Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39274096

RESUMEN

This study investigates the performance of different poly(lactic acid) (PLA) composites incorporating agri-food waste additives and commercial lignin, comparing their properties with those of virgin PLA. The following composites were prepared using a single-screw extruder: PLA with 20% rice husk, PLA with 20% wheat straw and PLA with 20% olive pit. Additionally, PLA was blended with commercial lignin at the maximum feasible proportion using the same methodology. The resulting composites were injection-molded into specimens for analysis of their mechanical, thermal and morphological behavior. The primary objectives were to assess the dispersion of the additives within the PLA matrix and to evaluate the mechanical properties of the composites. The results indicate that the addition of high percentages of agricultural residues does not significantly compromise the mechanical properties of the composites. Notably, in the case of the PLA with 20% rice husk composite, the elastic modulus surpassed that of virgin PLA, despite the evident heterogeneity in filler particle sizes. It was feasible to incorporate a higher percentage of agricultural residues compared to commercial lignin, attributed to the larger volume occupied by the latter.

2.
Polymers (Basel) ; 16(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39065298

RESUMEN

Large amounts of agri-food waste are generated and discarded annually, but they have the potential to become highly profitable sources of value-added compounds. Many of these are lignin-rich residues. Lignin, one of the most abundant biopolymers in nature, offers numerous possibilities as a raw material or renewable resource for the production of chemical products. This study aims to explore the potential revalorization of agricultural by-products through the extraction of lignin and subsequent depolymerization. Different residues were studied; river cane, rice husks, broccoli stems, wheat straw, and olive stone are investigated (all local wastes that are typically incinerated). Traditional soda extraction, enhanced by ultrasound, is applied, comparing two different sonication methods. The extraction yields from different residues were as follows: river cane (28.21%), rice husks (24.27%), broccoli (6.48%), wheat straw (17.66%), and olive stones (24.29%). Once lignin is extracted, depolymerization is performed by three different methods: high-pressure reactor, ultrasound-assisted solvent depolymerization, and microwave solvolysis. As a result, a new microwave depolymerization method has been developed and patented, using for the first time graphene nanoplatelets (GNPs) as new promising carbonaceous catalyst, achieving a 90.89% depolymerization rate of river cane lignin and yielding several building blocks, including guaiacol, vanillin, ferulic acid, or acetovanillone.

3.
Polymers (Basel) ; 14(24)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36559902

RESUMEN

The aim of this research work was the comparative study of the different properties of interest in the case of plastic materials for food use before and after being subjected to treatment by high hydrostatic pressure (HHP) as well as the impact of additivation with antimicrobials. This method of food preservation is currently on the rise and is of great interest because it is possible to extend the shelf life of many foods without the need for the use of additives or thermal processing, as is the case with other preservation methods currently used. The effects of HHP treatment (680 MPa for 8 min) on plastic materials commonly used in the food industry were studied. These materials, in sheet or film form, were polyethylene (PE), polyethylene terephthalate (PET), polystyrene (PS), multilayer polyethylene terephthalate-ethylene-vinyl alcohol copolymer-polyethylene (PET-EVOH-PE), multilayer polyethylene-polyethylene terephthalate (PE-PET), polyvinyl chloride aluminum (PVC-AL), and polylactic acid (PLA), which were provided by manufacturing companies in the sector. PE, PP, and PLA activated with tyrosol, zinc oxide, or zinc acetate were also tested. The phenomena and properties, such as overall migration, thermal behavior, oxygen barrier, and physical properties were analyzed before and after the process. The results show that the HHP process only slightly affected the properties of the materials. After pressurization, oxygen permeability increased greatly in PVC-AL (from 7.69 to 51.90) and decreased in PLA (from 8.77 to 3.60). The additivation of the materials caused a change in color and an increase in oxygen permeability. The additivated PE and PP showed migration values above the legal limit for certain simulants. The HHP treatment did not greatly affect the mechanical properties of the additivated materials. The main increases in the migration after HHP treatment were observed for PE activated with tyrosol or zinc oxide and for PS activated with zinc oxide. Activated PLA performed the best in the migration studies, irrespective of the HHP treatment. The results suggest that activated PLA could be used in HHP food processing as an inner antimicrobial layer in contact with the food packed in a container with the desired oxygen permeability barrier.

4.
Materials (Basel) ; 8(9): 6401-6418, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-28793571

RESUMEN

Chitosan/bacterial cellulose composite films containing diamond nanoparticles (NDs) with potential application as wound dressing are introduced. Microstructural studies show that NDs are uniformly dispersed in the matrix, although slight agglomeration at concentrations above 2 wt % is seen. Fourier transform infrared spectroscopy reveals formation of hydrogen bonds between NDs and the polymer matrix. X-ray diffraction analysis indicates reduced crystallinity of the polymer matrix in the presence of NDs. Approximately 3.5-fold increase in the elastic modulus of the composite film is obtained by the addition of 2 wt % NDs. The results of colorimetric analysis show that the composite films are transparent but turn to gray-like and semitransparent at high ND concentrations. Additionally, a decrease in highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) gap is also seen, which results in a red shift and higher absorption intensity towards the visible region. Mitochondrial activity assay using L929 fibroblast cells shows that the nanocomposite films are biocompatible (>90%) after 24 h incubation. Multiple lamellapodia and cell-cell interaction are shown. The results suggest that the developed films can potentially be used as a flexible platform for wound dressing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA