF when compared to the control cells. Our results demonstrate that the cell lines generated may be useful tools for cell therapy and are suitable for testing in disease models.

14.
Angew Chem Int Ed Engl ; 56(19): 5345-5348, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28378430

RESUMEN

Aspartic proteinases, which include HIV-1 proteinase, function with two aspartate carboxy groups at the active site. This relationship has been modeled in a system possessing an otherwise unactivated amide positioned between two carboxy groups. The model amide is cleaved at an enzyme-like rate that renders the amide nonisolable at 35 °C and pH 4 owing to the joint presence of carboxy and carboxylate groups. A currently advanced theory attributing almost the entire catalytic power of enzymes to electrostatic reorganization is shown to be superfluous when suitable interatomic interactions are present. Our kinetic results are consistent with spatiotemporal concepts where embedding the amide group between two carboxylic moieties in proper geometries, at distances less than the diameter of water, leads to enzyme-like rate enhancements. Space and time are the essence of enzyme catalysis.


Asunto(s)
Amidas/metabolismo , Proteasas de Ácido Aspártico/metabolismo , Amidas/química , Proteasas de Ácido Aspártico/química , Biocatálisis , Teoría Funcional de la Densidad , Concentración de Iones de Hidrógeno , Cinética , Estructura Molecular
15.
Acc Chem Res ; 49(12): 2786-2795, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27993006

RESUMEN

Polymer networks are widely used from commodity to biomedical materials. The space-spanning, net-like structure gives polymer networks their advantageous mechanical and dynamic properties, the most essential factor that governs their responses to external electrical, thermal, and chemical stimuli. Despite the ubiquity of applications and a century of active research on these materials, the way that chemistry and processing interact to yield the final structure and the material properties of polymer networks is not fully understood, which leads to a number of classical challenges in the physical chemistry of gels. Fundamentally, it is not yet possible to quantitatively predict the mechanical response of a polymer network based on its chemical design, limiting our ability to understand and characterize the nanostructure of gels and rationally design new materials. In this Account, we summarize our recent theoretical and experimental approaches to study the physical chemistry of polymer networks. First, our understanding of the impact of molecular defects on topology and elasticity of polymer networks is discussed. By systematically incorporating the effects of different orders of loop structure, we develop a kinetic graph theory and real elastic network theory that bridge the chemical design, the network topology, and the mechanical properties of the gel. These theories show good agreement with the recent experimental data without any fitting parameters. Next, associative polymer gel dynamics is discussed, focusing on our evolving understanding of the effect of transient bonds on the mechanical response. Using forced Rayleigh scattering (FRS), we are able to probe diffusivity across a wide range of length and time scales in gels. A superdiffusive region is observed in different associative network systems, which can be captured by a two-state kinetic model. Further, the effects of the architecture and chemistry of polymer chains on gel nanostructure are studied. By incorporating shear-thinning coiled-coil protein motifs into the midblock of a micelle-forming block copolymer, we are able to responsively adjust the gel toughness through controlling the nanostructure. Finally, we review the development of novel application-oriented materials that emerge from our enhanced understanding of gel physical chemistry, including injectable gel hemostats designed to treat internal wounds and engineered nucleoporin-like polypeptide (NLP) hydrogels that act as biologically selective filters. We believe that the fundamental physical chemistry questions articulated in this Account will provide inspiration to fully understand the design of polymer networks, a group of mysterious yet critically important materials.


Asunto(s)
Materiales Biocompatibles/química , Polímeros/química , Química Física , Cinética
16.
Sci Rep ; 6: 39775, 2016 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-28008958

RESUMEN

Zika virus (ZIKV) infection has been associated with severe complications both in the developing and adult nervous system. To investigate the deleterious effects of ZIKV infection, we used human neural progenitor cells (NPC), derived from induced pluripotent stem cells (iPSC). We found that NPC are highly susceptible to ZIKV and the infection results in cell death. ZIKV infection led to a marked reduction in cell proliferation, ultrastructural alterations and induction of autophagy. Induction of apoptosis of Sox2+ cells was demonstrated by activation of caspases 3/7, 8 and 9, and by ultrastructural and flow cytometry analyses. ZIKV-induced death of Sox2+ cells was prevented by incubation with the pan-caspase inhibitor, Z-VAD-FMK. By confocal microscopy analysis we found an increased number of cells with supernumerary centrosomes. Live imaging showed a significant increase in mitosis abnormalities, including multipolar spindle, chromosome laggards, micronuclei and death of progeny after cell division. FISH analysis for chromosomes 12 and 17 showed increased frequency of aneuploidy, such as monosomy, trisomy and polyploidy. Our study reinforces the link between ZIKV and abnormalities in the developing human brain, including microcephaly.


Asunto(s)
Apoptosis , Mitosis , Células-Madre Neurales/metabolismo , Células-Madre Neurales/virología , Infección por el Virus Zika/metabolismo , Virus Zika/metabolismo , Células Cultivadas , Humanos , Células-Madre Neurales/patología , Infección por el Virus Zika/patología
17.
Crit Care ; 20(1): 323, 2016 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-27724931

RESUMEN

BACKGROUND: The disproportion between the large organ demand and the low number of transplantations performed represents a serious public health problem worldwide. Reducing the loss of transplantable organs from deceased potential donors as a function of cardiac arrest (CA) may contribute to an increase in organ donations. Our purpose was to test the hypothesis that a goal-directed protocol to guide the management of deceased donors may reduce the losses of potential brain-dead donors (PBDDs) due to CA. METHODS: The quality improvement project included 27 hospitals that reported deceased donors prospectively to the Transplant Center of the State of Santa Catarina, Brazil. All deceased donors reported prospectively between May 2012 and April 2014 were analyzed. Hospitals were encouraged to use the VIP approach checklist during the management of PBDDs. The checklist was composed of the following goals: protocol duration 12-24 hours, temperature > 35 °C, mean arterial pressure ≥ 65 mmHg, diuresis 1-4 ml/kg/h, corticosteroids, vasopressin, tidal volume 6-8 ml/kg, positive end-expiratory pressure 8-10 cmH2O, sodium < 150 mEq/L, and glycemia < 180 mg/dl. A logistic regression model was used to identify predictors of CA. RESULTS: There were 726 PBDD notifications, of which 324 (44.6) were actual donors, 141 (19.4 %) CAs, 226 (31.1 %) family refusals, and 35 (4.8 %) contraindications. Factors associated with CA reduction included use of the checklist (odds ratio (OR) 0.43, p < 0.001), maintenance performed inside the ICU (OR 0.49, p = 0.013), and vasopressin administration (OR 0.56, p = 0.04). More than three interventions had association with less CAs (OR 0.19, p < 0.001). After 24 months, CAs decreased from 27.3 % to 14.6 % (p = 0.002), reaching 12.1 % in the following two 4-month periods (p < 0.001). Simultaneous increases in organ recovered per donor and in actual donors were observed. CONCLUSIONS: A quality improvement program based on education and the use of a goal checklist for the management of potential donors inside the ICU is strongly associated with a decrease in donor losses and an increase in organs recovered per donor.


Asunto(s)
Muerte Encefálica , Toma de Decisiones Clínicas/métodos , Objetivos , Paro Cardíaco/prevención & control , Donantes de Tejidos , Obtención de Tejidos y Órganos/normas , Adolescente , Adulto , Muerte Encefálica/diagnóstico , Protocolos Clínicos , Paro Cardíaco/diagnóstico , Humanos , Persona de Mediana Edad , Estudios Prospectivos , Mejoramiento de la Calidad/normas , Obtención de Tejidos y Órganos/métodos , Adulto Joven
18.
Environ Sci Pollut Res Int ; 23(22): 22947-22956, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27578092

RESUMEN

This paper comes out from the need to provide an improvement in the current oil refinery wastewater treatment plant (WWTP) aiming to generate water for reuse. The wastewater was pretreated and collected in the WWTP after the biological treatment unit (bio-disks) followed by sand filtration. Ozonation (ozone concentration from 3.0-60 mgO3 L-1), UV (power lamp from 15 to 95 W), H2O2 (carbon:H2O2 molar ratio of 1:1, 1:2, and 1:4), and two advanced oxidation processes (UV/O3 and UV/H2O2) were investigated aiming to reduce the wastewater organic matter and generate water with suitable characteristics for the reverse osmosis operation and subsequent industrial reuse. Even after the biological and filtration treatments, the oil refinery wastewater still presented an appreciable amount of recalcitrant organic matter (TOC of 12-19 mgC L-1) and silt density index (SDI) higher than 4, which is considered high for subsequent reverse osmosis due to membrane fouling risks. Experiments using non combined processes (O3, H2O2, and UV only) showed a low degree of mineralization after 60 min of reaction, although the pretreatment with ozone had promoted the oxidation of aromatic compounds originally found in the real matrix, which suggests the formation of recalcitrant compounds. When the combined processes were applied, a considerable increase in the TOC removal was observed (max of 95 % for UV/O3 process, 55 W, 60 mgO3 L-1), likely due the presence of higher amounts of reactive species, specially hydroxyl radicals, confirming the important role of these species on the photochemical degradation of the wastewater compounds. A zero-order kinetic model was fitted to the experimental data and the rate constant values (k, mgC L-1 h-1) ranged from 4.8 < k UV/O3 < 11 ([O3]0 = 30-60 mg L-1), and 8.6 < k UV/H2O2 < 11 (C:H2O2 from 1:1 to 1:4). The minimum and maximum electrical energy per order (E EO) required for 60 min of treatment were calculated as 5.4 and 81 Wh L-1, respectively, for UV/O3 (15 W, 60 mgO3 L-1) and UV/H2O2 (95 W, 1C:1H2O2). Good results in terms of water conditioning for reverse osmosis operation were obtained using UV/H2O2 process with initial molar ratio of 1 C:2 H2O2 (UV lamp 55 W) and 1 C:4 H2O2 (UV lamp 95 W), and total organic carbon (TOC) removals of 62 % (SDI15 = 1.8) and 74 % (SDI15 = 2.0) were achieved, respectively, after 60 min. The treated wastewater followed to the reverse osmosis system, which operated with an adequate flux of permeate, was very efficient to remove salt and generate a permeate water with the required quality for industrial reuse.


Asunto(s)
Compuestos Orgánicos/aislamiento & purificación , Aguas Residuales/química , Agua/química , Peróxido de Hidrógeno/química , Radical Hidroxilo/química , Compuestos Orgánicos/química , Oxidación-Reducción , Ozono/química , Rayos Ultravioleta , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos
19.
J Org Chem ; 80(15): 7572-80, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26153917

RESUMEN

Many imidazole (IMZ) derivatives of pharmaceutical interest, which are potentially catalytic in dephosphorylation reactions, are soluble solely in mixtures of water and organic solvent. In order to understand these poorly explored reactions and properly compare them, a thorough study related to solvent effects for the analogous spontaneous reaction and with common IMZ derivatives is necessary, which is lacking in the literature. Herein, we report a quantitative solvent effect analysis in DMSO/water mixtures for (i) the hydrolysis reaction of diethyl 2,4-dinitrophenylphosphate (DEDNPP) and (ii) the nucleophilic reaction of IMZ and 1-methylimidazole (MEI) with DEDNPP. The solvent effect was fitted satisfactorily with multiple regression analysis, correlating the obtained second-order rate constants with solvent parameters such as acidity, basicity, and polarity/polarizability from Catalán's scale. The contribution of these parameters can be taken into account to elucidate the reactivity in these media. Interestingly, IMZ is more reactive than MEI in DMSO, compared to water alone, which is attributed to the availability of hydrogen-bond formation. Nuclear magnetic resonance spectroscopy ((1)H, (13)C, and (31)P), mass spectrometry, thermodynamic analysis, and density functional theory calculations were carried out to corroborate the proposed nucleophilic mechanism.


Asunto(s)
2,4-Dinitrofenol/análogos & derivados , Dimetilsulfóxido/química , Imidazoles/química , Organofosfatos/química , Solventes/química , Agua/química , 2,4-Dinitrofenol/química , Catálisis , Ésteres , Cinética , Espectroscopía de Resonancia Magnética , Fosfatos/química
20.
Langmuir ; 31(12): 3587-95, 2015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25742026

RESUMEN

This paper presents the physicochemical properties of micellar aggregates formed from a series of zwitterionic surfactants of the type 3-(1-alkyl-3-imidazolio)propane-sulfonate (ImS3-n), with n = 10, 12, 14, and 16. The ImS3-n dipolar ionic surfactants represent a versatile class of dipolar ionic compounds, which form normal and reverse micelles. Furthermore, they are able to stabilize nanoparticles in water and in organic media. Aqueous solubility is too low at room temperature to allow characterization of micellar aggregates but increases with addition of salts, allowing determination of aggregation number and cmc. As expected, these parameters depend on the length of the alkyl chain, and cmc values follow Klevens equation. In the presence of NaClO4, all ImS3-n micelles become anionoid by incorporating ClO4(-) on the micellar interface. A special feature of these surfactants is the ability to form reverse micelles and solubilize copious amounts of saline solutions in chloroform. (1)H NMR and infrared spectroscopic evidence showed that the maximum water to surfactant molar ratio w0 achievable depends on the concentration and type of salt dissolved. Reverse micelles of the ImS3-n surfactants can be used to stabilize metallic nanoparticles, whose size may be tuned by the amount of water dissolved.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA